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Abstract

Empirical volatility changes in time and exhibits tails, which are heavier

than normal. Moreover, empirical volatility has - sometimes quite substantial

- upwards jumps and clusters on high levels. We investigate classical and non-

classical stochastic volatility models with respect to their extreme behavior.

We show that classical stochastic volatility models driven by Brownian motion

can model heavy tails, but obviously they are not able to model volatility

jumps. Such phenomena can be modelled by Lévy driven volatility processes

as, for instance, by Lévy driven Ornstein-Uhlenbeck models. They can capture

heavy tails and volatility jumps. Also volatility clusters can be found in such

models, provided the driving Lévy process has regularly varying tails. This

results then in a volatility model with similarly heavy tails. As the last class

of stochastic volatility models, we investigate a continuous time GARCH(1,1)

model. Driven by an arbitrary Lévy process it exhibits regularly varying tails,

volatility upwards jumps and clusters on high levels.
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1 Introduction

The classical pricing model is the Black-Scholes model given by the SDE

dSt = rStdt + σStdBt , S0 = x ∈ R , (1.1)

where r ∈ R is the stock-appreciation rate, σ > 0 is the volatility and B is a

standard Brownian motion. The Black-Scholes model is based on the assumption

that the relative price changes of the asset form a Gaussian process with stationary

and independent increments. The crucial parameter is the volatility σ, which is in

this model assumed to be constant. However, empirical analysis of stock volatility

has already shown in the 1970ies that volatility is not constant, quite the contrary,

it is itself stochastic and varies in time.

This observation has led to a vast number of volatility models in discrete-time

as well as in continuous-time. In this paper we concentrate on continuous-time

volatility models. Moreover, we are concerned with the so-called stylized facts of

volatility as e. g.

• volatility changes in time,

• volatility is random,

• volatility has heavy tails,

• volatility clusters on high levels.

Introducing a stochastic volatility extends the Black-Scholes model to

dSt = rStdt +
√

VtStdBt ,

where V can in principle be any positive stationary stochastic process.

Within the framework of SDEs quite natural models are easily defined. Common

examples are the Ornstein-Uhlenbeck (OU) process

dVt = −λVtdt + σdZt , (1.2)

where λ, σ > 0 and Z is the driving process, often a second Brownian motion, inde-

pendent of B. As this is a Gaussian model, it is not a positive process. Alternatively,

a Cox-Ingersoll-Ross (CIR) model has been suggested as a volatility model, defined

by

dVt = λ(a − Vt)dt + σ
√

VtdZt , (1.3)
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where λ, a, σ > 0 and λa ≥ σ2/2. The parameter a is the long-term mean of the

process and λ the rate of mean reversion. Again in the classical model Z is a

standard Brownian motion, independent of B.

Apart from the fact that Gaussian OU processes are not positive, another stylized

fact is also violated: empirical volatility exhibits heavy tails, consequently, again the

OU model as a Gaussian model seems not very appropriate. Changing the constant

σ to a time dependent diffusion coefficient σV γ
t for γ ∈ [1/2,∞) and including a

linear drift yields positive stationary models with arbitrarily heavy tails. This has

been shown in Borkovec and Klüppelberg [8]. Such models are called generalized

Cox-Ingersoll-Ross models, a parameter γ = 1/2 corresponds to the classical CIR

model of (1.3).

On the other hand, a constant σ is attractive, and an alternative way to generate

heavy tails in the volatility is to replace the driving Gaussian process in (1.2) by a

Lévy process with heavier tailed increments. Furthermore, the upward jumps often

observed in empirical volatility cannot be modelled by a continuous process. So Lévy

processes with jumps as driving processes seem to be quite natural. Such an OU pro-

cess is positive, provided the driving Lévy process has only positive increments and

no Gaussian component; i. e. it is a subordinator. This is exactly what Barndorff-

Nielsen and Shephard [4,5] have suggested, modelling the (right-continuous) volatil-

ity process as a Lévy driven OU process. Their stochastic volatility model is given

by

dVt = −λVtdt + σdLλt , (1.4)

where a, b ∈ R, λ > 0 and L is a subordinator, called the background driving Lévy

process (BDLP). The price process itself is then driven by an independent Brownian

motion.

A completely different approach to obtain continuous-time volatility models

starts with a GARCH model and derives from this discrete-time model a continuous-

time model. A natural idea is a diffusion approximation; see e. g. Drost and

Werker [16] and references therein. This approach leads to stochastic volatility

models of the type

dSt =
√

Vt dB
(1)
t ,

dVt = λ(a − Vt)dt + σVtdB
(2)
t , (1.5)

i. e. V is a generalized CIR model with parameter γ = 1. The two processes

B(1), B(2) are independent Brownian motions.
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A different approach has been taken by Klüppelberg, Lindner and Maller [27],

who started with a discrete-time GARCH(1,1) model and replaced the noise vari-

ables by a Lévy process L with jumps ∆Lt = Lt−Lt−, t ≥ 0. This yields a stochastic

volatility model of the type

dSt =
√

Vt dLt , (1.6)

dVt+ = βdt + Vte
Xt−d(e−Xt) ,

where β > 0 and V is left-continuous. The auxiliary càdlàg process X is defined by

Xt = ηt −
∑

0<s≤t

log(1 + λeη(∆Ls)
2) , (1.7)

for η > 0 and λ ≥ 0. This continuous-time GARCH(1,1) model is called a

COGARCH(1,1) model.

Our paper focuses on the extremal behavior of stationary continuous-time stochas-

tic volatility models. This can be described by the tail behavior of the stationary

distribution and by the behavior of the process above high thresholds.

The tail behavior models the size of the fluctuations of V and determines the

maximum domain of attraction (MDA) of the model. The notion of MDA is defined

in Fisher-Tippett’s theorem; see Theorem A.5. We distinguish MDA(Φα), MDA(Λ)

and MDA(Ψα), for α > 0, respectively. Distribution functions in MDA(Φα) have

regularly varying tails: they are heavy-tailed in the sense that not all moments are

finite; see Definition A.1. Distribution functions in MDA(Λ) have tails ranging from

semi-heavy tails to very light tails. Distribution functions in MDA(Ψα) have support

bounded to the right. Financial risk is usually considered as having unbounded

support above, hence MDA(Ψα) is inappropriate in our context and will play no

further role in this paper.

The description of a continuous-time process above high thresholds depends on

the sample path behavior of the process. When classical volatility models driven

by a Brownian motion have continuous sample paths with infinite variation, some

discrete-time skeleton is introduced. A standard concept is based on so-called ε-

upcrossings, see Definition 2.4, which is only valid for processes with continuous

sample paths.

For Lévy driven models large jumps (for instance larger than 1) constitute a

natural discrete-time skeleton, which can be utilized. Denote by (Γk)k∈N the random

time points on [0,∞), where the driving Lévy process jumps and exceeds a given

threshold. The bivariate process (Γk, VΓk
)k∈N is interpreted as the coordinates of a
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point process in [0,∞)×R+. As usual we define point processes via Dirac measures.

Recall that for any Borel sets A×B ⊆ [0,∞)×R+ the measure
∑∞

k=1 ε{Γk, VΓk
}(A×

B) counts how often Γk ∈ A and VΓk
∈ B.

After appropriate normalization in time and space these point processes may

converge and the limit process may allow for an interpretation, thus providing a

description of the extreme behavior of the volatility process. Under weak dependence

in the data we obtain as limit a Poisson random measure with mean measure ϑ

(PRM(ϑ)); see Definition B.4. Moreover, the two components of ϑ are independent

and consist of the Poisson measure in time and the negative logarithm of an extreme

value distribution in space. Under strong dependence the limit is a cluster Poisson

random measure. All these considerations concern the discrete-time skeleton only

and ignore the fact that we deal with continuous-time processes.

In the case of a driving Lévy process with jumps, in principle also the small jumps

can influence the extreme behavior. In a very close neighborhood of a jump time

Γk infinitely many small jumps can happen; they may contribute to the extreme

behavior around Γk. To investigate the influence of these small jumps and the

Gaussian component, we consider the process V at each point Γk in a surrounding

interval Ik. Finally, in certain situations we investigate also the process V after

it has achieved a local supremum. With each point Γk an excursion of V over a

high threshold starts. Interesting questions concern the length of the excursion, the

rate of “decrease” after Γk, and we shall answer such questions at least for some

models considered in this paper. This is done by attaching marks to the point

process (Γk, VΓk
)k∈N. In our model marks are a vector of values of the process V

after Γk, hence it describes the finite dimensional distributions of V after Γk. The

limit process turns out to be different in different regimes.

Our paper is organized as follows. In Section 2 we review the extremal behavior

of the generalized CIR model, which can belong to different maximum domains of

attractions; i. e. such models can have arbitrary tails. Unfortunately, they are not

appropriate models in case of high level volatility clusters in the data.

Section 3 deals with Lévy driven OU volatility models. Their extremal behavior

is characterized by the extremal behavior of the driving Lévy process, so that we have

to distinguish between different classes of BDLPes. In Section 3.1 this is done for

subexponential Lévy processes L = (Lt)t≥0. According to whether L1 ∈ MDA(Φα)

for some α > 0 or L1 ∈ MDA(Λ), the extremal behavior of the OU process is quite

different. Then, in Section 3.2 we study OU processes with exponential tails. As a

prominent example we investigate the Γ-OU process, i. e. the stationary volatility
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is gamma distributed. As an important larger class we study OU processes, whose

BDLP belongs to S(γ) for γ > 0. This class extends subexponential Lévy processes

in a natural way; see Definition A.3. It turns out that for all OU processes in

Section 3, high level volatility clusters are exhibited only in the case of regularly

varying BDLPes.

The last class of models reviewed in this paper concerns the CO-

GARCH process in Section 4. In contrast to the OU processes considered ear-

lier, the COGARCH volatility has heavy tails under quite general conditions on the

driving Lévy process L. Furthermore, the COGARCH exhibits high level volatility

clusters.

Finally, a short conclusion is given in Chapter 5. Here we compare the models

introduced in the different sections before. It turns out that there is a striking

similarity concerning the extremal behaviour of models with the same stationary

distribution. Here we also discuss briefly some further empirical facts of volatility

not quite in the focus of our paper.

As not to disturb the flow of arguments we postpone classical definitions and

concepts to an Appendix. Throughout this paper we shall use the following notation.

We abbreviate distribution function by d. f. and random variable by r. v. For any

d. f. F we denote its tail F = 1−F . For two r. v. s X and Y with d. f. s F and G we

write X
d
= Y if F = G, and by

T→∞
=⇒ we denote weak convergence for T → ∞. For

two functions f and g we write f(x) ∼ g(x) as x → ∞, if limx→∞ f(x)/g(x) = 1.

We also denote R+ = (0,∞). For x ∈ R, we let x+ = max{x, 0} and log+(x) =

log(max{x, 1}). Integrals of the form
∫ b

a
will be interpreted as the integral taken

over the interval (a, b].

2 Extremal behavior of generalized Cox-Ingersoll-

Ross models

In this section we summarize some well-known results on classical volatility models

as defined in (1.3) and (1.5) driven by a standard Brownian motion. This section is

based on Borkovec and Klüppelberg [8]; for a review see [26], Section 3.

These models fall into the framework of generalized Cox-Ingersoll-Ross models

(GCIR) models. We restrict ourselves to stationary solutions of the SDE

dVt = λ(a − Vt)dt + σV γ
t dBt , (2.1)
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where γ ∈
[

1
2
,∞
)
. For λ, a, σ > 0 (in the case γ = 1/2 additionally λa ≥ σ2/2 is

needed) these models are ergodic with state space R+ and have a stationary density.

Associated with the diffusion (2.1) is the scale function s and the speed measure

m. The scale function is defined as

s(x) =

∫ x

z

exp

(
−

2λ

σ2

∫ y

z

a − t

t2γ
dt

)
dy , x ∈ R+ , (2.2)

where z is any interior point of R+ whose choice does not affect the extremal be-

havior. For the speed measure m we know that it is finite for the GCIR model.

Moreover, m is absolutely continuous with Lebesgue density

m′(x) =
2

σ2x2γs′(x)
, x ∈ R+ ,

where s′ is the Lebesgue density of s. Then the stationary density of V is given by

f(x) = m′(x)/m(R+) , x ∈ R+ . (2.3)

Proposition 2.1. Let V be a GCIR model given by equation (2.1) and define

M(T ) := supt∈[0,T ] Vt for T > 0. Then for any initial value V0 = y ∈ R+ with

corresponding distribution Py and any uT ↑ ∞,

lim
T→∞

|Py(M(T ) ≤ uT ) − HT (uT )| = 0 ,

where H is a d. f., defined for any z ∈ R+ by

H(x) = exp

(
−

1

m(R+)s(x)

)
, x > z . (2.4)

The function s and the quantity m(R+) depend on the choice of z. �

Corollary 2.2 (Running maxima).

Let the assumptions of Proposition 2.1 hold. Assume further that H ∈ MDA(G) for

G ∈ {Φα, α > 0, Λ} with norming constants aT > 0, bT ∈ R. Then

lim
T→∞

P(a−1
T (M(T ) − bT ) ≤ x) = G(x) , x ∈ R .

It is clear that the d. f. H decides about the extremal behavior of V . We present

four cases.

Example 2.3 (Tail behavior of GCIR models).

Let V be a stationary GCIR model given by equation (2.1) with stationary density f ,
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corresponding d. f. F , and d. f. H as given in (2.4). Recall that a Γ(µ, γ) distributed

r. v. has probability density

p(x) =
γµ

Γ(µ)
xµ−1e−γx , x > 0 , (2.5)

for µ > 1 and γ > 0.

(1) γ = 1
2
: The stationary density of V is Γ

(
2λa
σ2 , 2λ

σ2

)
. The tail of H behaves like

H(x) ∼
2λ2a

σ2
xF (x) , x → ∞,

so that the tail of H is that of a Γ
(

2λa
σ2 + 1, 2λ

σ2

)
distribution. Hence H ∈ MDA(Λ)

with norming constants

aT =
σ2

2λ
and bT =

σ2

2λ

[
log T +

2λa

σ2
log log T − log

(
λ

Γ(2λa/σ2)

)]
.

(2) 1
2

< γ < 1: The stationary density of V is given by

f(x) =
2

Aσ2
x−2γ exp

(
−

2

σ2

(
λa

2γ − 1
x−(2γ−1) +

λ

2 − 2γ
x2−2γ

))
, x > 0,

with some normalizing factor A > 0. The d. f. H has tail

H(x) ∼ Bx2(1−γ)F (x), x → ∞, (2.6)

where B > 0. Hence H ∈ MDA(Λ) with norming constants

aT =
σ2

2λ

(
σ2(1 − γ)

λ
log T

) 2γ−1
2−2γ

,

bT =

(
σ2(1 − γ)

λ
log T

) 1
(2−2γ)


1 −

2γ − 1

(2 − 2γ)2

log
(

σ2(1−γ)
λ

log T
)

log T


+ aT log

(
2λ

Aσ2

)
.

(3) γ = 1: The stationary density of V is inverse gamma, i. e.

f(x) =

(
σ2

2λa

)− 2λ

σ2 −1(
Γ

(
2λ

σ2
+ 1

))−1

x− 2λ

σ2 −2 exp

(
−

2λa

σ2
x−1

)
, x > 0,

so that V0 ∈ R−2λ/σ2−1; see Definition A.1. In this case H(x) ∼ cx−2λ/σ2−1 for

x → ∞ and some c > 0. Hence H ∈ MDA(Φα) for α = 2λ/σ2 + 1 with norming

constants aT = (cT )σ2/(2λ+σ2) and bT = 0.

(4) γ > 1: The stationary density f of V has the same form as in (2), but

is regularly varying of index −2γ + 1. Now the tail of H becomes very extreme:

H(x) ∼ cx−1. Hence H ∈ MDA(Φ1) with aT = cT and bT = 0. �
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Since all models (2.1) are driven by a Brownian motion, they have continuous

sample paths; i. e. there is no natural discrete-time skeleton. We follow the standard

approach to create a discrete-time skeleton of the process; see e. g. Leadbetter et

al. [29], Chapter 12. This allows for a more profound extreme value analysis of V .

Definition 2.4. Let V be a stationary version of the diffusion given by (2.1). V is

said to have an ε-upcrossing of the level u at a point Γ > 0 if

Vt < u for t ∈ (Γ − ε, Γ) and VΓ = u .

With this definition we can formulate a further result describing the extreme

behavior of a stationary GCIR model.

Theorem 2.5 (Point process of ε-upcrossings).

Let V be a stationary version of the diffusion given by (2.1) with d. f. H as in (2.4).

Let aT > 0, bT ∈ R be the norming constants as given in Example 2.3. Let (ΓT,k)k∈N

be the time points on R+, where the ε-upcrossings of V of the level aT x + bT occur.

Let (jk)k∈N be the jump times of a Poisson process with intensity e−x for x ∈ R, if

γ ∈ [1/2, 1) and x−α for x > 0 with α = 2λ/σ2 + 1 if γ = 1 and α = 1 if γ > 1.

Then

∞∑

k=1

ε {ΓT,k/T}
T→∞
=⇒

∞∑

k=1

ε{jk} .

As is obvious from this result, ε-upcrossings of V for high levels behave like

exceedances of i. i. d. data, i. e. such models do not exhibit volatility clusters. They

can, however, model heavy tails as the running maxima depend on the d. f. H.

3 Extremal behavior of OU volatility models

We start with a precise definition of a positive OU process as a solution of (1.4).

For more information on Lévy processes we refer to the excellent monographs by

Sato [35], Bertoin [6] and Cont and Tankov [15]. Let L be a subordinator; i. e. L is

a Lévy process with increasing sample paths, hence they are of bounded variation,

and we assume that they are càdlàg. The Laplace transform is then the natural

transform and has for all t ≥ 0 the representation

E exp(−λLt) = exp(−tΨ(λ)) , λ ≥ 0 .
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The Laplace exponent Ψ has representation

Ψ(λ) = mλ +

∫

(0,∞)

(1 − e−λx) ν(dx) .

As there is no Gaussian component the characteristic triplet of arbitrary Lévy pro-

cesses reduces to a pair (m, ν), where m > 0 is the drift and the Lévy measure ν

has support on R+ and satisfies
∫

(0,∞)

(1 ∧ x) ν(dx) < ∞ .

We denote for λ > 0 by

Vt = e−λtV0 +

∫ t

0

e−λ(t−s) dLλs , t ∈ R , (3.1)

the solution to the SDE (1.4). Then V becomes a càdlàg process.

A stationary solution of (1.4) exists if and only if
∫

s>1
log(1 + s) ν(ds) < ∞.

Note that this condition is only violated for Lévy measures with very heavy tails.

As all models considered in this paper have tails which are regularly varying of

some negative index or lighter, all our models satisfy this stationarity condition.

Stationarity is then achieved, if V0 is taken to be independent of the driving Lévy

process L and has distribution

V0
d
=

∫ ∞

0

e−s dLs . (3.2)

A convenient representation for the stationary version is

Vt = e−λt

∫ t

−∞

eλs dLλs, t ≥ 0. (3.3)

In this representation, L is extended to a Lévy process on the whole real line, by

letting L̃ = (L̃t)t≥0 be an independent copy of (Lt)t≥0, and defining Lt := −L̃−t−

for t < 0. The parameter λ in the process L in (3.1) ensures that the stationary

marginal distribution of V is independent of λ; indeed it is given by (3.2).

The r. v. V0 is infinitely divisible with characteristic pair (mV , νV ), where mV = m

and

νV [x,∞) =

∫ ∞

x

u−1ν [u,∞) du , x > 0 . (3.4)

We are concerned with Lévy processes L, which are heavy or semi-heavy tailed;

i. e. whose tails decrease not faster than exponentially. As indicated in (3.8) and
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(3.11) below, this induces a similar tail behavior on V , which is in accordance with

empirical findings.

The structure of an OU volatility process can be best understood when consid-

ering the following example.

Example 3.1 (Positive shot noise process).

Let L be a positive compound Poisson process with characteristic pair (0, µPF ),

where µ > 0 and PF is a probability measure on R+ with corresponding d. f. F .

Then L has the representation

Lt =
Nt∑

j=1

ξj , t > 0 , (3.5)

where (Nt)t≥0 is a Poisson process on R+ with intensity µ > 0 and jump times

(Γk)k∈N. The process N is independent of the i. i. d. sequence of positive r. v. s

(ξk)k∈N with d. f. F .

The resulting volatility process is then the positive shot noise process

Vt = e−λtV0 +

∫ t

0

e−λ(t−s) dLλs = e−λtV0 +

Nλt∑

j=1

e−λt+Γj ξj , t ≥ 0 ,

and from (3.4) we get

νV [x,∞) = µ

∫ ∞

x

u−1F (u) du, x > 0.

If E log(1+ξ1) < ∞, a stationary solution exists in which case V can be represented

as

Vt = e−λt

Nλt∑

j=−∞
j 6=0

eΓjξj, t > 0. (3.6)

Here, we let (ξk)k∈−N0 and (Γk)k∈−N0 be sequences of r. v. s such that (ξk)k∈Z and

(Γk)k∈Z are independent. Furthermore, (ξk)k∈Z is an i. i. d. sequence and (−Γk)k∈−N

are the jump times of a Poisson process on R+ with intensity µ, independent of

(Γk)k∈N; further, we define Γ0 := 0.

The qualitative extreme behavior of this volatility process can be seen in Figure 1

in detail. The volatility jumps upwards, whenever (Nλt)t≥0 jumps and decreases

exponentially fast between two jumps. This means in particular that V has local

suprema exactly at the jump times Γk/λ (and t = 0), i.e

Vt = VΓk/λe
−λt+Γk , t ∈ [Γk/λ, Γk+1/λ) .
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Figure 1: Sample path of an OU Weibull process with L1 as given in Example 3.3 with λ = 1,

µ = 1 and p = 1/2.

Consequently, it is the discrete-time skeleton of V at points Γk/λ that determines

the extreme behavior of the volatility process. �

For a general subordinator L we decompose

L = L(1) + L(2) (3.7)

into two independent Lévy processes, where L(1) has characteristic pair (0, ν1) with

ν1(x,∞) = ν(x,∞)1(1,∞)(x) and L(2) has characteristic pair (m, ν2) with ν2(x,∞) =

ν (x, 1]1(0,1](x). Then again L(1) is a compound Poisson process with intensity

ν(1,∞) and jump sizes with d. f. ν1/ν(1,∞). All the small jumps and the drift

are summarized in L(2).

What is needed, however, are the precise asymptotic links between the tails of

V , L and the tail of the Lévy measure ν(·,∞). This implies immediately that we

have to distinguish different regimes defined by the link between L and ν(·,∞). Any

infinitely divisible distribution is asymptotically tail-equivalent to its Lévy measure,

whenever it is convolution equivalent; see Theorem A.4. Definitions and results

concerning subexponential and convolution equivalent distributions are summarized

in Appendix 5.

The class S(0) = S of subexponential d. f. s contains all d. f. s with regularly

varying tails, but is much larger. Subexponential distributions can be in two different

maximum domains of attractions; see Theorem A.5. All d. f. s with regularly varying

tails are subexponential and belong to MDA(Φα). Other subexponential d. f. s, as for

instance the lognormal and the semi-heavy tailed Weibull d. f. s (see Example 3.3),
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belong to MDA(Λ). On the other hand, d. f. s as the gamma distribution or d. f. s in

S(γ) for γ > 0 belong to MDA(Λ), but are lighter tailed than any subexponential

distribution. Consequently, we also consider such exponential models below.

3.1 OU processes with subexponential tails

In this section we are concerned with the OU process given by (3.1), whose BDLP

is subexponential. This section is based on Fasen [19, 20]; an additional reference

is [18].

Proposition 3.2 (Tail behavior of subexponential models).

Let V be a stationary version of the OU process given by (3.1) and define M(h) :=

supt∈[0,h] Vt for h > 0.

(a) If L1 ∈ S ∩ MDA(Φα) = R−α, then also V0 ∈ R−α and

P(V0 > x) ∼ α−1
P(L1 > x) , x → ∞ . (3.8)

Moreover,

P(M(h) > x) ∼
[
λh + α−1

]
P(L1 > x) , x → ∞ . (3.9)

(b) If L1 ∈ S ∩ MDA(Λ), then also V0 ∈ S ∩ MDA(Λ) and

P(V0 > x) ∼ P(exp(−U)L1 > x) , x → ∞ , (3.10)

where U is a uniform r. v. on (0, 1), independent of L. In particular, P(V0 > x) =

o(P(L1 > x)) as x → ∞. More precisely,

P(V0 > x) ∼
a(x)

x
P(L1 > x), x → ∞ , (3.11)

where a is the function from the representation (A.1):

P(L1 > x) ∼ c exp

[
−

∫ x

0

1

a(y)
dy

]
, x → ∞ ,

for some c > 0 and a : R+ → R+ is absolutely continuous with limx→∞ a′(x) = 0

and limx→∞ a(x) = ∞. Finally,

P(M(h) > x) ∼ λhP(L1 > x) , x → ∞ . (3.12)

13



Proof. By (3.4) we have

νV (x,∞)

ν(x,∞)
=

∫∞

x
u−1ν(u,∞)du

ν(x,∞)
, x > 0 . (3.13)

Assume that L1 ∈ R−α for some α > 0. Then by Theorem A.4 (i) we have

ν(·,∞)/ν(1,∞) ∈ R−α. By Karamata’s theorem (e. g. Embrechts et al. [17], Theo-

rem A 3.6) we obtain

lim
x→∞

νV (x,∞)

ν(x,∞)
=

1

α
.

This implies in particular that also νV (·,∞)/νV (1,∞) ∈ R−α and hence, again by

Theorem A.4 (i), V0 ∈ R−α and (3.8) holds.

If L1 ∈ MDA(Λ) ∩ S we can only conclude from (3.13) that the right hand side

tends to 0. To obtain a precise result we proceed as follows. Denote by ξ1 the

jump distribution of the compound Poisson process L(1) as given in (3.7). Taking

ν (·,∞) /ν(1,∞) ∈ R−∞ into account and applying l’Hospital’s rule yields

νV (x,∞)

ν(1,∞)P(exp(−U)ξ1 > x)
=

∫∞

x
u−1ν(u,∞) du

∫ 1

0
ν (esx,∞) ds

=

∫∞

x
u−1ν (u,∞) du∫ xe

x
u−1ν (u,∞) du

∼

[
1 −

ν (e x,∞)

ν (x,∞)

]−1

−→ 1 , x → ∞ .

The tail-equivalence (3.10) follows then from the fact that ν(1,∞)P(exp(−U)ξ1 >

x) ∼ P(exp(−U)L1 > x) as x → ∞ and Theorem A.4 (i).

For proving (3.11), by Theorem A.4 (i) we may assume without loss of generality

that there exists a x0 > 0 such that

ν(x,∞) = c exp

[
−

∫ x

x0

1

a(y)
dy

]
, x ≥ x0.

Then ν(dx) = (a(x))−1ν(x,∞) dx and an application of l’Hospital’s rule shows that

νV (x,∞)

ν(x,∞) a(x)/x
∼

−ν(x,∞)/x

ν(x,∞)[a′(x) − a(x)/x]/x − (ν(x,∞)/a(x))a(x)/x

= [−a′(x) + a(x)/x + 1]−1

→ 1 , x → ∞ ,

since a(x)/x ∼ a′(x) and a′(x) → 0 as x → ∞. Theorem A.4 (i) then gives (3.11).

The results for M(h) are based on Theorem 2.1 of Rosinski and Samorodnit-

sky [34]. They show that for Lλh + V0 ∈ S

P(M(h) > x) ∼ νLλh+V0(x,∞) , x → ∞ ,

14



implying the result by Theorem A.4 (i) . �
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Figure 2: Sample path of an OU process driven by a regularly varying compound Poisson process

with µ = 8.5 and λ = 0.01. The first plot shows (Lλt)0≤t≤250 and the second plot shows the

corresponding volatility (Vt)0≤t≤250, indicating the micro-behavior of the model. The third plot

gives (Vt)0≤t≤10 000 indicating the macro-behavior of the model.

Example 3.3 (Semi-heavy tailed Weibull distribution).

Let L1 have distribution tail

P(L1 > x) ∼ K exp(−xp) , x → ∞ ,

for some K > 0 and p ∈ (0, 1). As a(x) = x1−p/p, we obtain from (3.11) immediately

P(V0 > x) ∼
K

p
x−p exp(−xp) , x → ∞ . �

Proposition 3.2 shows that in the regularly varying regime the tail of V0 is equiv-

alent to the tail of L1. In contrast to that, in the S ∩ MDA(Λ) case, the tail of V0

becomes lighter, due to the influence of exp(−U). But in both cases V0 is subex-

ponential and the tail of M(h) is determined by the tail of L1, only the constants

differ.

The following result gives a complete account of the extreme behavior of the

volatility process V driven by a subexponential Lévy process L. There are three

15



0 50 100 150 200 250
0

500

1000

1500

2000

2500

L λ t

0 50 100 150 200 250
5

10

15

20

25

V t

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

10

20

30

40

V t

Figure 3: Sample path of an OU Weibull process with p = 0.7, µ = 8.5 and λ = 0.01. The first

plot shows (Lλt)0≤t≤250 and the second plot the corresponding volatility (Vt)0≤t≤250, indicating

the micro-behavior of the model. The third plot gives (Vt)0≤t≤10 000 indicating the macro-behavior

of the model.

components considered in (3.15) and (3.16). The first one is the scaled jump time

process corresponding to the jumps of (Lλt)t≥0, which are larger than 1. The sec-

ond component is the normalized local supremum near that jump, and the third

component is a vector of normalized values of V after the jump.

Theorem 3.4 (Marked point process behavior of subexponential models).

Let V be a stationary version of the OU process given by (3.1). Suppose Γ =

(Γk)k∈N are the jump times of L(1) given by (3.7) and I = (Ik)k∈N, where Ik =
1
2λ

[Γk−1 + Γk, Γk + Γk+1), Γ0 := 0. For m ∈ N let 0 = t0 < t1 < · · · < tm.

(a) Assume that L1 ∈ S ∩ MDA(Φα) with norming constants aT > 0 such that

lim
T→∞

TP(L1 > aT x) = x−α , x > 0. (3.14)

Take Γ(k) = (Γk,i)i∈N, k ∈ N, as i. i. d. copies of the sequence Γ and set Γk,0 =

Γk,−1 = 0 for all k ∈ N. Let
∑∞

k=1 ε{sk, Pk} be a PRM(ϑ) with mean measure

16



ϑ(dt×dx) = dt×α x−α−1 1(0,∞)(x) dx, independent of the sequence (Γ(k))k∈N. Then,

∞∑

k=1

ε

{
Γk

λT
, a−1

λT sup
s∈Ik

Vs, {a
−1
λT VΓk/λ+ti}i=0,...,m

}

T→∞
=⇒

∞∑

k=1

∞∑

j=0

ε {sk, Pk exp(−(Γk,j−1 + Γk,j)/2), {Pk exp (−λti − Γk,j)}i=0,...,m} .(3.15)

(b) Assume that L1 ∈ S ∩ MDA(Λ) with norming constants aT > 0, bT ∈ R such

that

lim
T→∞

TP(L1 > aT x + bT ) = exp(−x) , x ∈ R .

Let
∑∞

k=1 ε {sk, Pk} be a PRM(ϑ) with ϑ(dt × dx) = dt × e−x dx. Then

∞∑

k=1

ε

{
Γk

λT
, a−1

λT (sup
s∈Ik

Vs − bλT ), {a−1
λT (VΓk/λ+ti − bλT )}i=0,...,m

}

T→∞
=⇒

∞∑

k=1

ε {sk, Pk, (Pk, 0, . . . , 0)} . (3.16)

Moreover,

∞∑

k=1

ε

{
Γk

λT
, a−1

λT (sup
s∈Ik

Vs − bλT ), {b−1
λT VΓk/λ+ti}i=0,...,m

}
(3.17)

T→∞
=⇒

∞∑

k=1

ε {sk, Pk, {exp(−λti)}i=0,...,m} .

We first give an interpretation of (3.16). The limit relations of the first two

components show that the local suprema of V around the Γk/λ, normalized with the

constants determined via Lλ, converge weakly to the same extreme value distribution

as Lλ. Moreover, the third component indicates that for t0 = 0 the second and third

component have the same limiting behavior; i. e. the sups∈Ik
Vs behaves like VΓk/λ.

For all ti > 0 the last component is negligible, i. e. the process is considerably

smaller away from VΓk/λ.

In the second and third component of (3.15) all points Γk,j and not only Γk,0 = 0

like in (3.16) may influence the limit. This phenomenon has certainly its origin in the

very large jumps caused by regular variation. Even though the volatility decreases

between the jumps exponentially fast, huge jumps can have a long lasting influence

on excursions above high thresholds. This is in contrast to the semi-heavy tailed

case, where L is subexponential, but in MDA(Λ).
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Both relations (3.15) and (3.17) exhibit, however, a common effect in the third

component: if the Lévy process L has an exceedance over a high threshold, then the

OU process decreases after this event exponentially fast.

Corollary 3.5 (Point process of exceedances).

Let the assumptions of Theorem 3.4 hold.

(a) Assume that L1 ∈ S ∩ MDA(Φα). Let (jk)k∈N be the jump times of a Poisson

process with intensity x−α for x > 0. Let (ζk)k∈Z be i. i. d. discrete r. v. s, independent

of (jk)k∈N, with probability distribution

πk = P(ζ1 = k) = E exp(−α(Γk−1 + Γk)/2) − E exp(−α(Γk + Γk+1)/2) , k ∈ N .

Then,

∞∑

k=1

ε

{
Γk

λT
, a−1

λT sup
s∈Ik

Vs

}
(· × (x,∞))

T→∞
=⇒

∞∑

k=1

ζkε{jk} .

(b) Assume that L1 ∈ S ∩ MDA(Λ). Let (jk)k∈N be the jump times of a Poisson

process with intensity e−x for x ∈ R. Then,

∞∑

k=1

ε

{
Γk

λT
, a−1

λT (sup
s∈Ik

Vs − bλT )

}
(· × (x,∞))

T→∞
=⇒

∞∑

k=1

ε{jk} .

Again the qualitative difference of the two regimes is obvious. In the case of

a regularly varying BDLP L the limiting process is a compound Poisson process,

where at each Poisson point a cluster appears, whose size is random with distribution

(πk)k∈N. In contrast to this, in the MDA(Λ) case, the limit process is simply a

homogeneous Poisson process; no clusters appear in the limit.

As the next result shows, the running maxima of the volatility process V have

the same behavior as that of an i. i. d. sequence of copies of Lλ.

Corollary 3.6 (Running maxima).

Let V be a stationary version of the OU process given by (3.1), and define M(T ) :=

supt∈[0,T ] Vt for T > 0.

(a) Assume that L1 ∈ S∩MDA(Φα) with norming constants aT > 0 given by (3.14).

Then

lim
T→∞

P
(
a−1

λT M(T ) ≤ x
)

= exp(−x−α) , x > 0 .
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(b) Assume that L1 ∈ S ∩ MDA(Λ) with norming constants aT > 0, bT ∈ R given

by (3.16). Then

lim
T→∞

P
(
a−1

λT (M(T ) − bλT ) ≤ x
)

= exp(−e−x) , x ∈ R .

Finally, we investigate the possibility of volatility clusters in the OU process. As

the concept of ε-upcrossings is only defined for continuous-time processes, which does

not fit into our framework, we shall introduce an appropriate method for describing

clusters in continuous-time processes with jumps.

As our method will be motivated by the discrete-time skeleton of V , we recall

that in a discrete-time process clusters are usually described by the extremal index

θ ∈ (0, 1]; see Definition A.9. However, continuous-time processes are by nature

dependent in small time intervals by the continuity and the structure of the process.

Thus it is not adequate to adopt the extremal index concept for stochastic sequences

to describe the dependence structure of the continuous-time process on a high level.

The following concept of an extremal index function has been introduced in

Fasen [18].

Definition 3.7. Let (Vt)t≥0 be a stationary process. For h > 0 define the sequence

Mk(h) := sup(k−1)h≤t≤kh Vt, k ∈ N. Let θ(h) be the extremal index of the sequence

(Mk(h))k∈N. Then we call the function θ : (0,∞) → [0, 1] extremal index function.

The idea is to divide the positive real line into blocks of length h. By taking local

suprema of the process over these blocks the natural dependence of the continuous-

time process is weakened, in certain cases it even disappears. However, for fixed h

the extremal index function is a measure for the expected cluster sizes among these

blocks. For an extended discussion on the extremal index in the context of discrete-

and continuous-time processes see Fasen [18].

Corollary 3.8 (Extremal index function).

(a) If L1 ∈ S ∩ MDA(Φα), then θ(h) = hα/(hα + 1), h > 0.

(b) If L1 ∈ S ∩ MDA(Λ), then θ(h) = 1, h > 0.

Regularly varying OU processes exhibit clusters among blocks, since

θ(h) < 1. So they have the potential to model both volatility features: heavy tails

and high level clusters. This is in contrast to OU processes in S ∩ MDA(Λ), where

no clusters occur.
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3.2 OU processes with exponential tails

In this section we investigate OU models having exponential tails, hence are lighter

tailed than those considered in the previous section. More precisely, we will con-

centrate on two classes of models in L(γ), γ > 0; see Definition A.2. The first

class concerns the class of convolution equivalent distributions S(γ), γ > 0 (Defini-

tion A.3). Here Theorem A.4 provides the necessary relationship between the tails

of the infinitely divisible d. f. and of its Lévy measure, which leads to a comparison

between the distribution tail of the stationary r. v. V0 and the increment L1 of the

BDLP. An important family in S(γ) are d. f. s with tail

F (x) ∼ x−βl(x)e−γx−cxp

, x → ∞,

where γ, c ≥ 0, p < 1, l(·) is slowly varying, and if c = 0, then β > 1 or β = 1 and∫∞

1
l(x)/x dx < ∞ (Klüppelberg [25], Theorem 2.1, or Pakes [32], Lemma 2.3). The

generalized inverse Gaussian distribution (GIGD) with probability density

p(x) = Kxβ−1 exp
(
−
(
δ2x−1 + γ2x

)
/2
)
, x > 0 ,

where K is the normalizing constant, β < 0 and δ2 > 0, is a prominent example in

S (γ2/2). Further examples for distributions in S(γ) can be found e. g. in Cline [14].

The second class of processes with exponential tails, which we investigate in this

section, are Γ-OU processes. These are defined as stationary OU processes, where

V0 is Γ(µ, γ) distributed with probability density as defined in (2.5) for µ > 1 and

γ > 0. The gamma distribution is infinitely divisible with absolutely continuous

Lévy measure given by its density

νV (dx) = µx−1e−γxdx , x > 0 .

Hence, by (3.4) the BDLP L has Lévy density

ν(dx) = µγe−γxdx , x > 0 .

Except for the factor µ this is the probability density of an exponential d. f. Hence

L is a positive compound Poisson process with Poisson rate µ > 0 and exponential

jumps; for details see Barndorff-Nielsen and Shephard [2]. The exponential and

gamma laws with scale parameter γ > 0 belong to L(γ) but not to S(γ).

In analogy to the Γ-OU process, also for OU-S(γ) processes with γ > 0 we

restrict our attention to positive compound Poisson processes as BDLPs; i. e. we
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work in the framework of positive shot noise processes as defined in Example 3.1.

Note that by Proposition A.6 (b) all d. f.s in L(γ) for γ > 0 belong to MDA(Λ).

Some of the results in this section can be found in Albin [1], who studies the

extremal behavior for a larger class of OU processes by purely analytic methods.
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Figure 4: Sample path of a Γ-OU process with γ = 3, µ = 8.5 and λ = 0.01. The first plot

shows (Lλt)0≤t≤250 and the second plot the corresponding volatility (Vt)0≤t≤250, indicating the

micro-behavior of the model. The third plot gives (Vt)0≤t≤10 000 indicating the macro-behavior of

the model.

For BDLPs in S(γ) for γ > 0 the relation of the tail of the stationary d. f. and

its Lévy measure are stated in the following proposition.

Proposition 3.9 (Tail behavior of OU-S(γ) models for γ > 0).

Let V be a stationary version of the OU process given by (3.1).

(a) Suppose ν (1, ·] /ν(1,∞) ∈ L(γ), γ > 0. Then νV (1, ·] /νV (1,∞) ∈ L(γ) with

νV (x,∞) ∼
1

γx
ν(x,∞) , x → ∞ .

(b) Suppose L1 ∈ S(γ), γ > 0. Then also V0 ∈ S(γ), and

P(V0 > x) ∼
EeγV0

EeγL1

1

γx
P(L1 > x) , x → ∞ .

In particular, P(V0 > x) = o(P(L1 > x)) as x → ∞.
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Proof. (a) By (A.1) the Lévy measure ν has representation

ν(x,∞) = c(x) exp

[
−

∫ x

1

1

a(y)
dy

]
, x ≥ 1, (3.18)

for functions a, c : [1,∞) → R+ with limx→∞ c(x) = c > 0 and limx→∞ a(x) = 1/γ,

limx→∞ a′(x) = 0. Since we are only interested in the tail behavior we may assume

without loss of generality that ν is absolutely continuous and c(·) ≡ c. Recall

from (3.4) that νV (dx) = x−1ν (x,∞) dx and let ν(dx) = ν ′(x) dx. Part (a) follows

by an application of l’Hospital’s rule, since

νV (x,∞)

ν(x,∞)/(γx)
∼

ν(x,∞)/x

[ν ′(x)x + ν(x,∞)]/(γx2)
= γ

[
1

a(x)
+

1

x

]−1

→ 1, x → ∞.

(b) We first show that V0 ∈ S(γ). By Theorem A.4 (i) it suffices to show that

νV (1, ·] /ν(1,∞) ∈ S(γ). Again, we can assume without loss of generality that ν

is absolutely continuous and has the representation (3.18) with constant c(·) ≡ c.

For simplicity, we further assume that c = 1 and ν(1,∞) = 1; the general case

follows by a simple dilation. As in part (a) we use that νV (dx) = x−1ν (x,∞) dx.

An application of l’Hospital’s rule shows that

νV (x − y,∞)

νV (x,∞)
∼

ν(x − y,∞) x

ν(x,∞) (x − y)
→ eγy, x → ∞,

implying νV (1, ·] ∈ L(γ). Denote by ν2∗
V the convolution of νV restricted to (1,∞)

with itself. Then for 1 < y′ < x/2 we use the usual decomposition of the convolution

integral

ν2∗
V (dx)

dx
=

∫ x

1

ν (u,∞)

u

ν (x − u,∞)

x − u
du (3.19)

=2

∫ y′

1

ν (u,∞)

u

ν (x − u,∞)

x − u
du +

∫ x−y′

y′

ν (u,∞)

u

ν (x − u,∞)

x − u
du .

In order to show that νV (1, ·] ∈ S(γ), we calculate the limit ratio of the densities

of ν2∗
V and νV . Observe that on every compact set ν (x − u,∞) /ν (x,∞) converges

uniformly in u to exp(γu) as x → ∞. For the first summand of (3.19) we thus

obtain

lim
x→∞

2

∫ y′

1

x

x − u

ν (x − u,∞)

ν (x,∞)

ν (u,∞)

u
du = 2

∫ y′

1

eγu ν (u,∞)

u
du

= 2

∫ y′

1

eγu νV (du) < ∞ . (3.20)
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For the second summand in (3.19) we estimate

∫ x−y′

y′

xν (u,∞) ν (x − u,∞)

u(x − u) ν (x,∞)
du ≤

x

y′(x − y′)

∫ x−y′

y′

ν (x − u,∞)

ν (x,∞)
ν (u,∞) du. (3.21)

Furthermore, since

ν (x,∞) /ν ′(x) = a(x) −→ 1/γ , x → ∞ ,

there exist constants K,x0 > 0 such that ν (x,∞) ≤ Kν ′(x) for x ≥ x0. We obtain

for y′ > x0

x

y′(x − y′)

∫ x−y′

y′

ν (x − u,∞) ν (u,∞)

ν (x,∞)
du ≤

Kx

y′(x − y′)

∫ x−y′

y′

ν (x − u,∞)

ν (x,∞)
ν(du).(3.22)

Since ν (1, ·] ∈ S(γ), the same decomposition as in (3.19) yields (for details see e. g.

Pakes [32], Lemma 5.5)

lim
y′→∞

lim
x→∞

∫ x−y′

y′

ν (x − u,∞)

ν (x,∞)
ν(du) = 0. (3.23)

Furthermore, limy′→∞ limx→∞ x/[y′(x − y′)] = limy′→∞ 1/y′ = 0. By (3.19)-(3.23)

we now obtain ν2∗
V (dx) ∼ (2

∫∞

1
eγu ν(du)) νV (dx) for x → ∞, showing that νV (1, ·]

and hence V0 are in S(γ). The assertion on the tail behavior now follows from (a)

and Theorem A.4 (i). �

The following result is an analogon to Theorem 3.4 and describes the extremal

behavior of V completely.

Theorem 3.10 (Point process of exceedances of exponential models).

Let V be a stationary version of the OU process given by (3.1) with L a positive

compound Poisson process as in (3.5). Denote by (Γk)k∈N the jump times of the

positive compound Poisson process L given by (3.5) and define Ik := 1
λ

[Γk, Γk+1),

k ∈ N. Let
∑∞

k=1 ε{sk, Pk} be PRM(ϑ) with ϑ(dt × dx) = dt × e−x dx.

(a) Assume L1 ∈ S(γ), γ > 0, with norming constants aT > 0, bT ∈ R such that

lim
T→∞

TP(L1 > aT x + bT ) =
EeγL1

EeγV0
exp(−x) , x ∈ R . (3.24)

Then

∞∑

k=0

ε

{
Γk

λT
, a−1

λT (sup
s∈Ik

Vs − bλT )

}
T→∞
=⇒

∞∑

k=1

ε {sk, Pk} . (3.25)
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(b) Assume V is the Γ(µ, γ)-OU process. Let aT > 0, bT ∈ R be the norming

constants of a Γ(µ + 1, γ) distributed r. v. W , such that

lim
T→∞

TP(W > aT x + bT ) = µ−1 exp(−x), x ∈ R. (3.26)

Then
∞∑

k=0

ε

{
Γk

λT
, a−1

λT (sup
s∈Ik

Vs − bλT )

}
T→∞
=⇒

∞∑

k=1

ε {sk, Pk} . (3.27)

The proof is divided into several steps. We shall utilize classical results for the

extreme value theory of stationary discrete-time processes. As a discrete-time skele-

ton (VΓk/λ)k∈Z seems to be a good candidate. However, VΓk/λ =
∑k

j=−∞
j 6=0

e−(Γk−Γj)ξj,

k ∈ N, is not stationary. As we will show in Lemma 3.11 the process

Ṽk =
k∑

j=−∞

e−(Γk−Γj)ξj = VΓk/λ + e−Γkξ0 , k ∈ N , (3.28)

is stationary, where Γ0 := 0. For increasing k the process e−Γkξ0 tends to 0. Thus

it has no influence on the extremal behavior. We shall show that the point process

behavior is the same for (VΓk/λ)k∈N and for (Ṽk)k∈N. For the proof we also need that

the D and D′ conditions (Definition B.1) hold for (Ṽk)k∈N. The highly technical

Lemma B.2, where this is confirmed, is postponed to the Appendix.

Lemma 3.11. Let V be a stationary version of the OU process given by (3.1) with L

a positive compound Poisson process as in (3.5). Then (Ṽk)k∈Z as defined in (3.28)

is stationary.

Proof. Let h ∈ R be fixed. Note that (Γh+j − Γh)j∈Z

d
= (Γj)j∈Z. Then

Ṽk+h =
k+h∑

j=−∞

e−(Γk+h−Γj)ξj =
k+h∑

j=−∞

e−(Γk+h−Γh−(Γj−Γh))ξj
d
=

k+h∑

j=−∞

e−(Γk−Γj−h)ξj

=
k∑

j=−∞

e−(Γk−Γj)ξj+h
d
=

k∑

j=−∞

e−(Γk−Γj)ξj = Ṽk.

Similarly, for l ∈ N we obtain (Ṽk1+h, . . . , Ṽkl+h)
d
= (Ṽk1 , . . . , Ṽkl

) for k1, . . . , kl ∈ N.

�

Proof of Theorem 3.10. Since V is decreasing between jumps, it follows that

sups∈Ik
Vs = VΓk/λ. Recall that Ṽk = VΓk/λ + e−Γkξ0

d
= V0 + ξ1 and that (Ṽk)k∈N
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is stationary. We show first that the norming constants an > 0, bn ∈ R given by

(3.24) and (3.26) satisfy

lim
n→∞

nP(Ṽk > anx + bn) = µ−1 exp(−x) , x ∈ R. (3.29)

To show this in case (a), observe that P(V0 > x) = o(P(ξ1 > x)) for x → ∞ by

Proposition 3.9 (b), so that Theorem A.4 (i,ii) yields

P(Ṽk > x) ∼ EeγV0P(ξ1 > x) ∼ EeγV0 [EeγL1 ]−1µ−1
P(L1 > x), x → ∞. (3.30)

From this (3.29) follows immediately, and further we see that Ṽk ∈ S(γ).

In case (b), Ṽk is Γ(µ + 1, γ) distributed as an independent sum of a Γ(µ, γ) and

an Exp(γ) r. v., and (3.29) is immediate. The norming constants of a Γ distribution

can be found in Table 3.4.4 of Embrechts et al. [17].

Note that in both cases (a) and (b), we have Ṽk ∈ L(γ). Thus, by Lemma B.2

and Leadbetter et al. [29], Theorem 5.5.1,

∞∑

k=0

ε
{

k/(µn), a−1
n (Ṽk − bn)

}
n→∞
=⇒

∞∑

k=1

ε {sk, Pk} . (3.31)

Define point processes

κ̃n :=
∞∑

k=0

ε
{

k/(µn), a−1
n (Ṽk − bn)

}
and κn :=

∞∑

k=0

ε
{
k/(µn), a−1

n (VΓk/λ − bn)
}

.

For ε > 0 and I = [s, t) × (x,∞) ⊆ R+ × R define Iε := [s, t) × (x, x + ε]. Taking

into account that VΓk/λ ≤ Ṽk we have for δ ∈ (0, 1)

P(κn(I) 6= κ̃n(I))

≤ P(κ̃n(Iε) > 0) +
∑

k∈[snµ,tnµ)

P(Ṽk > un + ε an, VΓk/λ ≤ un)

≤ P(κ̃n(Iε) > 0) +
∑

k∈[0,nδtµ)

P(Ṽk > un + ε an) +
∑

k∈[nδtµ,ntµ)

P(e−Γkξ0 > ε an).

We shall show below that

lim
n→∞

P(κn(I) 6= κ̃n(I)) = 0. (3.32)

Then by Rootzén [33], Lemma 3.3, the limit behavior of κ̃n and κn is the same. Re-

lation (3.27) then follows by transforming the time scale as in Hsing and Teugels [23]

(for details see Fasen [18], Lemma 2.2.4).
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To show (3.32), observe that by (3.31) we have

lim
n→∞

P(κ̃n(Iε) > 0) = 1 − exp[(t − s)(exp(−x) − exp(−(x + ε)))]
ε↓0
−→ 0.

Furthermore, since δ < 1,

lim
n→∞

∑

k∈[0,nδtµ)

P(Ṽk > un + ε an) ≤ lim
n→∞

nδtµP(Ṽk > an(x + ε) + bn) = 0.

Applying (B.3) we obtain

∑

k∈[nδtµ,ntµ)

P(e−Γkξ0 > ε an)

≤
∑

k∈[nδtµ,ntµ)

(
P
(
e−Γkξ0 > ε an, Γk ≥

k

2µ

)
+ P

(
e−Γkξ0 > ε an, Γk <

k

2µ

))

≤
∑

k∈[nδtµ,ntµ)

P(e−k/(2µ)ξ0 > ε an) +
∑

k∈[nδtµ,ntµ)

K̃

k3
.

The last summand tends to 0 as n → ∞, since
∑∞

k=1 1/k3 < ∞. Moreover, there

exists an n0 ∈ N such that an ≥ 1/(2γ) and ke−k/(2µ) ≤ 1/2 for n, k ≥ n0. Then the

first exponential moment of γke−k/(2µ)ξ0 exists, and for nδtµ ≥ n0 we obtain

∑

k∈[nδtµ,ntµ)

P(e−k/(2µ)ξ0 > ε an) ≤
∑

k∈[nδtµ,ntµ)

E[exp(γke−k/(2µ))ξ0]e
−kγε an

≤ E[exp(γξ0/2)]
∞∑

k=bnδtµc

e−kε/2 −→ 0 , n → ∞ ,

since
∑∞

k=1 e−kε/2 < ∞. This shows (3.32). �

Results (3.25) and (3.27) show that local extremes of such exponential models

have no cluster behavior on high levels. The following two corollaries are immediate

from Theorem 3.10.

Corollary 3.12 (Point process of local maxima).

Let the assumptions of Theorem 3.10 hold. Denote by (jk)k∈N the jump times of a

Poisson process with intensity e−x for x ∈ R. Then,

∞∑

k=1

ε

{
Γk

λT
, a−1

λT (sup
s∈Ik

Vs − bλT )

}
(· × (x,∞))

T→∞
=⇒

∞∑

k=1

ε{jk} .
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Corollary 3.13 (Running maxima).

Let V be a stationary version of the OU process (3.1), where L is a positive, com-

pound Poisson process as in (3.5). Define M(T ) := sup0≤t≤T Vt for T > 0.

(a) Assume L1 ∈ S(γ), γ > 0, with norming constants given by (3.24). Then

lim
T→∞

P(a−1
λT (M(T ) − bλT ) ≤ x) = exp(−e−x), x ∈ R.

(b) Assume V is the Γ(µ, γ)-OU process with norming constants given by (3.26).

Then

lim
T→∞

P(a−1
λT (M(T ) − bλT ) ≤ x) = exp(−e−x), x ∈ R. (3.33)

For a subexponential OU process and h > 0 fixed the r. v. M(h) = sup0≤t≤h Vt is

tail-equivalent to the increment of the Lévy process; cf. (3.9) and (3.12). In the class

S(γ), γ > 0, this is much more involved; see Braverman and Samorodnitsky [9].

Although the large jumps of the Lévy process determine the tail behavior, small

jumps also have a non-negligible influence. For any h > 0, the tail of M(h) is of the

same order of magnitude as the tail of the increment of the BDLP, but in general

it is only possible to give upper and lower bounds on the asymptotic ratio of the

two tails. Using Corollary 3.13 one can calculate this constant for the OU process

explicitly.

Corollary 3.14 (Extremal index function).

Let V be a stationary version of the OU process given by (3.1), where L is a positive

compound Poisson process as in (3.5). Define M(h) := sup0≤t≤h Vt for h > 0.

(a) Let L1 ∈ S(γ), γ > 0. Then M(h) ∈ L(γ) if and only if

P(M(h) > x) ∼ λh EeγV0 [EeγL1 ]−1
P(L1 > x) , x → ∞ . (3.34)

In that case M(h) ∈ S(γ) and θ(·) ≡ 1.

(b) Let V be the Γ(µ, γ)-OU process with norming constants given by (3.26) and let

W be a Γ(µ + 1, γ) r. v. Then θ(·) ≡ 1 and

P(M(h) > x) ∼ λhµP(W > x) , x → ∞ . (3.35)

Proof. (a) First we assume M(h) ∈ L(γ). Let ãn > 0, b̃n ∈ R and ũn = ãnx + b̃n

be constants such that

lim
n→∞

nP(M(h) > ũn) = exp(−x).
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Denote by M̃k an i. i. d. sequence of copies of M(h). Then we obtain from

Lemma B.2 (b) and Leadbetter et al. [29], Theorem 3.5.1, for x ∈ R,

lim
n→∞

P(ã−1
n (M(nh) − b̃n) ≤ x) = lim

n→∞
P(ã−1

n ( max
k=1,...,n

M̃k − b̃n) ≤ x) = exp(−e−x),

showing in particular that θ(h) = 1. On the other hand, by Corollary 3.13,

lim
n→∞

P(a−1
λnh(M(nh) − bλnh) ≤ x) = exp(−e−x) , x ∈ R.

Then by the convergence to types theorem (see e. g. Theorem A 1.5 of Embrechts

et al. [17]), ãn/aλnh
n→∞
−→ 1 and b̃n − bλnh

n→∞
−→ 0. Applying the convergence to types

theorem a second time yields

lim
n→∞

P(a−1
λnh( max

k=1,...,n
M̃k − bλnh) ≤ x) = exp(−e−x) , x ∈ R.

This implies by Leadbetter et al. [29], Theorem 1.5.1 that

lim
n→∞

nP(M(h) > uλnh) = exp(−x) , x ∈ R,

with uλnh = aλnhx + bλnh. By (3.29) also limn→∞ nP(Ṽk > uλnh) = exp(−x)/(λµh).

Hence P(M(h) > x) ∼ hλµP(Ṽk > x) for x → ∞, and (3.34) follows from (3.30).

Conversely, if (3.34) holds, then it is clear that L1 ∈ S(γ) ⊆ L(γ) implies

M(h) ∈ L(γ) by tail-equivalence. By Lemma B.2 (b) follows θ(h) = 1.

(b) We refer to Albin [1], Theorem 3, for (3.35). That θ(h) = 1 follows then

from (3.26), (3.33) and (3.35). �

In both cases the extremal index function is equal to one, so that for any h > 0

the sequence Mk = sup(k−1)h≤t≤kh Vt behaves like i. i. d. data. Hence such models

cannot explain volatility clusters on high levels.

4 Extremal behavior of the COGARCH model

The volatility of the COGARCH(1,1) process as introduced in (1.6) is the (càglàg)

solution to the SDE (1.6), which is given by

Vt = V0 + βt − η

∫ t

0

Vs ds + λeη
∑

0<s<t

Vs(∆Ls)
2 , t ≥ 0, (4.1)
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see Klüppelberg, Lindner and Maller [27, 28] for details. This process is a solution

of the SDE

dVt+ = (β − ηVt)dt + λeη Vt d[L,L]
(d)
t , (4.2)

where

[L,L]
(d)
t =

∑

0<s≤t

(∆Ls)
2 , t ≥ 0 ,

is the discrete part of the quadratic variation process of L. Comparing this with

(1.5) we see that the COGARCH(1,1) can be interpreted as a generalized CIR model

driven by the discrete part of the quadratic variation process of L. An essential

feature of the COGARCH(1,1) model is that the same Lévy process drives the price

process S and the volatility process V . An extension of the COGARCH(1,1) process

to COGARCH(p,q) process with 1 ≤ p ≤ q was recently obtained by Brockwell,

Chadraa and Lindner [11]. There, (4.2) is replaced by a CARMA (continuous time

ARMA) type stochastic differential equation, driven by [L,L](d). We shall not go

into further details, and by COGARCH we shall always mean the COGARCH(1,1)

process.

Denote by ν the Lévy measure of L. A stationary version of (4.1) exists if and

only if
∫

R

log(1 + λeηy2) ν(dy) < η. (4.3)

With the auxiliary càdlàg process (Xt)t≥0 defined in (1.7), given for η > 0, λ ≥ 0 by

Xt = ηt −
∑

0<s≤t

log(1 + λeη(∆Ls)
2) , t ≥ 0 ,

the stationary volatility process has representation

Vt =

(
β

∫ t

0

eXsds + V0

)
e−Xt− , t ≥ 0 , (4.4)

with β > 0 and V0
d
= β

∫∞

0
e−Xtdt, independent of L. The auxiliary process (Xt)t≥0

itself is a spectrally negative Lévy process of bounded variation with drift γX = η,

no Gaussian component, and Lévy measure νX given by

νX [0,∞) = 0, νX (−∞,−x] = ν
(
{y ∈ R : |y| ≥

√
(ex − 1)/(λeη)}

)
x > 0.

We work with the Laplace transform Ee−sXt = etΨ(s), where the Laplace exponent

is

Ψ(s) = −ηs +

∫

R

((1 + λeηy2)s − 1) ν(dy) , s ≥ 0 . (4.5)
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For fixed s ≥ 0, Ee−sXt exists (i. e. is finite) for one and hence all t > 0, if and

only if the integral appearing in (4.5) is finite. This is equivalent to E|L1|
2s < ∞.

Further, if there exists some s > 0 such that Ψ(s) ≤ 0, then (4.3) holds, and hence

a stationary version of the volatility process exists.
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Figure 5: The first plot shows the sample path of a compound Poisson driving process (Lt)0≤t≤250

with rate 1 and normal jumps with mean 0 and variance 1 and the second plot the corresponding

sample path of the COGARCH volatility process (Vt)0≤t≤250 driven by this Lévy process. The

COGARCH parameters are β = 1, λ = 0.04 and η = 0.0619. Both plots indicate the micro-

behavior of the model. The third plot gives (Vt)0≤t≤10 000 indicating the macro-behavior of the

model.

The qualitative extreme behavior of this volatility process can be seen in Figure 5,

where the driving Lévy process is a compound Poisson process. As in the case of a

Lévy driven OU process the volatility jumps upwards, whenever the driving Lévy

process L jumps and decreases exponentially fast between two jumps.

It is instructive to observe that both, the OU process (3.1) and the right-

continuous Vt+ of the COGARCH volatility (4.4) are special cases of the generalized

OU process

Ot = e−ξt

(∫ t

0

eξs− dζs + O0

)
, t ≥ 0,

where (ξt, ζt)t≥0 is a bivariate Lévy process. The stationarity conditions for (Ot)t≥0,

along with other properties, have been investigated by Lindner and Maller [30].
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Returning to the COGARCH volatility, the next Theorem (cf. [28], Theorem 6)

shows, that under weak conditions on the moments of L, the volatility process has

Pareto like tails. Since we shall apply a similar argument in the proof of Theorem 4.3,

we sketch the idea of the proof.

Theorem 4.1 (Pareto tail behavior of COGARCH models).

Suppose there exists some α > 0 such that

E|L1|
2α log+ |L1| < ∞ and Ψ(α) = 0. (4.6)

Let V be a stationary version of the volatility process given by (4.1). Then for some

constant C > 0 we have

lim
x→∞

xα
P(V0 > x) = C. (4.7)

Proof. From (4.4) it is seen that the stationary volatility process V satisfies

Vt = e−Xt−V0 + β

∫ t

0

eXs−Xt− ds, t > 0,

where V0 is independent of (e−Xt− , β
∫ t

0
eXs−Xt− ds) for any t > 0. Thus the station-

ary solution V0 satisfies for every t > 0 the distributional fix point equation

V0
d
= AtV0 + Bt,

where V0 is independent of (At, Bt) and

At
d
= e−Xt , Bt

d
= β

∫ t

0

e−Xs ds.

The result now follows from Theorem C.1, by choosing t such that (At, Bt) satis-

fies the assumptions. This is possible because of the structure of the process and

condition (4.6); for details see Klüppelberg et al. [28], Theorem 6.

The following remark gives a simple sufficient condition for (4.6) to hold.

Remark 4.2. Let D := {d ∈ [0,∞) : E|L1|
2d < ∞} and d0 := sup D ∈ [0,∞].

Suppose d0 6∈ D, or that there exists an s0 > 0 such that 0 < Ψ(s0) < ∞. Fur-

ther suppose that (Vt)t≥0 is strictly stationary. Then (4.6) and hence (4.7) hold

(cf. Klüppelberg et al. [28], Proposition 5.3). �

We aim at a precise asymptotic description of the COGARCH model above a

high threshold like in Section 3. It is, however, clear from the definition of V that the

influence of the spectrally negative Lévy process X is hard to analyze. In particular,
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the influence of the small jumps of L to V needs special treatment. In this review

paper we shall restrict ourselves again to the case of a compound Poisson driving

process L as given in (3.5) by Lt =
∑Nt

j=1 ξj for t ≥ 0, where ξ has support on R.

In this case the auxiliary process X simplifies to

Xt = ηt −
Nt∑

k=1

log(1 + λeηξ2
k) , t ≥ 0 , (4.8)

and the Laplace exponent becomes

Ψ(s) = −(ηs + µ) + µE(1 + λeηξ2
1)

s . (4.9)

In the stationary volatility model we know that Vt ≥ β/η a. s. and V jumps if

and only if L jumps (cf. [28], Proposition 3.4 (a)). The jump sizes are positive and

depend on the level of the process at that time. As shown in Proposition 3.4 (b,c)

of [28],

VΓk+ − VΓk
= λeηVΓk

ξ2
k , k ∈ N , (4.10)

and the process decreases exponentially between jumps:

Vt =
β

η
+

(
VΓk+ −

β

η

)
e−(t−Γk)η , t ∈ (Γk, Γk+1] . (4.11)

In analogy to the OU process driven by a compound Poisson process of Example 3.1,

the compound Poisson driven COGARCH process V achieves local suprema only at

the right limits of its jump times (and at t = 0). Hence it is no surprise that the

discrete-time sequence (VΓk+)k∈N in combination with the deterministic behavior of

V between jumps suffices to describe the extremal behavior of the continuous-time

COGARCH process. Consequently, we investigate the discrete-time skeleton

Ṽk := VΓk+ , k ∈ N . (4.12)

Using (4.10) and (4.11) we obtain

Ṽk+1 = Ṽk (1 + λeηξ2
k+1)e

−(Γk+1−Γk)η +
β

η

(
1 + λeηξ2

k+1

) (
1 − e−(Γk+1−Γk)η

)
,

and we see that (Ṽk)k∈N satisfies the stochastic recurrence equation

Ṽk = ÃkṼk−1 + B̃k , k ≥ 2, (4.13)
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with Ṽ1 independent of (Ãk, B̃k) for any k ≥ 2, where

Ãk = (1 + λeη ξ2
k)e

−η (Γk−Γk−1), k ∈ N, (4.14)

B̃k =
β

η
(1 + λeη ξ2

k)
(
1 − e−η (Γk−Γk−1)

)
, k ∈ N, (4.15)

and ((Ãk, B̃k))k∈N is an i. i. d. sequence. It is an interesting observation that by

(4.14)

log
k∏

j=1

Ãj =
k∑

j=1

log Ãj = −ηΓk +
k∑

j=1

log(1 + λeηξ2
j ) = −XΓk

.

On the other hand, by (4.15) and Xs − XΓk
= log(1 + λeηξ2

k) + η(s − Γk) for

s ∈ (Γk, Γk+1),

B̃k = β

∫ Γk

Γk−1

eXs−XΓk ds.

Denote by (Ã, B̃) a copy of (Ã1, B̃1), independent of L and Ṽ1. Then it follows that

Ã
d
= e−XΓ1 and B̃

d
= βe−XΓ1

∫ Γ1

0

eXsds , k ∈ N. (4.16)

Moreover,

Ṽk = Ṽ1

k∏

j=2

Ãj +
k∑

i=2

B̃i

k∏

j=i+1

Ãj = e−XΓk

[
Ṽ1 +

k∑

i=2

B̃ie
XΓi

]
, k ≥ 2 .

We are now ready to present the analogue of Theorem 4.1 for the sequence

(Ṽk)k∈N. As can be seen from (4.8), the process (XΓk
)k∈N is a random walk with

increments

XΓk
− XΓk−1

= η (Γk − Γk−1) − log(1 + λeη ξ2
k) , k ∈ N.

Theorem 4.3 (Pareto tail behavior of Ṽ).

Suppose there exists some α > 0 such that

E|L1|
2α log+ |L1| < ∞ and Ψ(α) = 0. (4.17)

Then a stationary solution (Ṽk)k∈N of (4.13) exists. Its marginal stationary distri-

bution, denoted by Ṽ0, is the unique solution of the random fix point equation

Ṽ0
d
= ÃṼ0 + B̃,
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where (Ã, B̃) is given by (4.16) and independent of L and Ṽ0. Furthermore,

P(Ṽ0 > x) ∼ C̃x−α , x → ∞ ,

where

C̃ =
E

[
(ÃṼ0 + B̃)α − (ÃṼ0)

α
]

αE|Ã|α log+ |Ã|
> 0 . (4.18)

Proof. We shall show that conditions (i)-(iv) of Theorem C.1 are satisfied: by defi-

nition, log Ã
d
= −ηΓ1 + log(1 + λeηξ2

1), where Γ1 is exponentially distributed. Con-

sequently, (i) follows.

To show (ii) note that by the independence of Γ1 and ξ1, for α > 0 we have by

(4.9)

E|Ã|α = Ee−αηΓ1E(1 + λeη ξ2
1)

α

=
µ

µ + αη

µ + αη + Ψ(α)

µ

= 1 +
1

µ + αη
Ψ(α) = 1 ,

by the second assumption in (4.17).

In order to prove (iii) note that

E|Ã|α log+ |Ã| ≤ E|1 + λeηξ2
1 |

α log+
(
1 + λeηξ2

1

)
< ∞ ,

if and only if the first assumption in (4.17) holds, see Sato [35], Theorem 25.3.

Finally, (iv) follows from

E|B̃|α ≤ (β/η)α
E|1 + λeηξ2

1 |
α < ∞ .

That the constant C̃ is indeed strictly positive follows from the fact that Ã, B̃ and

Ṽ0 are strictly positive, almost surely. �

Remark 4.4.

(i) XΓk
tends almost surely to ∞ if and only if EXΓ1 > 0 or, equivalently, µE log(1+

λeη ξ2
1) < η. Notice that the stationarity condition (4.3) is for this model equivalent

to EXΓ1 > 0.

(ii) In a sense it is remarkable that the tail of the stationary r. v. of the continuous-

time model V0 and of the discrete-time skeleton Ṽ0 are so similar. As the discrete-

time skeleton considers only local suprema of the process, one expects Ṽ0 to be
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stochastically larger. As the Pareto index α is the same for both models, any

difference can only appear in the constants C and C̃. Brockwell, Chadraa and

Lindner [11] have established a precise relationship between the distributions of V0

and Ṽ0, showing that (
V0 −

β

η

)
d
= e−ηΓ

(
Ṽ0 −

β

η

)
,

where Γ
d
= Γ1 is exponentially distributed with parameter µ and independent of Ṽ0.

Using the classical result of Breiman [10], it then follows that

C = E
(
e−ηΓ

)α
C̃ =

µ

µ + αη
C̃ =

1

E(1 + λeηξ2
1)

α
C̃, (4.19)

where the last equation follows from (4.9). �

The extremal behavior of solutions to stochastic recurrence equations is studied

in de Haan et al. [22]. Their results can be applied to the stationary discrete-time

skeleton of the volatility process (Ṽk)k∈N as defined in (4.12).

Theorem 4.5 (Extremal behavior of the COGARCH model).

Let V be a stationary version of the volatility process given by (4.1) and define

M(T ) := sup0≤t≤T Vt for T > 0. Suppose there exists some α > 0 such that

E|L1|
2α log+ |L1| < ∞ and Ψ(α) = 0.

Let C̃ be the constant in (4.18) and define aT := (µT )1/α for T > 0. Then

lim
T→∞

P(a−1
T M(T ) ≤ x) = exp(−C̃θx−α) , x > 0 ,

where for X+
t = max{0, Xt}

θ = 1 − E

[
sup
t≥Γ1

{e−αX+
t }

]
∈ (0, 1).

Denote by (Γk)k∈N the jump times of the compound Poisson process L given by (3.5)

and define Ik := (Γk, Γk+1] for k ∈ N. Let (jk)k∈N be the jump times of a Poisson

process with intensity C̃θx−α for x > 0. Then,

∞∑

k=1

ε

{
Γk

T
, a−1

T sup
s∈Ik

Vs

}
(· × (x,∞))

T→∞
=⇒

∞∑

k=1

ζkε{jk} , (4.20)

where (ζk)k∈N are i. i. d. discrete r. v. s, independent of (jk)k∈N, with probability dis-

tribution

πk = P(ζ1 = k) = (θk − θk+1)/θ , k ∈ N .

35



Moreover,

θk := E [exp(α min{Tk−1, 0}) − exp(α min{Tk, 0})]

=

∫ 1

0

P

(
card

{
j ∈ N : e−αXΓj > y

}
= k − 1

)
dy,

where ∞ = T0 ≥ T1 ≥ · · · are the ordered values of the sequence (−X+
Γk

)k∈N. Finally,

θ = θ1.

Proof. Since sups∈Ik
Vs = Ṽk, Theorem 4.3 and de Haan et al. [22], Theorem 2.1,

show that

∞∑

k=1

ε

{
k

µn
, a−1

n Ṽk

}
(· × (x,∞))

T→∞
=⇒

∞∑

k=1

ζkε{jk}

and that (Ṽk)k∈N has extremal index θ ∈ (0, 1), given by

θ = α

∫ ∞

1

P

(
∞∨

j=1

j∏

k=1

Ãk ≤ y−1

)
y−α−1 dy

= α

∫ ∞

1

P

(
∞∨

j=1

exp(−XΓj
) ≤ y−1

)
y−α−1 dy

=

∫ 1

0

P

(
sup
t≥Γ1

{e−αXt} ≤ z

)
dz

= 1 − E

[
min

{
1, sup

t≥Γ1

{e−αXt}

}]
.

For the first expression for θk, see de Haan et al. [22], and the second expression

follows by a similar calculation as above. By an application of Hsing and Teugels [23]

(see also Fasen [18], Lemma 2.2.4) we transform the time scale, such that (4.20)

holds. Then we obtain

lim
T→∞

P(a−1
T M(T ) ≤ x) = lim

T→∞
P

(
∞∑

k=1

ε

{
Γk

T
, a−1

T sup
s∈Ik

Vs

}
((0, 1) × (x,∞)) = 0

)

= P

(
∞∑

k=1

ζkε{jk}((0, 1)) = 0

)
= exp(−C̃θx−α).

�

By the Poisson result (4.20) we observe clusters in local extremes of the continuous-

time process. So the COGARCH is a suitable model for heavy tailed volatility

models with clusters on high levels.
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5 Conclusion

In this paper we have investigated the extremal behavior of the most popular

continuous-time volatility models. We have concentrated on models with tails rang-

ing from exponential to regularly varying; i. e. tails as they are found in empirical

volatility. The quantities derived for such models include

• the tail of the stationary volatility V0 and the relation to the tail of the distri-

bution governing the extreme behavior,

• the asymptotic distribution of the running maxima, i. e. their MDA and the

norming constants,

• the cluster behavior of the model on high levels.

We found interesting similarities in the extremal behavior of certain models,

which was quite unexpected.

Recall the GCIR model of Example 2.3, where the tail of the stationary dis-

tribution F of V0 is compared to the tail of H, the d. f. describing the extreme

behavior. Example 2.3 (2) belongs to S ∩ MDA(Λ), it has stationary distribution

with a semi-heavy Weibull like tail. Relation (3.11) is mimicked by the fact that

(2.6) can be rewritten to

F (x) ∼
a(x)

x
H(x) x → ∞ .

Moreover, as the norming constants in the GCIR examples are calculated based on

the d. f. H, analogously, by the above Corollary 3.6, for the OU process in MDA(Λ),

the norming constants are derived from L1 and not from the stationary distribution

of the process V .

Analogous results hold for Example 2.3 (3), which belongs to S ∩ MDA(Φα) for

some α > 0. Here the tails of F and H are both regularly varying of the same index;

this corresponds to (3.8).

Also in the case, where V0 is gamma distributed, the behavior of the running

maxima of the GCIR model in Example 2.3 (1) and of the Γ-OU process as given

in (3.26) and (3.33), respectively, are identical.

This means also that, if the stationary distribution of a GCIR model coincides

with the stationary distribution of a subexponential OU model, then also the norm-

ing constants and the behavior of the running maxima coincide. The role of M(h)

in S(γ), γ ≥ 0, corresponds for the GCIR models to the d. f. H; the influence of the

driving Brownian motion plays no role whatsoever for the extreme behavior.
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Concerning volatility clusters, no model in MDA(Λ) presented in this paper

can model such clusters on high levels. And here there is a profound difference

between the GCIR models with regularly varying tails and the regularly varying

OU models. Whereas all GCIR models fail to model high level volatility clusters,

regularly varying OU models have the potential to model them.

The COGARCH model resembles the GCIR models only in the sense that heavy

tails occur, although the driving process can be very light tailed; the difference being

that the COGARCH model always has heavy tails. There is no obvious relationship

between the tail behavior of the stationary r. v. V0 and L1; the heavy tails occur by

the very intrinsic dependence structure of the model.

With respect to volatility clusters, only regularly varying OU processes and

COGARCH processes exhibit volatility clusters on high levels, which can be de-

scribed quite precisely by the distribution of the cluster sizes; see Corollary 3.5 and

Theorem 4.5.

In this paper we have refrained from discussing another important stylized fact

of empirical volatility: it exhibits often long memory in the sense that the autoco-

variance function decreases very slowly. This phenomenon can have various reasons,

as for instance discussed in Mikosch and Stărică [31]. Certainly an important issue

is here a possible non-stationarity of the data. On the other hand, long range de-

pendence is an important fact, which should not be completely ignored. All models

presented in this paper have an exponentially decreasing covariance functions, which

only exhibit some visual long memory, when the process is close to non-stationarity.

For diffusion models like the GCIR models, a remedy, which introduces long

range dependence in such models, is to replace the driving Brownian motion by a

fractional Brownian motion. This generates a new class of stationary long memory

models. Such models have been suggested and analyzed in [12,13].

For the OU process the exponentially decreasing covariance function is due to the

exponential kernel function; see (3.3). The often observed long-range dependence

effect in the empirical volatility cannot be modelled this way. There are two ways to

introduce long memory into such models. The first one is to replace the exponential

kernel function by a hyperbolic kernel function of the form f(x) ∼ |x|−β for large x

and for some β ∈ (0.5, 1). This introduces long memory into the model, which can

be modelled by regularly varying Lévy driven MA processes. The second method has

been suggested by Barndorff-Nielsen and Shephard [3]: a superposition of several

OU processes (supOU processes) can create long memory. Regularly varying supOU

processes exhibit also volatility clusters; see Fasen [19].
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Appendix

In this Appendix we summarize some definitions and concepts used throughout the

paper.

A Basic notation and definition

For details and further references see Embrechts et al. [17].

Definition A.1. A positive measurable function u : R → R+ is regularly varying

with index α, denoted by u ∈ Rα for α ∈ R, if

lim
t→∞

u(tx)

u(t)
= xα , x > 0 .

The function u is said to be slowly varying if α = 0, and rapidly varying, denoted

by u ∈ R−∞, if the above limit is 0 for x > 1 and ∞ for 0 < x < 1.

Definition A.2. A d. f. F belongs to the class L(γ), γ ≥ 0, if for every y ∈ R,

lim
x→∞

F (x − y)/F (x) = eγy .

The class L(γ) is related to the class R−γ by the fact that

F ∈ L(γ) if and only if F ◦ log ∈ R−γ.

Thus the convergence of F (x − y)/F (x) in Definition A.2 is uniform on compact

y-intervals. For an excellent monograph on regular variation we refer to Bingham,

Goldie and Teugels [7].

Applying Karamata’s representation for regularly varying functions to the class

L(γ) we obtain for F ∈ L(γ), γ ≥ 0, the representation

F (x) = c(x) exp

[
−

∫ x

0

1

a(y)
dy

]
, x > 0, (A.1)
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where a, c : R+ → R+ and limx→∞ c(x) = c > 0 and a is absolutely continuous with

limx→∞ a(x) = 1/γ and limx→∞ a′(x) = 0.

Definition A.3 (Convolution equivalent distributions).

Let γ ≥ 0 and X have d. f. F . We say that F or X belongs to the class S(γ), if the

following properties hold.

(i) F ∈ L(γ),

(ii) lim
x→∞

F ∗2(x)

F (x)
= 2f̂(γ) < ∞ ,

where f̂(γ) = EeγX is the moment generating function of X at γ. The class

S := S(0) is called the class of subexponential distributions.

Theorem A.4.

(i) Let F be infinitely divisible with Lévy measure ν and γ ≥ 0. Then

F ∈ S(γ) ⇔ ν (1, ·] /ν(1,∞) ∈ S(γ) ⇔ lim
x→∞

F (x)/ν(x,∞) = f̂(γ) .

(ii) Suppose F ∈ S(γ), limx→∞ Fi(x)/F (x) = qi ≥ 0 and f̂i(γ) < ∞ for i = 1, 2.

Then

lim
x→∞

F1 ∗ F2(x)

F (x)
= q1f̂2(γ) + q2f̂1(γ).

If qi > 0 for some i ∈ {1, 2}, then also Fi, F1 ∗ F2 ∈ S(γ).

(iii) Let N be a Poisson r. v. with mean µ and (Xk)k∈N be an i. i. d. sequence with

d. f. F ∈ S(γ). The r. v. Y =
∑N

k=1 Xk has d. f. G = e−µ
∑∞

n=0
µn

n!
F ∗n. Then

G ∈ S(γ) and

G(x) ∼ µf̂(γ)F (x) , x → ∞.

The following is the fundamental theorem in extreme value theory.

Theorem A.5 (Fisher-Tippett Theorem).

Let (Xn)n∈N be an i. i. d. sequence with d. f. F and denote Mn = maxk=1,...,n Xk.

Suppose we can find sequences of real numbers an > 0, bn ∈ R such that

lim
n→∞

P(a−1
n (Mn − bn) ≤ x) = lim

n→∞
F n(anx + bn) = G(x) , x ∈ R ,

for some non-degenerate d. f. G (we say F is in the maximum domain of attraction

of G and write F ∈ MDA(G)). Then there are a > 0, b ∈ R such that x 7→ G(ax+b)

is one of the following three extreme value d. f. s:
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• Fréchet Φα(x) =

{
0, x ≤ 0,

exp (−x−α) , x > 0,
for α > 0.

• Gumbel Λ(x) = exp (−e−x) , x ∈ R .

• Weibull Ψα(x) =

{
exp (− (−x)α) , x ≤ 0,

1, x > 0,
for α > 0 .

We summarize some well-known facts related to domains of attraction.

Proposition A.6.

(a) The following Poisson characterization holds: F ∈ MDA(G) if and only if

an > 0, bn ∈ R exist such that

lim
n→∞

nF (anx + bn) = − log G(x), x > 0.

(b) If F ∈ L(γ) for γ > 0, then F ∈ MDA(Λ) with an → 1/γ as n → ∞ and

ebn ∈ R1/γ.

(c) If F ∈ S ∩ MDA(Λ), then bn → ∞, an → ∞ and bn/an → ∞ as n → ∞.

(d) If F ∈ MDA(Φα) = R−α for α > 0, then bn = 0, an ∈ R1/α and an → ∞ as

n → ∞.

The following concept has proved useful in comparing tails.

Definition A.7 (Tail-equivalence).

Two d. f. s F and G (or two measures µ and ν) are called tail-equivalent if both have

support unbounded to the right and there exists some c > 0 such that

lim
x→∞

F (x)/G(x) = c or lim
x→∞

ν(x,∞)/µ(x,∞) = c .

Important in the context of our paper is that all the following classes are closed

with respect to tail-equivalence: MDA(G) for G ∈ {Φα, α > 0, Λ), R−α for α ∈

[0,∞), L(γ) for γ ≥ 0, S(γ) for γ ≥ 0. Moreover, for two tail-equivalent d. f. s in

some MDA(G) one can choose the same norming constants.

Definition A.8 (Poisson random measure).

Let (A,A, ϑ) be a measurable space, where ϑ is σ-finite, and (Ω,F , P) be a probability

space. A Poisson random measure N with mean measure ϑ, denoted by PRM(ϑ),

is a collection of r. v. s (N(A))A∈A, where N(A) : (Ω,F , P) → (N0,B(N0)), with

N(∅) = 0, such that:
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(a) Given any sequence (An)n∈N of mutually disjoint sets in A:

N

(
⋃

n∈N

An

)
=
∑

n∈N

N(An) a.s.

(b) N(A) is Poisson distributed with mean ϑ(A) for every A ∈ A.

(c) For mutually disjoint sets A1, . . . , An ∈ A, n ∈ N, the r. v. s N(A1), . . . , N(An)

are independent.

Definition A.9 (Extremal index).

Let X = (Xn)n∈Z be a strictly stationary sequence and θ ≥ 0. If for every τ > 0

there exists a sequence un(τ) with

lim
n→∞

nP(X1 > un(τ)) = τ and lim
n→∞

P( max
k=1,...,n

Xn ≤ un(τ)) = e−θτ ,

then θ is called the extremal index of X and has value in [0, 1].

B The conditions Dr(un) and D′(un)

Classical results for the extremal behavior of stationary sequences are based on two

conditions: the first one is a specific type of asymptotic dependence, and the second

is an anti-clustering condition.

Definition B.1. Let X = (Xn)n∈N be a strictly stationary sequence, such that

for m = 1, . . . , r, r ∈ N, the sequences of constants (u
(m)
n )n∈N and (un)n∈N satisfy

lim
n→∞

nF (u
(m)
n ) = τ (m) and lim

n→∞
nF (un) = τ .

(a) For any integers p, q and n let

1 ≤ i1 < · · · < ip < j1 < · · · < jq ≤ n

such that j1 − ip ≥ l and vn = (v
(1)
n , . . . , v

(p)
n ), wn = (w

(1)
n , . . . , w

(q)
n ) with v

(l)
n , w

(s)
n ∈

{u
(1)
n , . . . , u

(r)
n }. Write I = {i1, . . . , ip}, J = {j1, . . . , jq}, XI = (Xi1 , . . . , Xip) and

XJ = (Xj1 , . . . , Xjq
). If for each choice of indices of I, J ,

|P (XI ≤ vn,XJ ≤ wn) − P (XI ≤ vn) P (XJ ≤ wn)| ≤ αn,l,

where αn,ln → 0 as n → ∞ for some sequence ln = o(n), then X satisfies the

condition Dr(un).
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(b) X satisfies the condition D′(un), if

lim
k→∞

lim sup
n→∞

n

bn/kc∑

j=2

P(X1 > un , Xj > un) = 0 .

We show that (Ṽk)k∈Z as defined in (3.28) satisfies the Dr(un) and D′(un) condi-

tions. The result is an analogon for discrete-time MA processes given in Rootzén [33],

Lemma 3.2.

Lemma B.2. Let V be a stationary version of the OU process given by (3.6) with

L a positive, compound Poisson process as in (3.5).

(a) Assume Ṽk = VΓk/λ + e−Γkξ0 ∈ L(γ), γ > 0, such that for an > 0, bn ∈ R and

un = anx + bn,

lim
n→∞

nP(Ṽk > un) = e−x , x ∈ R. (B.1)

For r ∈ N and x = (x1, . . . , xr) let un = (anx1 + bn, . . . , anxr + bn). Then (Ṽk)k∈N

satisfies the Dr(un) and D′(un) conditions.

(b) Let L1 be in S(γ), γ > 0. Define for h > 0 fixed Mk := sup(k−1)h≤t≤kh Vt for

k ∈ N. Suppose M1 ∈ L(γ) such that for an > 0, bn ∈ R and un = anx + bn,

lim
n→∞

nP(Mk > un) = e−x , x ∈ R.

For r ∈ N and x = (x1, . . . , xr) let un = (anx1 + bn, . . . , anxr + bn). Then (Mk)k∈N

satisfies the Dr(un) and D′(un) conditions.

Proof. (a) To show the Dr(un) condition, let u
(m)
n = anxm + bn, xm ∈ R, m =

1, . . . , r. Let vn = (v
(1)
n , . . . , v

(p)
n ), wn = (w

(1)
n , . . . , w

(q)
n ) with v

(l)
n , w

(s)
n ∈ {u

(1)
n , . . . , u

(r)
n }

and 1 ≤ i1 < · · · < ip < j1 < · · · < jq ≤ n. Define V n
k :=

∑k
j=k−n e−(Γk−Γj)ξj,

VI := (Ṽi1 , . . . , Ṽip), Vn
I := (V n

i1
, . . . , V n

ip ) and, similarly, VJ := (Ṽj1 , . . . , Ṽjq
),

Vn
J := (V n

j1
, . . . , V n

jq
). Then (V n

k )k∈Z is stationary and V
bnδc
I is independent of V

bnδc
J

for j1 − ip > bnδc, δ > 0. Since P(ξk < 0) = 0, we obtain Vn
I ≤ VI . Here,

x = (x1, . . . , xp) ≤ y = (y1, . . . , yp) means that xi ≤ yi for all i = 1, . . . , p. It now
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follows that for any ε > 0,

P (VI ≤ vn,VJ ≤ wn) ≤ P

(
V

bnδc
I ≤ vn,V

bnδc
J ≤ wn

)

= P

(
V

bnδc
I ≤ vn

)
P

(
V

bnδc
J ≤ wn

)

≤ P (VI ≤ vn + ε(an, . . . , an)) P (VJ ≤ wn + ε(an, . . . , an))

+nP

(
|Ṽ1 − V

bnδc
1 | > εan

)

≤ P (VI ≤ vn) P (VJ ≤ wn) + nP

(
|Ṽ1 − V

bnδc
1 | > εan

)

+
r∑

m=1

nP(u(m)
n ≤ Ṽ1 ≤ u(m)

n + ε an).

Similarly we can find a lower bound, such that for j1 − ip > bnδc,

αn,bnδc := |P (VI ≤ vn,VJ ≤ wn) − P (VI ≤ vn) P (VJ ≤ wn)|

≤ nP(|Ṽ1 − V
bnδc
1 | > εan) +

r∑

m=1

nP(u(m)
n − εan ≤ Ṽ1 ≤ u(m)

n + εan)

=: α̃n,bnδc,ε. (B.2)

Let Xi := Γi − Γi−1 − 1/µ, i ∈ N. Then (Xi)i∈N is a centered i. i. d. sequence such

that
∑n

i=1 Xi = Γn − n/µ. It follows that there exists a constant K > 0, such that

for every n ∈ N,

E(Γn − n/µ)6 = nEX6
1 +

(n

3

)(6

2

)(
4

2

)
(EX2

1 )3

+
(n

2

)(6

3

)
(EX3

1 )2 +
(n

2

)(6

2

)
(EX2

1 )(EX4
1 )

≤ n3K.

Hence, by Markov’s inequality there is a constant K̃ > 0 such that for all n ∈ N,

P(Γn < n/(2µ)) ≤ P(|Γn − n/µ| > n/(2µ)) ≤ (2µ/n)6
E(Γn − n/µ)6 ≤ K̃/n3. (B.3)

Thus we obtain for n ∈ N,

nP(|Ṽ0 − V
bnδc
0 | > εan) = nP


e−Γbnδc

−bnδc−1∑

j=−∞

e(Γbnδc+Γj)ξj > εan




≤ nP

(
e−bnδc/(2µ)Ṽ1 > εan

)
+

K̃

n2
. (B.4)
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Note that the first exponential moment of γβe−bδnc/(2µ)Ṽ1 exists for βe−bδnc/(2µ) <

1. Choose βn = 2/(ε(1 − ε)) log n. There exists n0 = n0(δ, ε) ∈ N such that

βne−bnδc/(2µ) < (1 − ε) and an ≥ (1 − ε)/γ for n ≥ n0. The first term on the right

hand side of (B.4) is by Markov’s inequality for n ≥ n0 bounded above by

nE exp
[
βnγ

(
e−bδnc/(2µ)Ṽ1

)]
e−βnεγan ≤ nE exp

[
(1 − ε)γṼ1

]
e−2 log n, (B.5)

which converges to 0 as n → ∞. Together with (B.1), (B.2) and (B.4) this gives

lim
n→∞

α̃n,bnδc,ε =
r∑

m=1

[e−(xm−ε) − e−(xm+ε)],

so that

lim
n→∞

αn,bnδc ≤ lim
ε↓0

lim
n→∞

α̃n,bnδc,ε = 0,

which implies the Dr(un) condition by Lemma 3.2.1 in Leadbetter et al. [29].

To show the D′(un) condition, let ε > 0. Then there exists an x0 > 0 such that

P(Γ2 − Γ1 < x0) = ε. Since (Γi+1 − Γi)i∈N is a positive i. i. d. sequence, it follows

that

P(Γj − Γ1 < x0) ≤ P(Γj − Γj−1 < x0, . . . , Γ2 − Γ1 < x0) = εj−1, j ≥ 2.

Now choose β such that 1/2 < β < (1 + e−x0)−1 and δ > 0 such that 1 + δ < 2β.

Then, for any k, n ∈ N,

bn/kc∑

j=2

P(Ṽ1 > un, Ṽj > un) =

bnδc∑

j=2

P(Ṽ1 > un, Ṽj > un) +

bn/kc∑

j=bnδc+1

P(Ṽ1 > un, Ṽj > un). (B.6)

We first show that the first summand, when multiplied by n, tends to 0 as n → ∞.

Note that by the independence of Ṽ1 and Γj − Γ1,

P(Ṽ1 > un, Ṽj > un) ≤ εj−1
P(Ṽ1 > un) + P(Ṽ1 + Ṽj > 2un, Γj − Γ1 ≥ x0). (B.7)

Let Ṽ ′
1 be an independent copy of Ṽ1. Then

P

(
Ṽ1 + Ṽj > 2un, Γj − Γ1 ≥ x0

)

= P

(
(1 + e−(Γj−Γ1))Ṽ1 +

j∑

k=2

e−(Γj−Γk)ξk > 2un, Γj − Γ1 ≥ x0

)

≤ P

(
(1 + e−x0)Ṽ1 +

j∑

k=2

e−(Γj−Γk)ξk > 2un

)

≤ P

(
(1 + e−x0)Ṽ1 + Ṽ ′

1 > 2un

)
. (B.8)
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As β(1 + e−x0) < 1, the first exponential moment of βγ((1 + e−x0)Ṽ1 + Ṽ ′
1) exists,

and by Markov’s inequality the last expression can be bounded above by

E exp
[
βγ((1 + e−x0)Ṽ1 + Ṽ ′

1)
]
e−2βγun . (B.9)

Recall that un = un(x). Since
(
n 7→ e−2βγun

)
∈ R−2β for fixed x, it follows that(

n 7→ n1+δe−2βγun
)
∈ R(1+δ)−2β. We then obtain by (B.1), (B.7)-(B.9) and Bingham

et al. [7], Proposition 1.5.1, that

n

bnδc∑

j=2

P(Ṽ1 > un, Ṽj > un) (B.10)

≤ nP(Ṽ1 > un)

bnδc∑

j=2

εj−1 + E[βγ((1 + e−x0)Ṽ1 + Ṽ ′
1)]n

1+δe−2βγun

→ e−x ε

1 − ε
, n → ∞ .

For the second term in (B.6), using the independence of V
bnδc
j and V

bnδc
1 for j > bnδc,

we obtain

n

bn/kc∑

j=bnδc+1

P(Ṽ1 > un, Ṽj > un)

≤ n

bn/kc∑

j=bnδc+1

P(V
bnδc
1 > un − ε an, V

bnδc
j > un − ε an) + 2n2

P(|Ṽ1 − V
bnδc
1 | > ε an)

= n

bn/kc∑

j=bnδc+1

P(V
bnδc
1 > un − ε an)P(V

bnδc
j > un − ε an) + 2n2

P(|Ṽ1 − V
bnδc
1 | > ε an)

≤ (n2/k) P(Ṽ1 > un − ε an)2 + 2n2
P(|Ṽ1 − V

bnδc
1 | > ε an). (B.11)

Analogously to (B.4) and (B.5), with βn = 3/(ε(1 − ε)) log n, we have

n2
P(|Ṽ1 − V

bnδc
1 | > ε an) → 0 as n → ∞. Using (B.1), we also have

lim
n→∞

(n2/k) P(Ṽ1 > un − ε an)2 = exp(−2(x − ε))/k, (B.12)

which converges to 0 as k → ∞. Then by (B.6), (B.10)-(B.12), and letting ε ↓ 0,

the D′(un) condition holds.

(b) To prove condition Dr(un), we replace V n
k in (a) by

Mn
k := sup

(k−1)h≤t≤kh

∫ t

t−nh

e−λ(t−s) dLλs.
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We then obtain an analogue result to (B.2). Further, since

|Mk − Mn
k | ≤ sup

(k−1)h≤t≤kh

∫ t−nh

−∞

e−λ(t−s) dLλs

d
= e−λnh sup

(k−1)h≤t≤kh

∫ t

−∞

e−λ(t−s) dLλs = e−λnhMk,

we obtain for any δ > 0 that

nP(|Mk − M
bnδc
k | > ε an) ≤ nP(e−λbnδchMk > ε an).

Since the first exponential moment of βγe−λbnδchMk exists for βe−λbnδch < 1, similar

reasoning as in (B.4) and (B.5) shows that limn→∞ nP(|Mk − M
bnδc
k | > ε an) = 0.

As in the proof of (a) we then conclude that the Dr(un) condition holds.

For the proof of the D′(un) condition we use

Mk ≤

∫ ∞

−∞

sup
(k−1)h≤t≤kh

e−λ(t−s) 1(−∞,t](s) dLλs

= Lλkh − Lλ(k−1)h +

∫ (k−1)h

−∞

e−λ((k−1)h−s) dLλs =: V k.

Let j ≥ 3. Then we have the upper bound

V j = Lλjh − Lλ(j−1)h + e−λ(j−1)h

∫ 0

−∞

eλs dLλs

+e−λ(j−2)h

∫ h

0

e−λ(h−s) dLλs +

∫ (j−1)h

h

e−λ((j−1)h−s) dLλs

≤ Lλjh − Lλ(j−1)h + e−λ(j−2)h

∫ 0

−∞

eλs dLλs

+e−λ(j−2)hLλh +

∫ (j−1)h

h

e−λ((j−1)h−s) dLλs

≤ Lλjh − Lλ(j−1)h + e−λhV 1 +

∫ (j−1)h

h

e−λ((j−1)h−s) dLλs.

Let V
′

1 be an independent copy of V 1. Then

n

bnδc∑

j=3

P(M1 > un,Mj > un) ≤ n

bnδc∑

j=3

P(V 1 > un, V j > un)

≤ n

bnδc∑

j=3

P(V 1 + V j > 2un)

≤ n1+δ
P((1 + e−λh)V 1 + V

′

1 > 2un).
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The tail of V 1 behaves by Proposition 3.9 (b) and Theorem A.4 (ii) like

P(V 1 > x) = P(Lλh + V0 > x) ∼ EeγV0P(Lλh > x) , x → ∞,

so that V 1 ∈ S(γ). An analogue result to (B.8) and (B.9) gives

lim
n→∞

n1+δ
P((1 + e−λh)V 1 + V

′

1 > 2un) = 0,

and argueing similarly as in (B.11) and (B.12), we obtain

lim
k→∞

lim sup
n→∞

n

bn/kc∑

j=3

P(M1 > un,Mj > un) = 0.

It remains to show that

lim
n→∞

nP(M1 > un,M2 > un) = 0. (B.13)

Note that

P(M1 > un) = P(M1 > un, Nλh > 0) + P(M1 > un, Nλh = 0)

≥ P(VΓ1/λ > un, Nλh > 0)

≥ P(ξ1 > un)P(Nλh > 0),

so that

nP(M1 > un,M2 > un) ≤
nP(M1 > un)

P(Nλh > 0)

P(M1 > un,M2 > un)

P(ξ1 > un)
. (B.14)

Furthermore, we have the upper bound

P(M1 > un,M2 > un) ≤ P(V 1 + V 2 > 2un)

≤ P

(
L2λh − Lλh

2
+

1 + e−λh

2

∫ 0

−∞

eλs dLλs +
1

2

∫ h

0

(1 + e−λh+λs) dLλs > un

)
.

The three summands are independent, and we shall show that for each of them the

probability to be greater than un is of order o(P(ξ1 > un)) for n → ∞, so that by

Theorem A.4 (ii)

lim
n→∞

P(M1 > un,M2 > un)/P(ξ1 > un) = 0. (B.15)

Equation (B.13) and hence condition D′(un) then follow from (B.2), (B.14) and

(B.15).
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The rapidly varying tails and Theorem A.4 (i) give

lim
x→∞

P(L2λh − Lλh > 2x)

P(ξ1 > x)
= lim

x→∞
µ

P(Lλh > x)

ν(x,∞)

P(Lλh > 2x)

P(Lλh > x)
= 0,

which is the assertion for the first summand. Further, also by the rapidly varying

tails, Proposition 3.9 (b) and Theorem A.4 (i),

P

(
(1 + e−λh)

∫ 0

−∞
eλs dLλs > 2x

)

P(ξ1 > x)
=

P
(
(1 + e−λh)V0 > 2x

)

P(V0 > x)

µP(V0 > x)

ν(x,∞)

x→∞
−→ 0.

For the last summand we use that

X :=

∫ h

0

(1 + e−λh eλs) dLλs
d
=

Nλh∑

i=1

(1 + e−λheλhUi)ξi
d
=

Nλh∑

i=1

(1 + e−λhUi)ξi,

where (Ui)i∈N, U are i. i. d. uniform on (0, 1) and independent of L (cf. e. g. Sato [35],

Proposition 3.4).

From Theorem A.4 (iii) then follows

P

(∫ h

0
(1 + e−λs) dLλs > 2x

)

P(ξ1 > x)
∼ µλhEeγX P

(
ξ1(1 + e−λhU)/2 > x

)

P(ξ1 > x)

x→∞
−→ 0. �

C Stationary solution of a random recurrence equa-

tion

The following result is the central result for proving stationarity and the tail behavior

of a stochastic process defined by a random recurrence equation; it goes back to

seminal work by Kesten [24] and Vervaat [36].

Theorem C.1 (Goldie [21], Theorem 4.1, Lemma 2.2).

Let (Yk)k∈N be a stochastic process defined by Yk = AkYk−1+Bk, where ((Ak, Bk))k∈N,

(A,B) are i. i. d. sequences. Assume that the following conditions are satisfied for

some α > 0:

(i) The law of log |A|, given |A| 6= 0, is not concentrated on a lattice −∞∩ rZ for

any r > 0.

(ii) E|A|α = 1.

(iii) E|A|α log+ |A| < ∞.
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(iv) E|B|α < ∞.

Then the equation Y∞
d
= AY∞ + B, where Y∞ is independent of (A,B), has the

solution unique in distribution

Y∞
d
=

∞∑

m=1

Bm

m∏

k=1

Ak.

The process (Yk)k∈N with Y0
d
= Y∞ is stationary and has tails

P(Y∞ > x) ∼
E [((AY∞ + B)+)α − ((AY∞)+)α]

αE|A|α log+ |A|
x−α , x → ∞ .
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