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Abstract

Count data often exhibit overdispersion and/or require an adjustment for zero out-

comes with respect to a Poisson model. Zero-modified Poisson (ZMP) and zero-

modified generalized Poisson (ZMGP) regression models are useful classes of models

for such data. In the literature so far only score tests are used for testing the neces-

sity of this adjustment. For this testing problem we show how poor the performance

of the corresponding score test can be in comparison to the performance of Wald

and likelihood ratio (LR) tests through a simulation study. In particular, the score

test in the ZMP case results in a power loss of 47% compared to the Wald test in the

worst case, while in the ZMGP case the worst loss is 87%. Therefore, regardless of

the computational advantage of score tests, the loss in power compared to the Wald

and LR tests should not be neglected and these much more powerful alternatives

should be used instead. We also prove consistency and asymptotic normality of the

maximum likelihood estimators in the above mentioned regression models to give a

theoretical justification for Wald and likelihood ratio tests.
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1 Introduction

Zero-inflated generalized Poisson (ZIGP) regression models have recently been found

useful for the analysis of count data with a large amount of zeros ( see e.g. Famoye

and Singh (2003), Gupta et al. (2004), Joe and Zhu (2005), Bae et al. (2005) and

Famoye and Singh (2006)). It is a large class of regression models which contains

zero-inflated Poisson (ZIP), generalized Poisson (GP) and Poisson regressions (Mul-

lahy (1986), Lambert (1992), Consul and Famoye (1992) and Famoye (1993)). The

interest in this class of regression models is driven by the fact that it can handle

overdispersion and/or zero-inflation which count data very often exhibit.

Score tests are widely used for testing misspecifications in count regression mod-

els because they require to fit the model only under the null hypothesis. In partic-

ular, van den Broek (1995) proposed a score test for testing zero-inflation in ZIP

regression and Gupta et al. (2004) derived score tests for testing zero-inflation or

overdispersion in ZIGP regression. The score test for zero-inflation considered by

the above authors is as they noted the score test for zero-inflation or zero-deflation,

i.e. for zero-modification in zero-modified Poisson (ZMP) regression (see Dietz and

Böhning (2000)) and zero-modified generalized Poisson (ZMGP) regression. In order

to derive a score test only for zero-inflation, the problem of testing parameters on

the boundary of the parameter space needs to be addressed. Consequently, the lim-

iting distribution of the score statistic will differ from a standard χ2−distribution.

For insightful discussions on this problem we would like to refer to Verbeke and

Molenberghs (2003).

Nowadays, given modern computing power, the computational advantage of

score tests has lost some of its original attractivity in many problems. Therefore

we think that more attention should be paid to Wald and likelihood ratio (LR)

tests for ZMP and ZMGP regressions. The objective of this paper is to derive the

appropriate asymptotic theory for the ZMGP regression models and to investigate

the performance of Wald, LR and score tests for testing zero-modification, i.e. zero-

inflation or zero-deflation. Our theoretical results also remain valid for GP and ZMP

regression models subject to appropriate changes in assumptions.

There is also a count regression for overdispersed and zero-inflated data based

on a negative binomial (NB) distribution. This is a zero-inflated negative binomial

(ZINB) regression (see Ridout et al. (2001) and Hall and Berenhaut (2002)). It is

not a subject of the paper but we list most important differences, from our point

of view, between regression models based on a NB and GP distributions in next

sections.

In Section 2 we introduce the GP distribution and discuss its basic forms and

properties. A ZMGP regression model is defined in Section 3. Section 4 gives

the asymptotic existence, the consistency and the asymptotic normality of the ML

estimator in a ZMGP regression model. In Section 5 we compare the performance

of the score test for detecting zero-modification in ZMP and ZMGP models to the
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performance of the Wald and LR tests in a simulation study. In particular it is shown

that using the score test one may lose in test power compared to the Wald test up

to 47% for the ZMP case and up to 87% for the ZMGP case. We also illustrate that

the score test for zero-modification in the analysis of the apple propagation data

(see Ridout and Demétrio (1992)) does not always detect zero-modification while

the Wald and LR tests give strong evidence for zero-modification. Thus the score

test can result in misleading conclusions about the presence of zero-modification.

The Fisher information matrix of the ZMGP regression and the proof of Theorem 1

is given in the Appendix.

2 The GP distribution

A random variable Ỹ is said to be distributed according to a GP distribution with

parameters µ and ϕ, which we denote by GP (µ, ϕ), if its probability mass function

is given by

Pµ,ϕ(y) :=

{

µ(µ + y(ϕ − 1))y−1ϕ−ye−(µ+y(ϕ−1))/ϕ/y! for y = 0, 1, . . .

0 for y > m, when ϕ < 1.
(1)

The real-valued parameters µ and ϕ are assumed to satisfy the following constraints:

• µ > 0;

• ϕ ≥ max{1/2, 1−µ/m}, where m (m ≥ 4) is the largest natural number such

that µ + m(ϕ − 1) > 0 when ϕ < 1.

If ϕ < 1 then (1) does not correspond to a probability distribution. However the

lower limit, imposed on ϕ in this case, guarantees us that the total error of truncation

is less than 0.5% (see Consul and Shoukri (1985)). Since all discrete distributions

are truncated under sampling procedures this is found to be a quite reasonable

condition.

The GP distribution was first introduced by Consul and Jain (1970) and sub-

sequently studied in detail by Consul (1989). One particular property of the GP

distribution is that the variance of this distribution is greater than, equal to or

less than the mean according to whether the second parameter ϕ is greater than,

equal to or less than 1. More precisely (for details see Consul (1989), page 12 ), if

Ỹ ∼ GP (µ, ϕ) then the mean and variance of Y are given by

E(Ỹ ) = µ (2)

and

V ar(Ỹ ) = ϕ2µ. (3)
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A NB distribution with mean µ and overdispersion parameter a > 0 (see Lawless

(1987) for precise definition) also has a flexible variance function. Its variance is

given by µ(1 + aµ). Thus the overdispersion in the GP case is independent of

the mean while this is not the case for the NB distribution. This implies that

overdispersion in the NB case might be present over and above that accounted for by

a; a fact concurred by Lawless (1987). Czado and Sikora (2002) also noted this and

developed an approach based on p−value-curves to quantify overdispersion effects

more precisely. Another significant difference between these two distributions is that

the NB distribution belongs to the exponential family whenever the overdispersion

parameter a is known while this does not hold for the GP distribution. A comparison

of GP and NB probability functions can be found in Joe and Zhu (2005) and Gschlößl

and Czado (2005).

There is a form of the GP distribution obtained by assuming that ϕ − 1 is

linearly proportional to µ, say ϕ − 1 = αµ for α > 0. In the literature it is known

as a restricted generalized Poisson (RGP) distribution (see Consul (1989), p. 5) and

the relation between its mean and variance is given by V ar(Ỹ ) = (1+αE(Ỹ ))2E(Ỹ ).

Thus overdispersion in the RGP case is not independent of the mean. To avoid the

point indicated in the previous paragraph we deal here only with an unrestricted

form (1) of the GP distribution.

3 ZMGP regression

A ZMGP distribution is defined analogous to a ZMP distribution (see Dietz and

Böhning (2000)) and its probability mass function is given by

Pµ,ϕ,ω(y) := P (Y = y) =

{

ω + (1 − ω)P (Ỹ = 0) y = 0,

(1 − ω)P (Ỹ = y) y = 1, 2, . . . ,
(4)

where Ỹ is distributed according to the GP distribution with parameters ϕ and µ

and the parameter ω satisfies the following restriction

− exp(−µ/ϕ)

1 − exp(−µ/ϕ)
≤ ω ≤ 1. (5)

Thus, this distribution has 3 parameters µ, ϕ and ω and will be further denoted by

ZMGP (µ, ϕ, ω).

The above condition (5) ensures that (4) defines a probability mass function for

negative values of ω corresponding to zero-deflation. Positive values of the parameter

ω correspond to zero-inflation which mostly occurs in practice. In this case ω is a

probability of zero outcome of a zero-inflating Bernoulli distribution.

A simple calculation using equations (2) and (3) imply that the mean and vari-

ance of the ZMGP distribution are given by

E(Y ) = (1 − ω)µ (6)
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and

V ar(Y ) = E(Y )
(

ϕ2 + µω
)

. (7)

One of the main benefits of considering a regression model based on the ZMGP

distribution is that it gives a large class of regression models for count response

data. In particular, it reduces to Poisson regression when ϕ = 1 and ω = 0, to GP

regression when ω = 0 and to ZMP regression when ϕ = 1. Moreover, by virtue

of (6) and (7) this regression can be used to fit zero-modified count regression data

exhibiting overdispersion or underdispersion.

Analogous to the generalized linear models (GLM) framework, we now intro-

duce a regression model with response Yi and (known) explanatory variables xi =

(xi0, xi1, . . . , xip)
t with xi0 = 1 for i = 1, . . . , n:

1. Random components:

{Yi, 1 ≤ i ≤ n} are independent where Yi ∼ ZMGP (µi, ϕ, ω).

2. Systematic components:

The linear predictors ηi(β) = x
t
iβ for i = 1, . . . , n influence the response Yi.

Here β = (β0, β1, . . . , βp)
t is a vector of unknown regression parameters. The

matrix X = (x1, . . . ,xn)t is called the design matrix.

3. Parametric link components:

The linear predictors ηi(β) are related to the parameter µi of Yi by µi =

exp(ηi(β)) for i = 1, . . . , n.

Here and in the subsequent sections, A
t and a

t denote the transpose of a matrix A

and a vector a, respectively. To stress the fact that the distribution of the responses

Yi’s does not belong to the exponential family, this regression will be called the

ZMGP regression model. It should be noted that parameter ϕ and ω are assumed

to be constant and (5) now should hold for all µi, i = 1, 2, . . . , n. Further, we denote

the joint vector of the regression parameters β and the parameters ϕ and ω of the

ZMGP distribution by δ, i.e. δ := (βt, ϕ, ω)t, and its ML estimator by δ̂.

The following abbreviations for i = 1, . . . , n will be used throughout in the paper:

µi(β) := exp
(

x
t
iβ
)

,

fi(β, ϕ) := exp (−µi(β)/ϕ) ,

gi(δ) := ω + (1 − ω)fi(β, ϕ) = Pµi(β),ϕ,ω(0).

For observations y1, . . . , yn, the log-likelihood l(δ) derived from the ZMGP regression
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can be written as

ln(δ) =
n
∑

i=1

1l{yi=0} log (gi(δ))

+

n
∑

i=1

1l{yi>0}

(

log(1 − ω) + x
t
iβ − 1

ϕ
µi(β) + (yi − 1) log [µi(β) + yi(ϕ − 1)]

−yi log ϕ − yi
1

ϕ
(ϕ − 1) − log(yi!)

)

.

Further the score vector, i.e. the vector of the first derivatives, has the following

representation:

sn(δ) = (s0(δ), . . . , sp(δ), sp+1(δ), sp+2(δ))t , (8)

where

sr(δ) :=
∂ln(δ)

∂βr
=

n
∑

i=1

sr,i(δ)

with

sr,i(δ) := −xir1l{yi=0}
(1 − ω)fi(β, ϕ)µi(β)

ϕgi(δ)

+ xir1l{yi>0}

(

1 +
µi(β)(yi − 1)

µi(β) + (ϕ − 1)yi
− µi(β)

ϕ

)

(9)

for r = 0, . . . , p,

sp+1(δ) :=
∂ln(δ)

∂ϕ
=

n
∑

i=1

sp+1,i(δ)

with

sp+1,i(δ) := 1l{yi=0}
(1 − ω)fi(β, ϕ)µi(β)

ϕ2gi(δ)

+ 1l{yi>0}

(

yi(yi − 1)

µi(β) + (ϕ − 1)yi
− yi

ϕ
+

µi(β) − yi

ϕ2

)

(10)

and

sp+2(δ) :=
∂ln(δ)

∂ω
=

n
∑

i=1

sp+2,i(δ)

with

sp+2,i(δ) := 1l{yi=0}
1 − fi(β, ϕ)

gi(δ)
− 1l{yi>0}

1

1 − ω
, (11)

for i = 1, . . . , n.
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4 Asymptotic theory

Fahrmeir and Kaufmann (1985) proved consistency and asymptotic normality of

the ML estimator in GLM for canonical as well as noncanonical link functions under

mild assumptions. Their method can be adapted for proving similar results for the

ZMGP regression.

As in Fahrmeir and Kaufmann (1985), we use the Cholesky square root matrix

for normalizing the ML estimator. The left Cholesky square root matrix A
1/2 of

a positive definite matrix A is the unique lower triangular matrix with positive

diagonal elements such that A
1/2
(

A
1/2
)t

= A (see Stewart (1998), p. 188). For

convenience, set A
t/2 :=

(

A
1/2
)t

, A
−1/2 :=

(

A
1/2
)−1

and A
−t/2 :=

(

A
t/2
)−1

. In

this paper we deal only with the spectral norm of square matrices denoted by ‖ · ‖.
The spectral norm of a real-valued matrix A is given by

‖A‖ =
(

maximum eigenvalue of A
t
A
)1/2

= sup
‖u‖2=1

‖Au‖2 ,

where ‖ · ‖2 denotes the L2– norm of vectors. We drop subindex 2 in ‖ · ‖2 since the

spectral norm is generated by the L2–norm of vectors and arguments of considered

norms are always clearly defined. The minimal eigenvalue of a square matrix A

will be further denoted by λmin(A) and the vector of true parameter values of the

ZMGP regression will be denoted as δ0. Further Fn(δ) will stand for the Fisher

information matrix in a ZMGP regression evaluated at δ. It should be noted that

the entries of the Fisher information matrix in a ZMGP regression have a closed

form (see Appendix) while this is not the case in regression models associated with

a NB distribution (see e.g. Lawless (1987)).

Now denote a neighborhood of δ0 by

Nn(ε) = {δ : ‖Ft/2
n (δ0)(δ − δ0)‖ ≤ ε} (12)

for ε > 0.

For convenience, we drop the arguments δ0, β0 and ϕ0 as well as the subindex δ0

in µi(β0), fi(β0, ϕ0), gi(δ0), Pδ0 , Eδ0 etc. and write µi, fi, gi, P , E etc. Constants

will be further denoted by C and c, with subindexes or without them. They may

depend on δ0 but not on n. The same C’s and c’s in different places denote different

constants. Finally, the n-dimensional unit matrix will be denoted by In and an

admissible set for a vector β of regression parameter will be denoted by B.

We make the following assumptions.

(A1)
n

λmin(Fn)
≤ C1 ∀ n ≥ 1,

where C1 is a positive constant.

(A2) {xn, n ≥ 1} ⊂ Kx, where Kx ⊂ Rp+1 is a compact set.
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(A3) Assume that B ⊂ Rp+1 is an open set and δ0 is an interior point of the set

Kδ := B × Φ × Ω, where Φ := [1,∞) and Ω := [−cω, 1]. Here cω is a positive

constant such that (5) holds for all x ∈ Kx, β ∈ B and ϕ ∈ Φ.

Now we state our main result which is the analogue to Theorem 4 of Fahrmeir

and Kaufmann (1985).

Theorem 1. Under the assumptions (A1)–(A3), there exists a sequence of random

variables δ̂n, such that

(i) P (sn(δ̂n) = 0) → 1 as n → ∞ (asymptotic existence),

(ii) δ̂n
P−→ δ0 as n → ∞ (weak consistency),

(iii) F
t/2
n (δ̂n − δ0)

D
=⇒ Np(0, Ip+3) as n → ∞ (asymptotic normality).

Remarks

(i) Assumption (A1) is more restrictive than the corresponding condition (D) of

Fahrmeir and Kaufmann (1985). Assumption (A2) means that we deal with

compact regressors.

(ii) If δ0 lies on the boundary of parameter space Kδ, i.e. (A3) is violated, then

statements of Theorem 1 do not hold anymore. Particularly this implies that

we cannot test the adequacy of the GP regression. However the asymptotic

results of Theorem 1 remain valid in GP or ZMP regression models subject to

appropriate changes to be performed in the log-likelihood, the ML equations

and the Fisher information matrix as well as in Assumption (A3).

(iii) We would like to especially note that ω = 0 is not on the boundary of the

parameter space in ZMGP and ZMP regression models, thus allowing for a

direct application of Wald, LR and score tests.

5 Applications

5.1 Power comparison of score, Wald and LR tests in

ZMP and ZMGP models

Jansakul and Hinde (2002) investigated the performance of the score test for

zero-inflation in small and moderate sample sizes within the ZIP regression model.

They noted that their score test compares the Poisson model to the ZMP model

thus avoiding the problem of testing on the boundary of zero-inflation.

By virtue of Remarks (ii) and (iii) of Theorem 1, we can construct the Wald and

LR tests for testing zero-modification in ZMP models and then compare their perfor-

mance with the performance of the score test. Note this comparison is only feasible

8



for models with a constant zero-modification parameter. In particular, Jansakul

and Hinde (2002) considered models with ω = 0, 0.25, 0.45 and linear predictors

ηi(β) = 0.25, 0.75 and ηi(β) = 0.75 − 1.45xi for i = 1, . . . , n and n = 50, 100, 200.

Covariates xi’s were taken uniformly from (0, 1). For each combination of sample

size and model they simulated 1000 sets of responses from the working model. The

simulation setup for the constant linear predictors ηi’s implies that the corresponding

Poisson distribution has approximately 28% ( ηi(β) = 0.25) and 12% (ηi(β) = 0.75)

of zero responses. In the case of nonconstant linear predictors, the probability of

obtaining zero outcomes from the Poisson distribution with parameter exp(ηi(β))

varies between 0.12 and 0.61 for i = 1, . . . , n. We used their simulation setup to

compare the performance of the three above mentioned tests in S-PLUS 7.0 on a

Windows platform. The ML estimators were determined with a help of the S-PLUS

function ”nlminb” which finds the minimum of a smooth nonlinear function subject

to bound-constrained parameters.

The Wald statistic for testing H0 : ω = 0 versus H1 : ω 6= 0 has the following

form

Wω =
ω̂2

σ̂2
ω

,

where ω̂ is the ML estimator of ω in a ZMP regression and σ̂2
ω is the estimated

variance of ω̂, which is the corresponding diagonal element of the inverse of the

Fisher information matrix evaluated at (ω̂, β̂). The LR statistic for the same testing

problem is given by

LRω = −2(lPn(β̂
P

) − lZMP

n (δ̂
ZMP

)),

where lPn(·) and β̂
P

denote, respectively, the log-likelihood and the ML estimator in a

Poisson regression model, lZMP

n (·) and δ̂
ZMP

= (β̂
ZMP

, ω̂ZMP) denote, respectively, the

log-likelihood and the ML estimator in a ZMP regression model. The score statistic

for the above testing problem is derived in detail by Jansakul and Hinde (2002) and

therefore it is not given here. Further following them, the score statistic is denoted

by Sω.

Estimated upper tail probabilities for an α size test are computed by calculating

the proportion of times when Wω, LRω or Sω are greater than or equal to the critical

value χ2
1,1−α. For the Wald test we have for example

#{j : W j
ω ≥ χ2

1,1−α, j = 1, . . . , 1000}
1000

.

Here χ2
1,1−α is the (1−α)100% quantile of a χ2 distribution with 1 degree of freedom

and W j
ω denotes the value of Wω in the j−th sample. Note that when samples are

drawn from the Poisson distribution the estimated upper tail probabilities corre-

spond to the estimated level of the test. For ZMP samples with zero-modification
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Table 1: Estimated upper tail probabilities for Wald (Wω), LR (LRω) and score (Sω)
statistics at χ2

1,1−α based on 1000 samples from the ZMP model with nonconstant linear
predictors ηi(β) = 0.75− 1.45xi

Level of the tests α = 0.05 α = 0.01

Wω LRω Sω Wω LRω Sω

n = 50 ω = 0.00 0.023 0.019 0.047 0.008 0.007 0.014
ω = 0.25 0.407 0.339 0.340 0.244 0.151 0.152
ω = 0.45 0.804 0.680 0.685 0.683 0.471 0.471

n = 100 ω = 0.00 0.027 0.030 0.068 0.006 0.005 0.016
ω = 0.25 0.594 0.504 0.510 0.397 0.276 0.288
ω = 0.45 0.931 0.888 0.884 0.871 0.734 0.740

n = 200 ω = 0.00 0.019 0.019 0.060 0.002 0.002 0.011
ω = 0.25 0.934 0.918 0.919 0.842 0.795 0.800
ω = 0.45 1.000 1.000 1.000 0.999 0.997 0.997

ω > 0 the estimated upper tail probabilities give the estimated power function at ω.

These values are given in Table 1 for the all three tests in the case of nonconstant

linear predictors ηi(β) = 0.75− 1.45xi, i = 1, . . . , n. Thus we observe that the Wald

and LR tests are conservative while the score test is often somewhat liberal. Despite

this fact the Wald test has the higher power than the score test for samples of size

n = 50 and n = 100 and especially at level α = 0.01. For example when ω = 0.45,

n = 50 and level α = 0.01 the power of the score test is 0.471 which is approxi-

mately 69% of the power (0.683) of the corresponding Wald test. Here and in the

sequel percents are rounded to integers. It should be noted that our results for the

score test are in a good agreement with results in Table 2 from Jansakul and Hinde

(2002). In general when ηi(β) = 0.75 − 1.45xi, i = 1, . . . , n the score test results in

power loss between 15% (5%) and 38% (27%) compared to the Wald test for n = 50

(n = 100). For sample size n = 200 these tests become almost equally powerful.

Simulation results for constants linear predictors are only briefly reported. In the

case of the constant linear predictors ηi(β) = 0.75 all three tests performed about

equally well. In contrast to this the Wald test was more powerful among others for

ηi(β) = 0.25. The loss in power for the score test compared to the Wald test was

between 15% (2%) and 43% (26%) for sample size n = 50 (n=100). This shows that

a higher percentage of zeros arising from the Poisson part results in a higher loss

of power for the score and LR tests compared to the Wald test. It should be noted

that in our simulation for ZMP case the difference in power for the score and LR

tests was always negligible for constant as well as nonconstant linear predictors (see

e.g. Table 1).

We also conducted an extensive simulation study to compare the performance
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of score, Wald and LR tests in ZMGP regression models for samples of size n =

50, 100, 200. For brevity we report only some results from this study. A ZMGP

model with ϕ = 2, ωj = 0.05j for j = 0, . . . , 9 and linear predictors ηi(β) = 1+0.5xi

for i = 1, . . . , n and n = 50, 100, 200 was taken as a working model. As above,

covariates xi’s were taken uniformly from (0, 1). For each combination of sample

size and model we simulated 1000 sets of responses from the working model. This

simulation setup implies that the probability of obtaining zero outcomes from the

GP distribution with parameters ϕ = 2 and µi = exp(ηi(β)) varies between 0.11

and 0.25 for i = 1, . . . , n. For a better visualization we displayed our findings in

Figure 1. The power of the tests between two neighbour knot points ωj and ωj+1

for j = 0, . . . , 8 is obtained by linear interpolation. From Figure 1 we see that all

three tests maintain approximately their size, while the Wald test is much powerful

than the LR test and even more powerful than the score test. A sample size of 50

is needed for the Wald test to achieve 80% power at ω = 0.40 and level α = 0.05

while for the score test a sample size of 100 is not sufficient. Taking the total cost

for sampling and statistical inference the Wald test will be much more effective than

the score test. The loss in power for the score test compared to the Wald test

lies between 46% and 87% for sample size n = 50 and between 22% and 73% for

sample size n=100. In contrast to the ZMP case, for the sample size n = 200 the

percent difference in the power for the score and Wald tests is still significant and

lies between 2% and 56%. Thus the score test performs worse when an additional

overdispersion parameter compared to the Poisson distribution is allowed. Moreover

the LR test has significantly higher power than the score test which was not the case

in ZMP regression. The percent difference in power for the score and LR tests is

between 8% and 64% for n = 50, 8% and 36% for n = 100, 1% and 20% for n = 200.

With regard to the Wald and LR tests we observed that the LR test results in power

loss up to 68% compared to the Wald test.

5.2 Apple propagation data

Ridout et al. (2001) analyzed data on the number of roots produced by 270 shoots

of a certain apple cultivar. The shoots had been produced under an 8– or 16–

hour photoperiod (Factor ”P”) in culture systems that utilized one of four different

concentrations of cytokinin BAP (Factor ”H”) in the culture medium (for more

details see Ridout and Demétrio (1992) and Marin et al. (1993)). Note that the

data contain a large number of zero responses for the 16–hour photoperiod . Ridout

et al. (2001) derived a score test for testing a zero-inflated Poisson regression model

against zero-inflated negative binomial alternative and showed that zero-inflated

Poisson model is unsuitable for these data.

Here we consider two different ZMGP models for the entire data and one ZMGP

model for its part that have been collected under 16–hour photoperiod. In the first
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Figure 1: Estimated upper tail probabilities for Wald, LR and score statistics

at χ2
1,1−α in the ZMGP regression based on 1000 samples from the ZMGP

model with linear predictors ηi(β) = 1 + 0.5xi
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model for the entire data (Model 1) µ may take different values only for two levels of

Factor ”P”, while in the second model (Model 2) µ may take different values for each

of the eight treatment combinations (”P∗H”). For the partial data we fit the ZMGP

model analogously to Model 2, i.e. µ takes different values for each four levels of

Factor ”H”. This model is further referred as Model 3. Overdispersion parameter ϕ

is taken to be constant in all models. Further we are interested in testing for zero-

modification, i.e. the null hypothesis H0 : ω = 0 against the alternative H1 : ω 6= 0.

The values of the corresponding score, Wald and LR statistics for testing zero-

modification are given in Table 2. Thus the Wald and LR tests clearly indicate

that a simple GP regression without zero-modification is not sufficient for the whole

apple propagation data as well as for its part with 16–hour photoperiod . The score

test detects zero-modification only in the partial data and is not powerful enough

to do it in the entire data. Moreover we see that for the partial data the Wald test

gives much higher evidence for zero-modification than the LR and score tests which

is due to the fact that the Wald test is much more powerful compared to them, as

seen in the simulation.

For the partial data the ZMGP model and the the corresponding GP model are

compared with respect to their fit to the empirical mean ̂E(Y |H = i) and variance
̂V ar(Y |H = i) (i = 1, . . . 4) for the 4 different levels of Factor ”H”. Recall that the

data contains replications for each level of Factor ”H”, therefore the ̂E(Y |H = i)

and ̂V ar(Y |H = i) (i = 1, . . . 4) can be computed. Further the mean and variance

in the GP and ZMGP regression models are given by

E(Y |H = i) = exp
(

x
t
iβ

GP
)

,

V ar(Y |H = i) = (ϕGP)2 exp
(

x
t
iβ

GP
)

Table 2: The values of the score, Wald and LR statistics for testing zero-

modification in the apple propagation data. The corresponding p–values are

given in parenthesis.

Data Model Score Wald LR

statistic statistic statistic

Complete Model 1: 0.45 72.96 8.03

Factor ”P” (0.50) (< 10−16) (0.005)

Complete Model 2: 0.57 73.18 14.41

Factor ”P” ∗ Factor ”H” (0.45) (< 10−16) (10−4)

Partial Model 3 : 26.84 104.49 46.23

Factor ”H” (2 · 10−7) (< 10−16) (10−11)
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and

E(Y |H = i) = (1 − ω) exp
(

x
t
iβ

ZMGP
)

,

V ar(Y |H = i) = (1 − ω) exp
(

x
t
iβ

ZMGP
)

(

(ϕGP)
2
+ ω exp

(

x
t
iβ

ZMGP
)

)

,

respectively. Here (ϕGP,βGP) and (ϕZMGP, ω,βZMGP) denote the parameters of the

GP and ZMGP models, respectively. Hence confidence intervals (CI) for the mean

and variance of the both regressions can be constructed and plotted for all covariates

xi (i = 1, . . . , 4) on the basis of the Delta method (van der Vaart (1998)) and

asymptotic normality of the ML estimator δ̂ in ZMGP and GP regression models

(Theorem 1 and Remark (ii)).

From Figure 2 we see that CI in the ZMGP case are always shorter and predicted

values for mean and variance are more closer to their empirical values than in the GP

Figure 2: Confidence intervals (CI) for the mean (top panel) and variance

(bottom panel) of the partial apple propagation data for ZMGP and GP models
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case. The only exception is the prediction of the mean in the case of Level 3 of Factor

”H” where the GP regression better estimates the mean. This is caused by the fact

that frequency of observed zero responses is here lower compared to other levels of

Factor ”H” (40% (H = 3) versus 50% (H = 1), 53.3% (H = 2) and 47.5% (H = 4)).

The ML estimates and the corresponding asymptotic 95% confidence intervals for the

zero-modification parameter ω and overdispersion parameter ϕ given in Table 3 also

support the necessity of zero-modification in GP models for the apple propagation

data.

Table 3: ML estimators and the corresponding 95% confidence intervals (CI) for ω and ϕ
in the ZMGP regression for the apple propagation data.

Data Model ω̂ ϕ̂ CI for ω CI for ϕ

Complete Model 1 0.2225 1.2782 (0.1714, 0.2735) (1.1423, 1.4141)
Complete Model 2 0.2231 1.2427 (0.1720, 0.2742) (1.1118, 1.3736)
Partial Model 3 0.4638 1.4154 (0.3749, 0.5527) (1.1327, 1.6981)

Gupta et al. (2004) also analyzed these data within the framework of a zero-

inflated regression model associated with a RGP distribution. Their score tests

strongly indicate that a zero-inflated RGP regression is suitable for the apple prop-

agation data.

6 Conclusions and Discussions

This paper shows that the ML estimators in ZMGP (GP, ZMP) regression models

possess similar asymptotic properties as GLM regression models despite the fact

that the ZMGP (GP, ZMP) distribution does not belong to the exponential family.

General results of Fahrmeir and Kaufmann (1985) for noncanonical links in GLM

have been adopted for this purpose. The simulation study exhibits that the power of

the score test for testing zero-modification in ZMP regression can be up to 43% lower

than the power of the corresponding Wald test. In the case of ZMGP regression

this difference increases up to 87%. The effect of the poor performance of the

score test in our simulation studies can be seen in the analysis of the entire apple

propagation data. The score test does not detect any zero-modification despite the

high proportion of zeros observed for one level of Factor ”P”. Note that zero-inflated

count regression models are found to be appropriate for this data by Ridout et al.

(2001) and Gupta et al. (2004). Therefore we conclude that score test for testing

zero-modification in ZMP and ZMGP models can be highly misleading and the Wald

and LR tests should be used instead.
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The ZMGP regression model presented here can be generalized by allowing a

regression formulation for the overdispersion parameter ϕ and zero-modification pa-

rameter ω. In this case nonnested testing situations with regard to the choice of

covariates for the parameters µ, ϕ and ω will arise. A possible way to deal with

this is to use the Vuong’s test (Vuong (1989)). It should be noted that regression

models associated with the RGP distribution will belong to this general class of

regression models. Asymptotic theory for this general regression model as well as

its application are under current investigation by the authors.

It is often of interest to test whether the GP regression is more appropriate for

count regression data than the Poisson regression. This is the subject of our future

work. The null hypothesis is here ϕ = 1 versus the alternative ϕ > 1. Note that

in this testing problem the true parameter ϕ lies on the boundary of a parameter

space and therefore we have to deal with a delicate boundary problem (see e.g. Vu

and Zhou (1997)).

Appendix

The Hessian matrix Hn(δ) in the ZIGP regression may be partitioned as

Hn(δ) =









∂ln(δ)
∂ββt

∂ln(δ)
∂βϕ

∂ln(δ)
∂βω

∂ln(δ)
∂ϕβt

∂ln(δ)
∂ϕϕ

∂ln(δ)
∂ϕω

∂ln(δ)
∂ωβt

∂ln(δ)
∂ωϕ

∂ln(δ)
∂ωω









, (13)

where ∂ln(δ)
∂ββt , ∂ln(δ)

∂βϕ , ∂ln(δ)
∂βω are matrices of dimension (p + 1) × (p + 1), (p + 1) × 1,

(p + 1) × 1, respectively, and ∂ln(δ)
∂ϕϕ , ∂ln(δ)

∂ϕω , ∂ln(δ)
∂ωω are scalars. Entries hrs(δ)’s of

Hn(δ) can be straightforwardly computed. For instance entries of the matrix ∂ln(δ)
∂ββt

are given by

hrs(δ) :=
∂ln(δ)

∂βrβs
(14)

= −
n
∑

i=1

1l{yi=0}xirxis(1 − ω)µi(β)fi(β, ϕ)

× [1 − µi(β)/ϕ] gi(δ) + (1 − ω)fi(β, ϕ)µi(β)/ϕ

ϕ [gi(δ)]2

−
n
∑

i=1

1l{yi>0}xirxisµi(β)

(

1

ϕ
− yi(yi − 1)(ϕ − 1)

[µi(β) + (ϕ − 1)yi]
2

)

for r, s = 0, . . . , p.

Now set Hn(δ) = −Hn(δ). It is well known (see for example Mardia et al.

(1979), p.98) that under mild general regularity assumptions which are satisfied
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here that the Fisher information matrix Fn(δ) is equal to EδHn(δ). Thus entries of

Fn(δ) can be straightforwardly computed and are given by

fr,s(δ) = fs,r(δ) =

n
∑

i=1

xirxis(1 − ω)µi(β)fi(β, ϕ)

× [1 − µi(β)/ϕ] gi(δ) + (1 − ω)fi(β, ϕ)µi(β)/ϕ

ϕgi(δ)

+
n
∑

i=1

(1 − ω)xirxisµi(β)

(

µi(β) − 2ϕ + 2ϕ2

ϕ2(µi(β) − 2 + 2ϕ)
− 1

ϕ
fi(β, ϕ)

)

for r, s = 0, . . . , p ;

fp+1,r(δ) = fr,p+1(δ) =
n
∑

i=1

xir(1 − ω)fi(β, ϕ)µi(β)

× gi(δ) [µi(β)/ϕ − 1] − (1 − ω)fi(β, ϕ)µi(β)/ϕ

ϕ2gi(δ)

−
n
∑

i=1

(1 − ω)xirµi(β)

(

2(ϕ − 1)

ϕ2(µi(β) − 2 + 2ϕ)
− fi(β, ϕ)

ϕ2

)

for r = 0, . . . , p ;

fp+2,r(δ) = fr,p+2(δ) = −
n
∑

i=1

xirfi(β, ϕ)µi(β)

ϕgi(δ)

for r = 0, . . . , p ;

fp+1,p+1(δ) = −
n
∑

i=1

(1 − ω)fi(β, ϕ)µi(β)

×gi(δ) (µi(β) − 2ϕ) − (1 − ω)fi(β, ϕ)µi(β)

ϕ4gi(δ)

+
n
∑

i=1

2(1 − ω)µi(β)

(

1

ϕ2(µi(β) − 2 + 2ϕ)
− fi(β, ϕ)

ϕ3

)

;

fp+2,p+1(δ) = fp+1,p+2(δ) =

n
∑

i=1

fi(β, ϕ)µi(β)

ϕ2gi(δ)

and

fp+2,p+2(δ) =

n
∑

i=1

(

[1 − fi(β, ϕ)]2

gi(δ)
+

1 − fi(β, ϕ)

1 − ω

)

.

The proof of Theorem 1 follows the proof of Theorem 4 given in Fahrmeir and

Kaufmann (1985). In particular, we have to prove asymptotic normality of the

normalized score vectors F
t/2
n sn (Lemma 3) and show (Lemma 4) that

max
δ∈Nn(ε)

‖Vn(δ) − Ip+3‖ P−→ 0 for all ε > 0,
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where Vn(δ) := F
−1/2
n Hn(δ)F

−t/2
n for n = 1, 2, . . .. The complex expression for the

entries of the Fisher information matrix and Hessian matrix, respectively, requires

more effort for proving Lemma 4 than in the case of the GLM.

First we proceed with two preliminary lemmas. Recall that we drop the depen-

dency on δ0,β0, ϕ0 and use µi, Fn, E, etc.

Lemma 1. Let Ỹi ∼GP(µi, ϕ0) for i = 1, . . . , n be a sequence of random variables.

Then under assumptions (A2) and (A3),

max
i=1,...,n

E

(

1

(µi + (ϕ0 − 1)Ỹi)k

)

≤ C1

and

max
i=1,...,n

E(Ỹ k
i ) ≤ C2

for any finite integer k > 0, where C1 and C2 are positive constants depending only

on k and δ0 .

Proof. Let us show the first inequality of the Lemma. It is evident using (A3) that

E

(

1

(µi + (ϕ0 − 1)Ỹi)k

)

≤ 1

µk
i

. (15)

Now it follows

max
i=1,...,n

1

µk
i

= max
i=1,...,n

1

exp (kxt
iβ0)

≤ max
x∈Kx

1

exp (kxtβ0)
≤ C1(β0, k),

since Kx is a compact and exp
(

kxtβ0

)

is a continuous function of x. It should be

noted that C1(β0, k) is continuous with respect to β0 and well defined for all β0 ∈ B.

Now we show the second inequality of the lemma. First, we reparametrize the

GP distribution by introducing new parameters θi := µi/ϕ0 and λ0 := (ϕ0 − 1)/ϕ0,

i = 1, . . . , n. Consul and Shenton (1974) gave the following recurrence formula for

the noncentral moments of the GP (θi, λ0) distribution:

(1 − λ0)mi,k+1 = θimi,k + θi
∂mi,k

∂θi
+ λ0

∂mi,k

∂λ0
, k = 0, 1, 2, . . . ,

where mi,k := E(Ỹ k
i ).

Solving this recursion for fixed k shows that mi,k is a polynomial in θi, λ0 and

1/(1 − λ0). Thus, mi,k is a continuous function with respect to (θi, λ0) and conse-

quently, it is also continuous with respect to (µi, ϕ0). It follows now that

max
i=1,...,n

E(Ỹ k
i ) = max

i=1,...,n
mi,k (θi, λ0)

= max
i=1,...,n

mi,k (µi/ϕ0, (ϕ0 − 1)/ϕ0)

≤ max
x∈Kx

mk

(

ex
tβ0/ϕ0, (ϕ0 − 1)/ϕ0

)

≤ C2(δ0),
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where mk := E(Ỹ k) and Ỹ ∼ GP (exp(xtβ0), ϕ0). It is not difficult to see that

C2(δ0) is continuous with respect to δ0 and well defined for all δ0 ∈ Kδ.

Lemma 2. Let Qk(y) be a polynomial of a finite order k (k ∈ N) whose coefficients

are positive continuous functions of x, δ and δ0. Further, let Yi ∼ ZIGP (exp(xt
iβ0), ϕ0, ω0)

for i = 1, . . . , n. If (A1)–(A3) hold then

max
δ∈Nn(ε)

max
i=1,...,n

E
(

1l{Yi>0}Qk(Yi)
)

< C,

where C is a positive constant depending on k and δ0.

Proof. Note that under (A1) the neighborhood Nn(ε) is a compact for any n ∈ N

and shrinks to δ0 for any ε > 0 as n → ∞. Using Lemma 1 and the continuity of

the coefficients of Qk, it follows now that

max
δ∈Nn(ε)

max
i=1,...,n

E
(

1l{Yi>0}Qk(Yi)
)

≤ max
δ∈Nn(ε)

max
i=1,...,n

(1 − ω0)E
(

Qk(Ỹi)
)

≤ max
δ∈N1(ε)

max
x∈Kx

(1 − ω0)E
(

Qk(Ỹ )
)

≤ C,

where Ỹi ∼ GP (exp(xt
iβ0), ϕ0) and Ỹ ∼ GP (exp(xtβ0), ϕ0).

Lemma 3. Under assumptions (A1)–(A3), F
−1/2
n sn

D⇒ Np+3(0, Ip+3) as n → ∞,

where Np+3(0, Ip+3) is a (p + 3)-dimensional normal distribution with mean vector

0 and covariance matrix Ip+3.

Proof. According to the Cramer-Wald device, it is sufficient to show that a linear

combination a
t
F
−1/2
n sn converges in distribution to N(0,at

a) for any vector a ∈
Rp+3 (a 6= 0). Without loss of generality, we set ‖a‖ = 1.

Now observe that sn can be written as a sum of independent random vectors,

namely sn =
∑n

i=1 sni, where sni = (s0,i, . . . , sp,i, sp+1,i, sp+2,i)
t with sk,i := sk,i(δ0)

defined in (9), (10) and (11) for k = 0, . . . , p + 2 and i = 1, . . . , n, respectively. Fur-

ther, define independent random variables ξin by ξin := a
t
F
−1/2
n sni. Since E(ξin) = 0

and V ar (
∑n

i=1 ξin) = 1, it is enough to show that the Lyapunov condition is satis-

fied, i.e.

Ls :=

n
∑

i=1

E|ξin|s n→∞−→ 0, for some s > 2,

say s = 3 (see for example Hoffmann-Jørgensen (1994), p. 393). Noticing that

‖F−1/2
n ‖2 = 1/λmin (Fn), it follows from (A1) that

L3 ≤
n
∑

i=1

E

(

∥

∥a
t
∥

∥

3
∥

∥

∥F
−1/2
n

∥

∥

∥

3
‖sni‖3

)

≤ C

n3/2

n
∑

i=1

E ‖sni‖3 ≤ C√
n

max
i=1,...,n

E ‖sni‖3 .
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Using an extension of the cr-inequality given by

E

∣

∣

∣

∣

∣

m
∑

i=1

ζi

∣

∣

∣

∣

∣

k

≤ mk−1
m
∑

i=1

E|ζi|k ( k > 1, k ∈ R), (16)

to m arbitrary random variables ζ1, . . . , ζm ( see, for example, Petrov (1995), p.58)

yields that

E ‖sni‖3 ≤ C
(

E |s0,i|3 + . . . + E |sp,i|3 + E |sp+1,i|3 + E |sp+2,i|3
)

.

Thus, it remains to establish that maxi=1,...,n E |sr,i|3 is uniformly bounded in n

for r = 0, . . . , p + 2. This will be shown for case r = 0, . . . , p. The remaining cases

can be treated similarly. Without loss of generality, set r = p. Using now (16) with

m = 2, we have

max
i=1,...,n

E |sp,i|3 ≤ 22 max
i=1,...,n

E

∣

∣

∣

∣

xip1l{yi=0}
(1 − ω0)fiµi

ϕ0gi

∣

∣

∣

∣

3

+ 22 max
i=1,...,n

E

(

∣

∣

∣

∣

xip1l{yi>0}

(

1 +
µi(yi − 1)

µi + (ϕ0 − 1)yi
− µi

ϕ0

)∣

∣

∣

∣

3
)

=: 4Ap(δ0) + 4Bp(δ0).

The last step in the proof is now to show that

Ap(δ0) < C1 and Bp(δ0) < C3, (17)

where C1 and C3 are some constants depending on δ0.

For proving (17) we note that

Ap(δ0) ≤ max
x∈Kx

‖x‖3

∣

∣

∣

∣

(1 − ω0)fiµi

ϕ0gi

∣

∣

∣

∣

3

gi ≤ C1.

Let us now consider Bp(δ0). Simple arguments with Inequality (16), Cauchy-

Schwarz inequality and Lemma 1, respectively, give

Bp(δ0) ≤ max
i=1,...,n

E



(1 − ω0) |xir|3 ·
∣

∣

∣

∣

∣

1 +
µi(Ỹi − 1)

µi + (ϕ0 − 1)Ỹi

− µi

ϕ0

∣

∣

∣

∣

∣

3




≤ C max
x∈Kx

(1 − ω0)‖x‖3



13 + E

∣

∣

∣

∣

∣

µi(Ỹ − 1)

µi + (ϕ0 − 1)Ỹ

∣

∣

∣

∣

∣

3

+

(

µi

ϕ0

)3




≤ C1(δ0) + C2(δ0) max
x∈Kx

E
∣

∣

∣
Ỹ − 1

∣

∣

∣

3

≤ C1(δ0) + C2(δ0) max
x∈Kx

√

E
(

Ỹ − 1
)6

≤ C3(δ0),

where Ỹi ∼ GP (µi, ϕ0) for i = 1, . . . , n and Ỹ ∼ GP
(

exp(xtβ0), ϕ0

)

.
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Lemma 4. Under the assumptions (A1)–(A3),

max
δ∈Nn(ε)

‖Vn(δ) − Ip+3‖ P−→ 0 for all ε > 0. (18)

Proof. It holds a.s. that

‖Vn(δ) − Ip+3‖ =
∥

∥

∥
F
−1/2
n [Hn(δ) − Fn]F−t/2

n

∥

∥

∥

≤ 1

λmin(Fn)
‖Hn(δ) − Fn‖

≤ C

n
‖Hn(δ) − Fn‖

≤ C

∥

∥

∥

∥

1

n
(Hn(δ) − EHn(δ))

∥

∥

∥

∥

+ C

∥

∥

∥

∥

1

n
(EHn(δ) −Fn)

∥

∥

∥

∥

.

Thus, conditions

max
δ∈Nn(ε)

∥

∥

∥

∥

1

n
(Hn(δ) − EHn(δ))

∥

∥

∥

∥

P−→ 0 (19)

and

max
δ∈Nn(ε)

∥

∥

∥

∥

1

n
(EHn(δ) − Fn)

∥

∥

∥

∥

−→ 0 (20)

imply (18).

In order to show (19) it is enough to establish that the maximum over δ ∈ Nn(ε)

of the absolute value of the (r, s)-element of the random matrix [Hn(δ)−EHn(δ)]/n

converges to zero in probability, i.e.

max
δ∈Nn(ε)

|hrs(δ) − Ehrs(δ)|
n

P−→ 0.

Note that the Hessian matrix given in (13) has 6 different types of entries. We shall

illustrate the above convergence for hrs(δ)’s defined in (14). The remaining cases

can be treated similarly. Without loss of generality, we show

max
δ∈Nn(ε)

∣

∣

∣

∣

1

n
(hp,p(δ) − Ehp,p(δ))

∣

∣

∣

∣

P−→ 0. (21)

Let Zi := 1l{Yi>0}Yi(Yi − 1), Ui(β, ϕ) := µi(β)+ (ϕ− 1)Yi, qi,p(δ) := x2
ipµi(β)(ϕ− 1)

and

vi,p(δ) := x2
ip(1 − ω)fi(β, ϕ)µi(β)

[1 − µi(β)/ϕ] gi(δ) + (1 − ω)fi(β, ϕ)µi(β)/ϕ

ϕ [gi(δ)]2
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for i = 1, . . . , n. It easy to see that (21) will now follow from the next three condi-

tions:

max
δ∈Nn(ε)

∣

∣

∣

∣

∣

1

n

n
∑

i=1

vi,p(δ)
(

1l{Yi=0} − E(1l{Yi=0})
)

∣

∣

∣

∣

∣

P−→ 0,

max
δ∈Nn(ε)

∣

∣

∣

∣

∣

1

n

n
∑

i=1

qi,p(δ)

ϕ

(

1l{Yi>0} − E(1l{Yi>0})
)

∣

∣

∣

∣

∣

P−→ 0

max
δ∈Nn(ε)

∣

∣

∣

∣

∣

1

n

n
∑

i=1

qi,p(δ)

[

Zi

[Ui(β, ϕ)]2
− E

(

Zi

[Ui(β, ϕ)]2

)]

∣

∣

∣

∣

∣

P−→ 0. (22)

Since they have a similar structure we only establish the validity of the last relation.

It is worth to recall that the dependency on δ0, β0 and ϕ0 is always dropped.

Observe that the right hand side of (22) may be bounded by a sum of

An = max
δ∈Nn(ε)

∣

∣

∣

∣

∣

1

n

n
∑

i=1

qi,p(δ)

(

Zi

[Ui(β, ϕ)]2
− Zi

U2
i

)

∣

∣

∣

∣

∣

,

Bn = max
δ∈Nn(ε)

∣

∣

∣

∣

∣

1

n

n
∑

i=1

qi,p(δ)

[

E
Zi

[Ui(β, ϕ)]2
− E

(

Zi

U2
i

)]

∣

∣

∣

∣

∣

,

Dn = max
δ∈Nn(ε)

∣

∣

∣

∣

∣

1

n

n
∑

i=1

qi,p(δ)

[

Zi

U2
i

− E

(

Zi

U2
i

)]

∣

∣

∣

∣

∣

.

For An we have the following bounds a.s.:

An ≤ max
δ∈Nn(ε)

1

n

n
∑

i=1

|qi,p(δ)Zi|
µ2

i (β)µ2
i

· |Ui(β, ϕ) + Ui| |µi(β) − µi + (ϕ − ϕ0)Yi|

≤ max
δ∈Nn(ε)

1

n

n
∑

i=1

|qi,p(δ)Zi|
µ2

i (β)µ2
i

· |(Yi + 1)(µi(β) + µi + ϕ + ϕ0 − 2)|

× |µi(β) − µi + (ϕ − ϕ0)Yi|

≤ C1

n

(

n
∑

i=1

Zi(Yi + 1)

)

max
δ∈Nn(ε)

max
x∈Kx

∣

∣exp(xtβ) − exp(xtβ0)
∣

∣

+
C1

n

(

n
∑

i=1

ZiYi(Yi + 1)

)

max
δ∈Nn(ε)

|ϕ − ϕ0|

=: ABn + ACn. (23)

It is not difficult to see that
1

n

n
∑

i=1

Zi(Yi + 1)

converges in probability as n → ∞ to

lim
n→∞

1

n

n
∑

i=1

E (Zi(Yi + 1))

22



which is finite by Lemma 2.

These facts and the continuity in β of the function maxx∈Kx

∣

∣exp(xtβ) − exp(xtβ0)
∣

∣

with value zero at β = β0 yield that ABn converges to 0 in probability as n → ∞.

Convergence of ACn to 0 in probability may be proven in the same way.

Using similar arguments as above one can show that Bn converges to 0. To prove

Dn → 0 in probability, observe that the function maxi=1,...,n |qi,p(δ) − qi,p(δ0)| can

be bounded from above by the following continuous function of δ

C max
x∈Kx

∣

∣exp(xtβ)(ϕ − 1) − exp(xtβ0)(ϕ0 − 1)
∣

∣

with zero at δ = δ0. The desired result now follows from the law of large numbers

and standard arguments.

It remains to show (20). We will show

max
δ∈Nn(ε)

∣

∣

∣

∣

[EHn(δ) − Fn]rs

n

∣

∣

∣

∣

→ 0 (24)

and again restrict our proof to the case r = s = p. It easy to see that condition (24)

will follow from the next three conditions :

max
δ∈Nn(ε)

∣

∣

∣

∣

∣

1

n

n
∑

i=1

(vi,p(δ) − vi,p) E(1l{Yi=0})

∣

∣

∣

∣

∣

→ 0, (25)

max
δ∈Nn(ε)

∣

∣

∣

∣

∣

1

n

n
∑

i=1

(

qi,p(δ)

ϕ
− qi,p

ϕ0

)

E(1l{Yi>0})

∣

∣

∣

∣

∣

→ 0, (26)

max
δ∈Nn(ε)

∣

∣

∣

∣

∣

1

n

n
∑

i=1

(

qi,p(δ)E

(

Zi

[Ui(β, ϕ)]2

)

− qi,pE

(

Zi

U2
i

))

∣

∣

∣

∣

∣

→ 0. (27)

Now we see that the same technique used for deriving (22) can be employed to

establish the convergence results (25)–(27).

Acknowledgement

Both authors gratefully acknowledge the support of the Deutsche Forschungsge-

meinschaft (Cz 86/1-1). They also thank Marie Hušková and Axel Munk for helpful
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