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Abstract

Binary outcomes that depend on an ordinal predictor in a non-

monotonic way are common in medical data analysis. Such patterns

can be addressed in terms of cutpoints: for example, one looks for two

cutpoints that define an interval in the range of the ordinal predictor

for which the probability of a positive outcome is particularly high (or

low). A chi-square test may then be performed to compare the pro-

portions of positive outcomes in and outside this interval. However,

if the two cutpoints are chosen to maximize the chi-square statistic,

referring the obtained chi-square statistic to the standard chi-square
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distribution is an inappropriate approach. It is then necessary to

correct the p-value for multiple comparisons by considering the dis-

tribution of the maximally selected chi-square statistic instead of the

nominal chi-square distribution. Here, we derive the exact distribu-

tion of the chi-square statistic obtained by the optimal two cutpoints.

We suggest a combinatorial computation method and illustrate our

approach by a simulation study and an application to varicella data.

Keywords: Chi-square test, classification, cutpoint, non-monotonic,

changepoint, threshold.

1 Introduction

Suppose we have a binary outcome Y (Y = 0, 1) and an at least ordinally

scaled predictor variable X that is suspected to be associated with Y . In

medical applications, there is often interest in testing independence of X

and Y against an ordered alternative e.g. in dosis-response problems. Some

widely used methods for testing for trends in 2×K ordered tables are, e.g.,

the Cochran-Armitage test, the Cochran-Mantel-Haenszel test, rank tests

such as the Jonckheere-Terpstra test and the Wilcoxon rank sum test, or

approaches based on isotonic regression (Robertson et al., 1988; Salanti and

Ulm, 2003). In machine learning, such associations are often examined based

on binary splits of the form {X ≤ a}. Patterns of the form a < X ≤ b are

also conceivable, for example if the probability P (Y = 1|X = x) is higher for

x ∈]a, b] than for x ∈]−∞, a]∪]b, +∞[.

Such dependence structures are related to ’umbrella orderings’ if the con-

ditional probability P (Y = 1|x) is larger for intermediate x values than for

small and large x values and to ’U-shapes’ if vice-versa. Umbrella orderings

or U-shapes may be observed in medical research when X is a predictor such

as the age (in a broad sense) and Y denotes e.g. the occurrence of compli-

cations. For instance, many diseases are known to be more severe for both

infants and elder patients than for young adults. Another interesting exam-

ple is varicella. This disease is not equally serious for all age categories: it

rather shows a non-monotonic pattern. Similarly, perinatal morbidity and
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mortality are higher for both premature and post-term babies than for ba-

bies born at term. Another typical example of umbrella ordering in medical

research is the effect of different doses of chemicals on the occurrence of tu-

mors: some chemicals show evidence of an increasing monotonic trend with

a downturn for high doses due to the inhibition of the tumor development

by the toxic effect (Hans and Dunson, 2005).

There have been various proposals to assess such downturns or upturns.

This problem is also commonly denoted as change-point detection. A recent

reference including a brief review of various methods for monotonic responses

is Hans and Dunson (2005). They suggest a bayesian inference method that

addresses explicitly the problem of downturns with applications to a carcino-

genesis study. In the framework of maximally selected statistics, Lausen et al.

(2002) generalize the asymptotic results of Lausen and Schumacher (1992)

on maximally selected rank statistics to ordinal predictors and examine, e.g.,

umbrella alternatives.

Both approaches focus on the downturn, but do not give any information

on the cutpoints defining the high-risk and low-risk intervals. Moreover,

they might not be applicable to small sample sizes. In the last few years,

cutpoint-based strategies have been sometimes criticized for ignoring a large

part of the information contained in the data. Moreover, setting an artificial

cutpoint when there is no cutpoint but rather a smooth transition is critical.

While dichotomizing continuous predictors may be controversial depending

on the considered problem (Royston et al., 2006), cutpoints might be useful in

the case of ordinal predictors with few distinct values, or to support medical

decisions and diagnostics. Moreover, cutpoint selection is a crucial issue

in classification tree algorithms such as CART by Breiman et al. (1984)

and, more generally, in all the machine learning methods based on recursive

partitioning.

In this paper, we address the assessment of cutpoints defining low or high-

risk intervals, based on the principle of maximally selected statistics. Our

approach considers a special case of umbrella orderings that is known as the

’epidemic wave model’ (Siegmund, 1986). From now on, we consider a vari-

able X with K > 2 ordered categories which are denoted as 1, . . . , K. Sup-
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pose one selects the pair of cutpoints (k1, k2) that maximizes the chi-square

statistic obtained from Table 1. This resulting p-value must be interpreted

with caution. Claiming that the cutpoints k1 and k2 are relevant because the

p-value is low is incorrect. Indeed, the distribution of the maximally selected

chi-square statistic is different from the nominal chi-square distribution with

one degree of freedom on which the chi-square test is based. Maximally

selected statistics and minimally selected p-values have been the subject of

numerous articles in the case of one cutpoint. Miller and Siegmund (1982)

show that the maximally selected chi-square statistic converges to a normal-

ized Brownian bridge under the null-hypothesis of no association between X

and Y . The distribution of the maximally selected chi-square statistic in the

small sample case is examined by Halpern (1982) in a simulation study, while

Koziol (1991) derives the exact distribution of maximally selected chi-square

statistics using a combinatorial approach. Betensky (2001) discusses opti-

mally selected chi-square statistics in the framework of equivalence testing,

whereas the distribution of maximally selected chi-square statistics in k × 2

contingency tables is derived in Betensky and Rabinowitz (1999). Maximally

selected rank statistics are investigated in Lausen and Schumacher (1992,

1996) and Hothorn and Lausen (2003). Holländer et al. (2004) address con-

fidence intervals for the effect of prognostic factors after optimal cutpoint

selection. The distributions of other maximally selected statistics or mini-

mally selected p-values such as the p-value of Fisher’s exact test (Halpern,

1999) or McNemar’s statistic (Rabinowitz and Betensky, 2000) have also been

studied recently. The exact distribution of the maximally selected chi-square

statistic in the context of a binary Y and an at least ordinally scaled X with

ties is derived in Boulesteix (2006b). An exact approach to handle the case of

optimally selected splits of a nominal variable is given in Boulesteix (2006a).

The underlying idea of these papers is that the p-value obtained from the op-

timal cutpoint or split has to be adjusted to account for the multiple testing

effect. Applications of the theory of maximally selected statistics to recursive

partitioning algorithms are discussed by, e.g., Shih (2004) and Lausen et al.

(2004). All these articles address the case of one optimally selected cutpoint.

Matters become much more complicated when several cutpoints are cho-
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sen optimally and simultaneously, e.g. for recombination detection in DNA

sequences. Assessing the distribution of maximally selected statistics in this

situation is a very difficult and often impossible task. Hence, existing ap-

proaches are often based on simulations (Halpern, 2000). Another related

method is Kuiper’s goodness-of-fit test (Kuiper, 1960). In the two-sample

case, it tests the equality of two continuous distribution functions (corre-

sponding to Y = 0 and Y = 1, respectively) based on empirical distributions.

In the two-cutpoints framework described in the present article, Kuiper’s test

is expected to have higher power than the more usual Kolmogorov-Smirnov

test. However, it is not as easy to interpret as maximally selected statis-

tics. Practitioners expect simple conclusions such as “the risk is significantly

higher if a < X ≤ b than if X ≤ a or X > b” as supported by the (adjusted)

p-value of the chi-square test. Another inconvenience of Kuiper’s test is that

it does not account for ties. In the case of ordinal variables or if several sub-

jects are assigned the same value of an underlying continuous variable due

to measurement imprecision, ties can not be ignored. In the present article,

we suggest an approach that overcomes these two problems.

We propose a new combinatorial approach to derive the exact distribution

of the maximally selected chi-square statistic in the two-cutpoints framework.

Our novel procedure is distribution-free and can be applied in the case of a

binary Y and an at least ordinally scaled X. It is especially appropriate to

analyze samples with moderate or small sizes with predictors taking only a

few values (e.g. X ∈ {1, 2, 3, 4, 5, 6}). Moreover, it is easily generalizable to

other association statistics for 2× 2 contingency tables.

The rest of the paper is organized as follows. Our approach to derive

the exact distribution of the maximally selected chi-square statistic in the

two-cutpoints framework is presented in Section 2, including a discussion of

computational aspects. In Section 3, the new approach is compared via sim-

ulations to the comparable method for maximally selected chi-square statis-

tics with one cutpoint by Boulesteix (2006b). Section 4 gives an illustration

through an application to varicella data.
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2 Derivation of the exact distribution

2.1 Notations

Let (xi, yi)i=1,...,N denote N independent observations of X and Y . N0 and

N1 denote the numbers of observations with yi = 0 and yi = 1, respectively,

and mk (k = 1, . . . , K) the number of observations with xi = k, whereas mck

(c = 0, 1, k = 1, . . . , K) is the number of observations with yi = c and xi = k.

The association between X and Y may be visualized by plotting the graph
m1k

mk
, k = 1, . . . , K. Extreme examples are depicted in Figure 5 for N0 = N1 =

30 and m1 = m2 = m3 = m4 = m5 = m6 = 10. An approximately horizontal

graph of type a) indicates poor association between X and Y . Types b) and

c) correspond to strong monotonic associations, whereas d) and e) display

non-monotonic association patterns with two underlying cutpoints.

We consider splits of X involving two cutpoints k1 and k2 of the form

{k1 < X ≤ k2} vs {X ≤ k1 ∪ X > k2}. The set K of the possible pairs of

cutpoints is denoted as

K = {(k1, k2) | 1 ≤ k1 ≤ K − 1 ; k1 + 1 ≤ k2 ≤ K} .

Note that the splits involving only one cutpoint of the type {X ≤ k1} vs

{X > k1} are a special case corresponding to k2 = K. The usual chi-square

statistic for 2 × 2 contingency tables computed from Table 1 is denoted as

χ2
k1,k2

. It can be written as

χ2
k1,k2

=
N(n1n4 − n2n3)

2

(n1 + n2)(n3 + n4)(n1 + n3)(n2 + n4)
. (2.1)

In this paper, we consider the chi-square statistic obtained by selecting the

pair of cutpoints (k1, k2) ∈ K maximizing χ2
k1,k2

:

χ2
max = max

(k1,k2)∈K
χ2

k1,k2
. (2.2)

The rest of Section 2 deals with the computation of the exact distribution

of χ2
max under the null-hypothesis of no association between X and Y , given
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N0, N1, m1, . . . ,mK . Note that N0, N1, and m1, . . . ,mK can be seen as fixed

distribution parameters. For simplification, we use the notation F (d) =

PH0(χ
2
max ≤ d) throughout the paper.

2.2 The naive exact approach

Let us consider the
(

N
N1

)
ways to draw N1 out of N observations, which are

denoted as “configurations” in the rest of this section. Let C(d) denote the

set of the configurations yielding χ2
max > d and c(d) its cardinal number. The

probability F (d) = PH0(χ
2
max ≤ d) is obtained as

F (d) = PH0(χ
2
max ≤ d) = 1− c(d)(

N
N1

) ,

since all the configurations are equally likely under the null-hypothesis. The

naive exact approach to compute c(d) consists of enumerating all the
(

N
N1

)
configurations and computing χ2

max for each of them. Since χ2
max depends

only on m11, . . . ,m1K and not on the arrangement of the observations with

Y = 1 within each category, the computational complexity may be reduced

by enumerating the possible vectors (m11, . . . ,m1K) instead of all
(

N
N1

)
con-

figurations. By possible vectors, we mean vectors of positive integers sum-

ming to N1, such that m1k ≤ mk, for k = 1, . . . , K. For a fixed vector

(m11, . . . ,m1K), the number of configurations is given as
∏K

k=1

(
mk

m1k

)
. Enu-

merating all the possible vectors (m11, . . . ,m1K) and computing the value of

χ2
max and the number of configurations for each of them is computationally

prohibitive, even for moderate N and K. Storage requirements turn out to

exceed the capacity of modern computers, since a huge integer has to be

stored for each of the possible vectors (m11, . . . ,m1K), whose number grows

with NK .

In the next section, a faster algorithm for computing c(d) is presented.
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2.3 A novel fast algorithm

The novel algorithm is based on two ideas: (i) the reformulation of the in-

equation χ2 > d in terms of boundary functions (see Section 2.3.1), (ii) the

conversion of the two-cutpoints problem into several one-cutpoint problems

(see Section 2.3.2).

2.3.1 Boundary functions

Suppose we split the available sample of size N into two complementary sets

A and A of size NA and N −NA, respectively. Let m1A denote the number

of observations from A with Y = 1. The chi-square statistic yielded by this

split is given as

χ2 =
N(m1A(N0 −NA + m1A)− (NA −m1A)(N1 −m1A))2

N0N1NA(N −NA)
.

Via expensive but simple computations (Boulesteix, 2006b), it can be shown

that

χ2 > d ⇔


m1A > f+(NA)

or

m1A < f−(NA),

(2.3)

where f+ and f− are functions that depend on N0, N1 and d:

fχ+(t) = N1t
N

+ N0N1

√
d

N

√
i
N

(1− i
N

)( 1
N0

+ 1
N1

),

fχ−(t) = N1t
N

− N0N1

√
d

N

√
i
N

(1− i
N

)( 1
N0

+ 1
N1

).

Note that the generalization of our method to other maximally selected cri-

teria (or minimally selected p-values) is done by replacing fχ+ and fχ− by

appropriate functions f+ and f− derived from the definition of the consid-

ered association statistic. For instance, f+ and f− are derived by Strobl

et al. (2006) for the Gini gain criterion (Breiman et al., 1984) used for split

selection in many recursive partitioning algorithms.

The next section presents an efficient algorithm to compute c(d) based

on Eq. (2.3).
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2.3.2 Converting the two-cutpoints problem into a one-cutpoint

problem

The principle underlying our algorithm consists of decomposing C(d) into

disjoint sets by recoding X into pseudo-variables X(1), . . . , X(K−1), as illus-

trated below for the case K = 6. Recoding is performed such that the

smallest and the largest values of X are coded using consecutive numbers.

For k = 1, . . . , K − 1, let X(k) denote the variable taking the value

X(k) = σ(k)(X),

where σ(k) is the permutation defined by

σ(k)(i) = i if i ≤ k,

= K − i + k + 1 if i > k.

Note that we have X = X(K−1). As an example, for K = 6, the six categories

1, 2, 3, 4, 5, 6 are recoded successively as 1, 6, 5, 4, 3, 2 (X(1)), 1, 2, 6, 5, 4, 3

(X(2)), 1, 2, 3, 6, 5, 4 (X(3)) and 1, 2, 3, 4, 6, 5 (X(4)). The double inequation

a < X ≤ b is then equivalent to X(a) > a+(K−b), for all a = 1, . . . , K−1 and

b = a + 1, . . . , K. Using the pseudo-variables X(1), . . . , X(K−1), we have thus

transformed our two-cutpoints problem into K − 1 one-cutpoint problems.

C(d) can be decomposed as K − 1 disjoint subsets

C(d) = ∪K−1
k=1 Ck(d), (2.4)

where Ck(d) (k = 1, . . . , K) denotes the subset of configurations fulfilling the

following conditions.

A1. There exists a split of the variable X(k) yielding χ2 > d.

For example, if K = 6 and k = 2, at least one of the splits

{1}{2, 6, 5, 4, 3}, {1, 2}{6, 5, 4, 3}, {1, 2, 6}{5, 4, 3}, {1, 2, 6, 5}{4, 3},
{1, 2, 6, 5, 4}{3} has to yield χ2 > d.

A2. For all k′ < k, the splits of the variable X(k′) yield χ2 ≤ d (hence,

C1(d), . . . , CK(d) are disjoint).
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For example, if K = 6 and k = 2, the splits {1}{6, 5, 4, 3, 2},
{1, 6}{5, 4, 3, 2}, {1, 6, 5}{4, 3, 2}, {1, 6, 5, 4}{3, 2} and {1, 6, 5, 4, 3}{2}
(corresponding to splits of X(1)) have to yield χ2 ≤ d.

Since C1(d), . . . , CK(d) are disjoint, we have

c(d) =
K−1∑
k=1

ck(d),

where ck(d) is defined as ck(d) = |Ck(d)|. For k = 1, A2 is not relevant

and ck(d) is the number of configurations satisfying A1. It can be efficiently

computed based on the method for maximally selected chi-square statistics

for ordinal variables proposed by Boulesteix (2006b), since X(1) is an ordinal

variable. We refer to Boulesteix (2006b) for a description of the algorithm.

The rest of this section presents a new algorithm to compute ck(d) for

k > 1 for d ≥ 0. For a fixed k = 1, . . . , K− 1, Ck(d) may also be decomposed

into K − k disjoints subsets Ckk(d), . . . , Ck,K−1(d):

Ck(d) = ∪K−1
i=k Cki(d), (2.5)

where Cki(d) denotes the subset of configurations out of Ck(d) for which the

two following conditions are fulfilled.

B1. The split X(k) ≤ i yields χ2 > d.

For example, if K = 6, k = 2 and i = 4, the split {1, 2, 6, 5}{4, 3} has

to yield χ2 > d.

B2. For all i′ < i, the split X(k) ≤ i′ yields χ2 ≤ d.

For example, if K = 6, k = 2 and i = 4, the splits {1}{2, 6, 5, 4, 3},
{1, 2}{6, 5, 4, 3} and {1, 2, 6}{5, 4, 3} have to yield χ2 ≤ d).

In Eq. (2.5), the index covers k, . . . , K−1. It can be explained as follows.

If X(k) ≤ i (i < k) yields χ2 > d, then X(i) ≤ i also yields χ2 > d and the

considered configurations are not in Ck(d) but in Ci(d). Note that this is a

consequence of the definition of the permuted variables X(1), . . . , X(K−1).
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For fixed i and k > 1, cki(d) is computed as follows.

cki(d) =
∑

i1∈Iki(d)

(
mσ(k)(1)

i1

)
·

 ∑
i2∈Iki(d,i1)

(
mσ(k)(2)

i2

)
. . .

 ∑
iK∈Iki(d,i1,...,iK−1)

(
mσ(k)(K)

iK

) . . .

 ,

(2.6)

where the integers i1, . . . , iK correspond to the numbers of observations with

Y = 1 in the categories σ(k)(1), . . . , σ(k)(K), respectively, and Iki(d, i1, . . . , ij)

defines the allowed interval for ij+1, given the numbers i1, . . . , ij of observa-

tions with Y = 1 within the categories X = σ(k)(1), . . . , σ(k)(j).

The intervals Iki(d), . . . , Iki(d, i1, . . . , iK−1) are defined such that

C1. the split X(k) ≤ i yields χ2 > d, such that B1 is fulfilled,

C2. the splits X(k′) ≤ i, for k′ < k and i = 1, . . . , K − 1 yield χ2 ≤ d, such

that A2 is fulfilled,

C3. the splits X(k) ≤ i′, for i′ < i, yield χ2 ≤ d, such that B2 is fulfilled.

The intervals Iki(d, i1, . . . , ij) are derived using the functions f+ and f−

defined in Section 2.3.1. Let us explain the principle based on the example

of I2,4(d, i1, i2, i3). For K = 6 and k = 2, we have σ(2)(1) = 1, σ(2)(2) = 2,

σ(2)(3) = 6, σ(2)(4) = 5, σ(2)(5) = 4, σ(2)(6) = 3. I2,4(d, i1, i2, i3) is the

allowed interval for the number of observations with Y = 1 in category

X = σ(2)(4) = 5, given the numbers i1, i2, i3 of observations with Y = 1

in categories 1, 2, 6. For C1 to hold, the split X(2) ≤ 4 must yield χ2 > d.

Out of the m1 + m2 + m6 + m5 observations with X(2) ≤ 4, i1 + i2 + i3 + i4

observations have Y = 1. For C1 to hold, we must then have

i4 > f+(m1 + m2 + m6 + m5)− (i1 + i2 + i3)

or

i4 < f−(m1 + m2 + m6 + m5)− (i1 + i2 + i3).

These inequations give the values of i4 for which C1 holds. Similarly, for

given i1, i2, i3, C2 and C3 can be simply reformulated in terms of i4, thus
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yielding the interval I2,4(d, i1, i2, i3). The other intervals Iki(d, i1, . . . , ij) are

derived based on the same principle.

Computation time can be spared by computing and storing
(

mk

j

)
, for

k = 1, . . . , K and j = 0, . . . ,mk before applying Eq. (2.6).

After computation of cki(d), for k = 1, . . . , K − 1 and i = k, . . . , K − 1,

c(d) is obtained as their sum: since Ckk(d), . . . , Ck,K−1(d) are disjoint, we have

ck(d) =
K−1∑
i=k

cki(d),

and thus

c(d) =
K−1∑
k=1

K−1∑
i=k

cki(d).

Finally, F (d) is obtained as

F (d) = PH0(χ
2
max ≤ d) = 1−

∑K−1
k=1

∑K−1
i=k cki(d)(
N
N1

) .

Note that our method computes the distribution function F (d) at a single

value d. If the full distribution is needed, the algorithm should be run several

times. In the case of a very small N and very small K, it might be faster to use

the naive method, which directly yields the full distribution of the maximally

selected chi-square statistic. However, as discussed in the next section, the

naive method becomes unfeasible for increasing N and K. In the next section,

we discuss the advantages of our novel algorithm over the naive exact method

in terms of computational complexity and memory requirements.

2.4 Computation time

In this section, the computation time of our novel algorithm is compared

to the naive approach for various parameter combinations. Table 5 gives

the elapsed time (rounded to the nearest 1/100 second) as output by the R

function system.time for both approaches.

• In contrast to the naive approach, the computation time for the new
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algorithm increases with d. This can be explained as follows. For small

values of d, the set C1(d) is large. C2(d), . . . , CK−1(d) are then small,

because the sets Ck(d) are disjoint. Since the computation of c1(d)

based on the method described in Boulesteix (2006b) is much faster

than that of ck(d) (k > 1), the overall computation time is larger for

large d values.

• With both approaches, the computation time is larger if the X cate-

gories have the same numbers of observations than in the unbalanced

case.

• With both approach, the computation time is slightly larger if N0 = N1

than if N0 6= N1.

• In all situations, the novel algorithm is much more efficient than the

naive approach. The different between novel algorithm and naive ap-

proach increases with N and K.

For larger values of N and K, the naive approach rapidly becomes prohibitive.

In contrast, the new exact algorithm can be easily applied to sample sizes

larger than 100 and to X variables with up to 8 categories. It can roughly

be explained as follows.

• The novel algorithm takes into account the ordinality of X by using

the fast method for ordinal splits given in Boulesteix (2006b) in the

computation of c1(d).

• Only the configurations yielding P (χ2
max > d) are enumerated and

counted.

• Through the use of the boundary functions f+ and f−, χ2
max is not

computed for each vector (m11, . . . ,m1K).
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3 Simulation study

3.1 Correctness of the method and implementation

We implemented our method in the language R. Our implementation is in-

cluded in the freely available R package exactmaxsel as a function Ford2.

Before starting the power study addressed in the next section, we outline how

the correctness of our novel combinatorial method can be assessed based on

simulations. For fixed marginal conditions N0, N1, m1, . . . ,mk, a large num-

ber of data sets, say, 10000 are generated under the null-hypothesis and the

maximal chi-square statistic is derived for each of the 10000 data sets. This

yields an estimate of the distribution function of the maximally selected chi-

square statistic given N0, N1, m1, . . . ,mk. For the same values of N0, N1 and

m1, . . . ,mK , the theoretical distribution function is computed via our novel

combinatorial approach. For example, after installation of the exactmaxsel

package, the value of the distribution function at d = 1.5, for N0 = N1 = 30

and m1 = · · · = m5 = 12 is obtained by

> library(exactmaxsel)

> Ford2(1.5,n0=30,n1=30,A=c(12,12,12,12,12),statistic="chi2")

Extensive simulations involving different values of N0, N1, m1, . . . ,mK , were

conducted. The obtained empirical distribution was always perfectly consis-

tent with the theoretical distribution computed using our novel combinatorial

procedure (due to space constraints the results are not shown but are easily

replicable using the function call stated above).

3.2 Power study

A simulation study is conducted to evaluate the power of our novel method

to detect non-monotonic association with a two-cutpoints pattern. The per-

formance of our new method is compared to that of the method designed

for one cutpoint by (Boulesteix, 2006b). For all simulations, we set the total

sample size to N = 20 and generate the ordinal predictor X from a multi-

nomial distribution with K = 6 categories and equal probabilities for each
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category. Similar results can be obtained with other settings (different values

for K and N). The conditional distribution of Y given X is varied across

the simulation experiments. We examine two settings. In the first setting,

predictors with one cutpoint (thus inducing a monotonic ordering) are simu-

lated. In the second setting, predictors with two cutpoints (thus inducing a

non-monotonic ordering ordering) are simulated. The simulation designs are

described in detail below.

1. One-cutpoint design. A single cutpoint is fixed on the range of X.

On the left of this cutpoint, the response Y is sampled from a Bernoulli

distribution with low probability of success P (Y = 1) = pl. On the

right of the cutpoint, Y is sampled from a Bernoulli distribution with

a high probability of success P (Y = 1) = pr. In the different exper-

imental conditions, the cutpoint is set either at a marginal position

(between the first and second category of X) or at a central position

(between the third and fourth category of X). The difference between

pl and pr is varied in the simulation experiments. The values of pl and

pr are set to simulate a weak effect (0.2, 0.4), a medium effect (0.2, 0.6)

or a strong effect (0.2, 0.8) of X.

2. Two-cutpoints design. Two cutpoints are fixed on the range of

X, either both at marginal positions on the same side (between the

first and second and between the second and third category of X),

both at symmetric central positions (between the second and third

and between the fourth and fifth category of X) or both at symmetric

marginal positions (between the first and second and between the fifth

and sixth category of X). The response Y is sampled from a Bernoulli

distribution with low probabilities of success pl and pr on the left of

the left cutpoint and on the right of the right cutpoint, respectively,

and high probability of success pm between the two cutpoints. The

values of pl, pm and pr are set to simulate a weak effect (0.2, 0.4, 0.2),

a medium effect (0.2, 0.6, 0.2), a strong effect (0.2, 0.8, 0.2) or a mixed

effect (0.2, 0.8, 0.6).
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The percentage of simulation iterations (out of 100) in which association

is detected at the standard significance level of 0.05 is displayed in Tables

2 (one-cutpoint design) and 3 (two-cutpoints design). This percentage may

be seen as an indicator of the power of the considered method to discover

the association patterns. It can be observed from Table 2 that our method

can often successfully detect association in the two-cutpoints design. In the

one-cutpoint design, it can be observed from Table 2 that our method some-

times detects association, but the power is of course lower than using the

simpler method designed for one cutpoint by Boulesteix (2006b). Unsurpris-

ingly, the power is higher for strong associations than for weak associations,

and for central cutpoints than for marginal cutpoints. Table 3 shows that

our novel method performs well to detect association in the two-cutpoints

design. The power of our approach is higher than the power of the method

for one cutpoint in all experimental designs, except for the case of mixed

effects with both cutpoints set at marginal positions (which may be seen as

intermediate between the one-cutpoint and the two-cutpoints setting). The

power improvement is particularly striking (up to +150%) in the case of sym-

metric central cutpoints. In a word, our method may not be used to detect

association patterns in general settings, since it results in a loss of power if

there is only one true cutpoint. However, it is able to detect two-cutpoints

patterns with high power, even for very small sample sizes, where methods

assuming monotonic dependence fail.

4 The varicella study

Varicella (chickenpox) is a highly communicable disease caused by the

varicella-zoster virus. Although it is commonly regarded as a mild childhood

illness, serious complications can occur. The risk of serious consequences is

believed to depend on the age of the patient (Banz et al., 2003). For an-

alyzes using our new approach, we consider a data set including N = 170

children between 0 and 18 years who were diagnosed with varicella. N1 = 85

of them had complications, whereas the remaining N0 = 85 children are con-

trols (no complications). This data set was sampled from a larger data set
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presented by Wagenpfeil et al. (2004) in the context of a large retrospective

epidemiological study. Table 4 gives the number of cases without and with

complications in each age category.

The maximal chi-square statistic is obtained for the cutpoints k1 = 1 and

k2 = 3 and the corresponding p-value is praw = 1.0 · 10−2. This approach

overestimates the association between age and risk of complications, because

the p-value is not corrected for optimal choice of cutpoints. Our novel method

yields the corrected p-value p = 3.8 · 10−2. This result suggests that varicella

is more serious for children between one and three years than for younger

children (who may be protected by maternal antibodies) and elder children.

Approaches that assume a monotonic trend (or one cutpoint) yield larger p-

values: using the approach based on maximally selected chi-square statistics

for ordinal predictors with one cutpoint by Boulesteix (2006b) gives a p-value

of p = 0.17, whereas the classical chi-square test for trend in proportions

(as implemented in the R function prop.trend.test) yields a p-value of

0.27, thus both failing to detect association. In a word, the distribution of

maximally selected chi-square statistics in the context of two cutpoints may

be used to correct a minimally selected p-value and has higher power than

monotonic approaches to detect association in the case of a non-monotonic

association with two underlying cutpoints.

5 Discussion

In this article, we propose a novel combinatorial method for computing the

exact distribution of the maximally selected chi-square statistic in the context

of a non-monotonic association with a binary response. The method can be

used to adjust the p-value of the chi-square test for multiple comparisons

when two cutpoints are selected from the range of X to maximize the chi-

square statistic. As shown in the real data example, our approach provides an

efficient tool to assess the statistical significance of a pair of cutpoints. It can

detect association in the case of an umbrella ordering with two underlying

cutpoints, where methods that assume monotonic dependence (one cutpoint)

fail. Unsurprisingly, the simulations also show that our method results in a
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loss of power if there is only one true cutpoint. Thus, it is not appropriate

as a general test of independence.

From a practical point of view, our new method may be useful in two

important situations. First, it avoids the biased reporting of low p-values,

when the cutpoints are chosen optimally. Secondly, if the investigator sus-

pects a dependence pattern between X and Y but can not assess it with

classical monotonic approaches, our method may be helpful to confirm the

(non-monotonic) association between X and Y . In practice, investigators

sometimes notice two candidate cutpoints based on descriptive plots and

want to know if this pattern is relevant or only due to chance. This problem

may be addressed with our method. Note that, if one applies successively the

one-cutpoint and the two-cutpoints method, adjustment for multiple testing

is recommended. As a two-cutpoints method, it could also be applied to

outcomes associated with points around a circle, e.g., in astronomy. Another

potential application is recursive partitioning. In the last few years, proce-

dures based on maximally selected statistics have been successively applied

to regression and classification trees, for instance in Shih (2004); Lausen et al.

(2004); Strobl et al. (2006), to avoid the variable selection bias outlined by

e.g. Loh and Shih (1997). Our method could become a powerful exact tool

to assess complex splits in p-value adjusted trees.
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Table 1: Contingency table obtained by cutting X at k1 and k2.

X ≤ k1 or X > k2 k1 < X ≤ k2 Σ
Y = 0 n1 n2 N0

Y = 1 n3 n4 N1

Table 2: Performance of both methods for the one-cutpoint design.

One-cutpoint method Novel method
effect weak med. strong weak med. strong

marginal 6 19 52 7 14 43
central 15 41 74 12 33 70

Table 3: Performance of both methods for the two-cutpoints design.

One-cutpoint method Novel method
effect weak med. strong mixed weak med. strong mixed

both marginal 6 15 32 31 7 30 62 24
symmetric central 4 12 27 45 16 30 63 45

symmetric marginal 7 11 38 41 9 26 58 41

Table 4: Varicella complications

Age category (in years) 1 : 0− 1 2 : 1− 2 3 : 2− 3 4 : > 3
No complications (Y = 0) 10 7 9 59
Complications (Y = 1) 6 19 12 48
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Table 5: Elapsed time (rounded to the nearest 1/100 second) for the naive ap-
proach (left) and our new algorithm (right) to compute F (d) = PH0(χ

2
max ≤

d), given N0, N1, m1, . . . ,mK .

m1, . . . ,mK N0, N1 d Naive exact approach Novel exact algorithm

10, 10, 10, 10 20, 20
0
2
10

5.5
5.5
5.5

0.10
0.14
0.19

4, 16, 4, 16 20, 20
0
2
10

3.0
3.0
3.0

0.03
0.08
0.13

10, 10, 10, 10 10, 30
0
2
10

2.6
2.6
2.6

0.01
0.08
0.08

20, 20, 20, 20 40, 40
0
2
10

40
40
40

0.08
0.56
1.2

8, 8, 8, 8, 8 20, 20
0
2
10

55
55
55

0.07
0.8
1.2

10, 10, 10, 10, 10 25, 25
0
2
10

90
90
90

0.08
1.5
3.0

8, 8, 8, 8, 8, 8 24, 24
0
2
10

810
810
810

0.11
5.7
14

10, 10, 10, 10, 10, 10 30, 30
0
2
10

1500
1500
1500

0.14
12
42
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Figure 1: Proportion of observations with Y = 1 in each category of X: m1k

mk
,

k = 1, . . . , K. N0 = N1 = 30, m1 = m2 = m3 = m4 = m5 = m6 = 10.
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