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Abstract

If rounded data are used in estimating moments and regression coffiecients, the esti-
mates are typically more or less biased. The purpose of the paper is to study the bias
inducing effect of rounding, which is also seen when population moments intstead
of their estimates are considered. Under appropriate conditions this effect can be
approximately specified by versions of Sheppard’s correction formula. We discuss
the conditions under which these approximations are valid. We also investigate the
efficiency loss that comes along with rounding.

The rounding error, which corresponds to the measurement error of a measurement
error model, has a marginal distribution which can be approximated by the uniform
distribution.

We generalize the concept of simple rounding to that of asymmetric rounding and
study its effect on the mean and variance of a distribution under similar circum-
stances as with simple rounding.

1 Introduction

Data often contains rounding errors. Variables (like heights or weights) that by
their very nature are continuous are, nevertheless, typically measured in a discrete
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manner. They are rounded to a certain level of accuracy, often to some preassigned
decimal point of a measuring scale (e.g., to multiples of 10 cm, 1 cm, or 0.1 cm) or
simply our preference of some numbers over other numbers. The reason may be the
avoidance of costs associated with a fine measurement or the imprecise nature of
the measuring instrument. The German military, for example, measures the height
of recruits to the nearest 1 cm. Even if precise measurements are available, they
are sometimes recorded in a coarsened way in order to preserve confidentiality or to
compress the data into an easy to grasp frequency table.

In the following we analyze statistical characteristics of rounded data X∗ and of the
rounding error δ. We consider expectations, variances and regression parameters
obtained from rounded variables and show how they are related to the parameters
of unrounded data. We study in particular the approximations that arise when
the rounding interval is small. These approximations are governed by the so-called
Sheppard’s correction (1898), and we give conditions under which it can be applied.
Finally, we discuss the problem of asymmetric rounding.

This report is to a large extent a review of the literature, but new results are pre-
sented concerning the rounding error and asymmetric rounding. A comprehensive
review of the field can be found in Heitjan (1989). Earlier reviews are Eisenhart
(1947, Section 4), Stuart and Ord (1987, Sections 3.18-3.30), Gjeddeback (1968),
Haitvosky (1982).

A more general case than simple rounding not treated in this paper is the case of
heaping. With heaping only part of the data is rounded and the rounding points
(or points of attraction) are not evenly spaced on the line.

Section 2 introduces the concept of simple rounding. In Section 3 approximate
expressions of the moments of rounded data are derived. Section 4 pertains to the
effect of rounding on regression results. The rounding error δ itself is analyzed in
Section 5. Section 6 investigates the validity of approximations introduced earlier.
Section 7 studies some special distributions where these approximatons are either
exact or completely invalid. Estimating and testing with rounded data is studied in
Section 8. Section 9 deals with ML estimation. Asymmetric rounding is the subject
of Section 10. Some concluding remarks are found in Section 11.

2 Simple Rounding

Let X be a continuous random variable with density ϕ(x) and let X∗ be the corre-
sponding rounded variable. The rounding problem is as follows. Let there be given
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a set (a grid) of equidistant points on the real line,

R
∗ := R

∗
a,h := {(a+ i)h, i ∈ Z},

where h is the distance between two adjacent points of the grid and ah, 0 ≤ a ≤ 1 is
the origin of the grid. For simplicity and without loss of generalty we will assume,
unless otherwise stated, that a = 0. For any value of X, the rounded value X∗ is
that pointed of R∗ which is nearest to X. (If X happens to ly exactly in the middle
between two adjacent points of the grid, then X∗ is the larger of the two points).
X∗ is a function of X: If round(x) is the function that maps any real x onto its
nearest integer, then (assumming a = 0)

X∗ = h round(
X

h
).

The rounding error δ is defined as

δ = X∗ −X. (1)

The equation

X∗ = X + δ (2)

looks like the measurement equation of a classical measurement error model with X
being the unobservable variable, X∗ the observable variable, and δ the measurement
error. However, clearly δ is not independent of X. Instead, δ is a function of X.
But δ is also not independent of X∗. Instead, the conditional density of δ given X∗

is (see also Figures 3 and 4)

h(δ|X∗) =

{

ϕ(X∗−δ)
p(X∗)

for − h
2
≤ δ ≤ h

2

0 for δ < −h
2

or δ > h
2

(3)

where

p(x∗) =

x∗+ h
2

∫

x∗−h
2

ϕ(x)dx (4)

is the probability that X∗ = x∗. With x∗ = ih, this probability can also be written
as

P (X∗ = ih) =

∫ ih+ h
2

ih−h
2

ϕ(x)dx =

∫ h
2

−h
2

ϕ(ih + u)du, u = x− ih. (5)

These probabilities are illustrated in Figure 1 as the shaded areas under the density
function ϕ(x).
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X*,X....3h2hh0−h...

P(X* =3h)ϕ(x)

Figure 1: Density and probability function of the unrounded and rounded variables,
X and X∗, respectively.

3 Moments of rounded values

3.1 Univariate moments

We next to relate the moments of X∗ to those of X. The kth moment of the
distribution of the rounded values X∗ can be computed as:

EX∗k =
∑

i

(ih)kP (X∗ = ih) (6)

=
∑

i

(ih)k

∫ h
2

−h
2

ϕ(ih+ u)du. (7)

We can approximate the sum in Equation (7) by an integral using the Euler-
Maclaurin formula (see, e.g., Stuart and Ord, 1987, and Section 3.2 for more details).
We rewrite each term of the sum in Formula (7) in the following way:

f(y) = yk

∫ h
2

−h
2

ϕ(y + u)du (8)

with y = ih. Then, according to the Euler-Maclaurin formula the sum in Equa-
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tion (7) becomes:
∑

i

f(ih) =
1

h

∫ ∞

−∞
f(y)dy +R, (9)

where R is a remainder term often quite small, which will be treated in more detail
in Section 3.2. Ignoring the remainder term for the moment and coming back to
Equation (7), we can write the kth moment of the rounded variable X∗ as follows:

EX∗k ≈
∫ ∞

−∞
yk 1

h

∫ h
2

−h
2

ϕ(y + u)dudy. (10)

Substituting x = y + u and v = u/h in the above formula we obtain:

EX∗k ≈
∫ ∞

−∞

∫ 1
2

− 1
2

(x− vh)kdv ϕ(x)dx. (11)

Equation (11) can be used to compute approximately any k-th moment of the
rounded data. E.g., for k = 1, which corresponds to the expected value of X∗,
we obtain:

EX∗ ≈
∞
∫

−∞

[

xv − v2

2
h

]
1
2

− 1
2

ϕ(x)dx

=

∞
∫

−∞

xϕ(x)dx

= EX (12)

Hence, the expectations of the rounded and unrounded data are approximately
equal. For the second moment we obtain:

EX∗2 ≈
∫
[

x2v − xv2h +
v3

3
h2

]
1
2

− 1
2

ϕ(x)dx

=

∫
(

x2 +
h2

12

)

ϕ(x)dx

= EX2 +
h2

12
. (13)

Because of (12) it follows that

VX∗ ≈ VX +
h2

12
. (14)
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Thus the variance of the rounded data has to be ”corrected” by the term −h2

12
in order

to derive an approximate value for the (unobservable) variance of the unrounded
data:

VX ≈ VX∗ − h2

12
. (15)

This formula is known as Sheppard’s correction, Sheppard (1898). Note that the
term h2

12
is just the variance of a variable uniformly distributed on the interval [−h

2
, h

2
].

For the third to sixth central moments the corresponding formulas are (cf. Kendall,
1938, and Stuart and Ord, 1987)

µ3 ≈ µ∗
3

µ4 ≈ µ∗
4 −

h2

2
µ∗

2 + 7
h4

240

µ5 ≈ µ∗
5 − 5

h2

6
µ∗

3

µ6 ≈ µ∗
6 − 5

h2

4
µ∗

4 + 7
h4

16
µ∗

2 − 31
h6

1344

where µn = E(X − µ)n, µ∗
n = E(X∗ − µ∗)n, µ = EX, µ∗ = EX∗. For the correction

of the 7th and 8th moments see Rietz (1924) p.94.

By the same principles one can also derive a relation between the characteristic
functions of the unrounded and rounded variables, respectively, cf. Kullback(1935).

Let

ψ(t) =

∫

eitxϕ(x)dx

ψ∗(t) =
∑

j

eitjhp(jh)

be the characteristic functions of X and X∗, respectivley. Then

ψ∗(t) ≈ 2

ht
sin(

ht

2
)ψ(t). (16)

The r.h.s. of (16) is the characteristic function ofX+U , where U is a random variable
independent of X and uniformly distributed over

[

−h
2
,−h

2

]

. Thus X∗ = X + δ
has approximately the same distribution as if δ were uniformly distributed and
independent of X, see also Section 5. If follows that approximately

EX∗m ≈ E(X + U)m
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or

κm(X∗) ≈ κm(X) + κm(U) = κm(X) +
Bm

m
,

where κm is the m-th semi-invariant and Bm the m-th Bernoulli number. From this
follow all the moment relations considered before.

An exact expression of the characteristic function of X∗ in terms of trigonometric
functions, for which the r.h.s. of (16) is the leading term, is given in Janson (2005),
where also corresponding expressions for the moments of X∗ are found.

3.2 The Remainder Term R

The sum in Equation (9) can be approximated by the integral on the r.h.s of (9)
only if R is small. Suppose for the moment that the function f is restricted to a
finite interval [a, b] with f(a) = f(b) = 0 and that a+ h

2
and b− h

2
are points of the

grid. If the following two conditions are satisfied (see also Figure 2):

• f(y) is differentiable on the interval [a, b] to the order 2m+ 2,

• all derivatives of f of odd order to the order 2m−1 vanish at the points a and
b,

then the remainder term R equals

R =
B2m+2

(2m+ 2)!
(b− a)h2m+1f (2m+2)(ym), (17)

where ym ∈ [a, b] and B2m+2 is the (2m + 2)-th Bernoulli number, see Stoer and
Bulirsch (1980).

The magnitude of the remainder term R (and thus the closeness of the approxima-
tion of the sum in (9) by the integral in (9)) depends on h and on the smoothness
of f . The smaller h and the smaller max

a≤y≤b
f (2m+2)(y), the better the approximation.

Clearly a sum can always be approximated by a corrsponding integral if h is suffi-
ciently small, no matter if the conditions for the Euler-Maclaurin formula are satisi-
fied or not. However, if the conditions are satisfied, then the Euler-Maclaurin ap-
proximation is typically extremely good even if h is (moderately) large.

Although the Euler-Maclaurin approximation has been stated only for integrals on
a finite interval, one can expect that the approximation also holds good when the
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a h b

f(y)

Figure 2: A function fulfilling the conditions for the Euler-Maclaurin formula

integral is taken over the whole real line. The conditions for that to hold is that the
function f must be sufficiently smooth for the whole line and that the derivatives
tend to zero when y tends to +∞ or −∞.

In applying this idea to the approximation (10) for moments of order k, one has to
make sure that not only ϕ(y) but ykϕ(y) satisfies the Euler-Maclaurin conditions.

From (11) it is clear that the error of approximation (i.e., the difference of l.h.s.
and r.h.s of (11)) changes by the factor λk if X and h are both multiplied by λ. In
discussing the accuracy of the approximation (11) (and consequently of the mean
equality (12) and of Sheppard’s correction in (13)) it makes sense to restrict the
discussion to the case of a standardized distribution with variance 1, see Section 6.

3.3 Multivariate Moments

The analysis of moments of rounded and unrounded data can be extended to the
multivariate case, cf. Baten (1931), Wold (1934). Here we restrict our account to
the bivariate case.

Let ϕ(x, y) be the joint density of the random variables X and Y . Let these be
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rounded according to two grids with widths h and k, respectively, and origin (0,0)
and let X∗ and Y ∗ be the rounded variables. Their joint probability distribution is
given by

p(ih, jk) = P (X∗ = ih, Y ∗ = jk) =

ih+ h
2

∫

ih−h
2

ik+ k
2

∫

ik− k
2

ϕ(x, y)dxdy.

Consider the bivariate moment of order (m,n) of (X, Y )

µmn = E(XmY n) =

∞
∫

−∞

∞
∫

−∞

xmynϕ(x, y)dxdy

and the corresponding moment of (X∗, Y ∗)

µ∗
mn = E(X∗mY ∗n) =

∑

i

∑

j

(ih)m(jk)np(ih, jk)

=
∑

i

∑

j

(ih)m(jk)n

h
2
∫

−h
2

k
2
∫

− k
2

ϕ(ih+ u, jk + v)dudv.

Aussuming the conditions for a good approximation by the Euler-Mclaurin formula
to be satisfied the (double) sum can be approximated by a corresponding (double)
integral:

µ∗
mn ≈

∞
∫

−∞

∞
∫

−∞

xmyn 1

hk

h
2
∫

−h
2

k
2
∫

− k
2

ϕ(x+ u, y + v)dudvdxdy

Substituting t = x+ u, s = y + v, ũ = u
h
, ṽ = v

k
, we get

µ∗
mn ≈

∞
∫

−∞

∞
∫

−∞

1
2
∫

− 1
2

1
2
∫

− 1
2

(t− hũ)m(s− kṽ)ndũdṽϕ(t, s)dtds.

Consider the special case m = n = 1. Then

µ∗
11 = E(X∗Y ∗) ≈

∞
∫

−∞

∞
∫

−∞

[

tũ− h
ũ2

2

]
1
2

− 1
2

[

sṽ − k
ṽ2

2

]
1
2

− 1
2

ϕ(t, s)dtds

=

∫ ∫

tsϕ(t, s)dtds = E(XY ) = µ11.
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As EX∗ ≈ EX and EY ∗ ≈ EY , it follows that

Cov(X∗, Y ∗) ≈ Cov(X, Y ). (18)

By the same arguments a similar relation holds if only one variable is rounded. Thus

Cov(X∗, Y ) ≈ Cov(X, Y ∗) ≈ Cov(X, Y ). (19)

4 The Influence of Rounding on Regression Esti-

mates

Now we analyze the influence of rounding on the estimates of the regression coef-
ficients. We always assume that the assumption for the application of the Euler-
Maclaurin approximation are satisfied. Let Y be the unrounded response (or depen-
dent) variable, and X∗ (X) the rounded (unrounded) explanatory (or independent)
variable and consider a simple linear regression model

Y = α + βX + ε. (20)

The corresponding regression for rounded data is

Y = α∗ + β∗X∗ + ε∗. (21)

The true regression coefficient is given by

β =
Cov(X, Y )

VX
,

whereas the regression coefficient with the rounded variable X∗ is

β∗ =
Cov(Y,X∗)

VX∗ .

Then, using (19) and Sheppard’s correction introduced in Equation (14) we get
for β∗:

β∗ ≈ Cov(X, Y )VX

VXVX∗ ≈ β
VX∗ − h2

12

VX∗ = β

(

1 − 1

12

(

h

σX∗

)2
)

. (22)

However, we are normally interested in β rather than β∗. The approximate bias
correction for β due to rounding becomes:

β ≈ β∗

[

1 − 1

12

(

h

σX∗

)2
]−1

. (23)
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This formula is very convenient since we normally know h and can estimate σX∗

from the data. The naive estimate of β (i.e., β̂∗ =
sx∗y

s2
x∗

) is biased due to rounding.

But it can be corrected according to (23), which leads to an approximately unbiased
estimate of β:

β̂∗
c := β̂∗

[

1 − 1

12

(

h

sX∗

)2
]−1

=
sx∗y

s2
x∗ − h2

12

. (24)

Sometimes, the response variable Y is rounded and not the covariate X. In this case

β∗ =
Cov(X, Y ∗)

VX
≈ Cov(X, Y )

VX
= β. (25)

This means that rounding the response variable does not influence the regression es-
timates. The last possibility is that both the response and the explanatory variables
are rounded. Then:

β∗ =
Cov(Y ∗, X∗)

VX∗ ≈ Cov(Y,X)

VX∗ = β

(

1 − 1

12

(

h

σX∗

)2
)

. (26)

In a linear regression of Y on X, it is only rounding of X and not Y that has an
effect on the value of the slope parameter.

5 Rounding Error

The rounding error δ was defined in (1) as the difference between the rounded and
the true value. We have to keep in mind that δ is neither independent of X∗ nor of
X.

Globally, over the whole density of X∗, the expectation of δ equals zero approxi-
mately:

Eδ ≈ 0 because EX∗ ≈ EX.

However, locally (within an interval of length h; compare the shaded area in Figure 3
and the corresponding Figure 4) the expectation of δ may strongly differ from zero,
e.g., there can be more positive values of δ than negative ones. The global expecta-
tion of zero results from the fact that the density ϕ(x) fulfills the Euler-Maclaurin
conditions.
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X*−h/2 X* X*+h/2

X=X*− δ

Figure 3: Distribution of X restricted to a rounding interval

Although X and δ are dependent, they are (approximately) uncorrelated:

Cov(X, δ) ≈ 0

because, by (2),

Cov(X,X∗) = VX + Cov(X, δ),

but also, by (19) with Y = X,

Cov(X,X∗) ≈ VX.

Moreover, the variance of δ is

Vδ ≈ h2

12

because of (14) and because

VX∗ = VX + 2Cov(X, δ) + Vδ ≈ VX + Vδ.

We can say even more: The marginal distribution of δ is approximately the uniform
distribution on the interval [−h

2
, h

2
]. Indeed, the marginal distribution of δ is given

by

g(δ) =
∑

x∗

h(δ|x∗)p(x∗), −h
2
< δ <

h

2



6 GOODNESS OF THE APPROXIMATION 13

− h 2 0 h 2 δ

Figure 4: Conditional Distribution of δ given X∗

with h(δ|x∗) from (3), and concequently

g(δ) =
∑

x∗

ϕ(x∗ − δ) =
∑

i

ϕ(ih− δ). (27)

Using the Euler-Maclaurin formula, the sum can be approximated by a correspond-
ing integral:

g(δ) ≈ 1

h

∞
∫

−∞

ϕ(y − δ)dy =
1

h
, −h

2
< δ <

h

2
.

Thus δ is approximately uniformly distributed on [−h
2
, h

2
].

6 Goodness of the approximation

For practical purposes it is important to know by how much the moments computed
from the rounded data differ from those of the original data. We want to compare the
moments of X∗ to those ofX, depending on the width h of the rounding interval. We
do this for the expected value and the variance of X. The difference of the moments
of X and X∗ depends not only on h but also on ah, the origin of the rounding
grid, 0 < a < 1. It also depends on the underlying distribution ϕ of the unrounded
data. Here we only study the standard normal distribution: X ∼ N(0, 1). For other
distribution, see Tricker (1984).



6 GOODNESS OF THE APPROXIMATION 14

From Equation (6) we can compute the exact expected value of the rounded data
X∗ when X ∼ N(0, 1):

EX∗ =
∑

i

(i+ a)h[Φ((i + a+
1

2
)h) − Φ((i+ a− 1

2
)h)], (28)

where ah indicates by how much the rounding grid has been shifted away from the
origin 0: a = 0 means that zero is a point of the rounding grid. With a = 1 the
rounding grid is in the same position as with a = 0. Therefore a ≥ 1 need not be
considered.

Figure 5 shows the difference of the means of the unrounded and rounded data for
various values of h as a function of the shift a. The rounding interval h varies from
one to four standard deviations of the distribution. As we can see, rounding intervals
of length up to 2.5 standard deviations have a rather small influence on the data
mean. Furthermore, the bias disappears for a = 0, a = 1 as well as a = 0.5.

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

 

 a 

m
u*

h=2
h=2.5
h=3
h=3.5
h=4

Figure 5: Differences of the means of the unrounded data, µ, and the rounded data,
µ∗, as a function of a for X ∼ N(0, 1).



6 GOODNESS OF THE APPROXIMATION 15

The variance of the rounded data can be computed using the following equations:

EX∗2 =
∑

i

[(i+ a)h]2 [Φ((i+ a+
1

2
)h) − Φ((i+ a− 1

2
)h)],

VX∗ = EX∗2 − (EX∗)2

Figure 6 shows the Sheppard-corrected variance of the rounded data as a function
of a for X ∼ N(0, 1). In this case, the deviation from the variance of the unrounded
data is highest for a = 0.5.

Again, the correction performs quite well for rounding intervals h less than or equal
to about two standard deviations. For larger rounding intervals the Sheppard-
corrected variance functions deviate from true variance particularly at a = 0.5 and
the approximation is very poor.

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

 

 a 

va
ria

nc
e 

of
 X

*

h=2
h=2.5
h=3
h=3.5
h=4

Figure 6: Sheppard-corrected variance of the rounded data, σ2
X∗ as a function of a,

for X ∼ N(0, 1).

To sum up, we can say that the approximation for mean and variance work very
well even for rather large values of h as long as the underlying distribution is the
normal one. For other, in particular for skew distributions, Sheppard’s correction
only works well for considerably smaller values of h. Higher moments are also less
well approximated by the corrsponding correction formulas.
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7 Some special distribution

7.1 An ”Exact Case” for Rounding

The approximation formulas (12) and (14) for mean and variance become exact
equalities when the density of the unrounded variable is a continuous, piecewise
linear function on a finite interval [c, d] with the following properties. The interval
[c, d] is subdivided into n subintervals of equal width h. Within each interval the
density is a linear function. For simplicity let c = 0, then d = nh. The density is zero
at the endpoints of the interval [c, d]. The rounding grid consists of all midpoints
of the subintervals, x∗i = (i+ 1

2
)h, i = 0, · · · , n− 1 (compare Figure 7). Let us call

such a density function a “piecewise linear grid density”. In this situation, we can
compute the exact values of the various moments using simple integration methods.

Figure 7: An ”exact case” of rounding

The value of the density function is given, for each rounding interval, by:

ϕ(x) = ϕ(x∗) + ϕ′(x∗)(x− x∗), x∗ − h

2
≥ x ≥ x∗ +

h

2
(29)

or

ϕ(x∗ + u) = ϕ(x∗) + ϕ′(x∗)u, − h

2
≥ u ≥ h

2
(30)
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The expected values of the unrounded and rounded data, respectively, are

EX =

∫ nh

0

xϕ(x)dx =
∑

x∗

∫ x∗+ h
2

x∗−h
2

xϕ(x)dx

=
∑

x∗

∫ h
2

−h
2

(x∗ + u)ϕ(x∗ + u)du (31)

EX∗ =
∑

x∗

x∗
∫ x∗+ h

2

x∗−h
2

ϕ(x)dx =
∑

x∗

x∗
∫ h

2

−h
2

ϕ(x∗ + u)du. (32)

To check whether the two expectations are equal, we look at the difference:

EX − EX∗ =
∑

x∗

∫ h
2

−h
2

u ϕ(x∗ + u)du

=
∑

x∗

∫ h
2

−h
2

[u ϕ(x∗) + u2ϕ′(x∗)]du

=
∑

x∗

[

u3

3

]
h
2

−h
2

ϕ′(x∗) =
h3

12

∑

x∗

ϕ′(x∗) = 0. (33)

This is due to the fact that ϕ(0) = ϕ(nh) = 0, see Figure 7, and

h
∑

x∗

ϕ′(x∗) = ϕ(h) − ϕ(0) + ϕ(2h) − ϕ(h) + ϕ(3h) − ϕ(2h) + . . .

+ ϕ(nh) − ϕ((n− 1)h) = 0. (34)

Thus for the piecewise linear grid density

EX∗ = EX. (35)

To compute the variance of the unrounded and rounded data, respectively, we first
analyze the second moments of X and X∗:

EX2 =
∑

x∗

∫ h
2

−h
2

(x∗ + u)2ϕ(x∗ + u)du (36)

EX∗2 =
∑

x∗

x∗2
∫ h

2

−h
2

ϕ(x∗ + u)du (37)
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The difference is

EX2 − EX∗2 =
∑

x∗

∫ h
2

−h
2

(u2 + 2ux∗)[ϕ(x∗) + ϕ′(x∗)u]du

=
∑

x∗

∫ h
2

−h
2

u2[ϕ(x∗) + 2x∗ϕ′(x∗)]du

=
∑

x∗

h3

12
[ϕ(x∗) + 2x∗ϕ′(x∗)] (38)

=
h2

12

[

h
∑

x∗

ϕ(x∗) + 2h
∑

x∗

x∗ϕ′(x∗)

]

. (39)

To calculate the sums in Formula (39) we first recall that the area under the density
function equals one, i.e.,

∑

x∗

hϕ(x∗) = 1. (40)

Moreover,

∑

x∗

x∗ϕ′(x∗) =
h

2

ϕ(h) − ϕ(0)

h
+

3h

2

ϕ(2h) − ϕ(h)

h
+

5h

2

ϕ(3h) − ϕ(2h)

h
+ . . .

=
1

2
[ϕ(h) + 3ϕ(2h) − 3ϕ(h) + 5ϕ(3h) − 5ϕ(2h) + . . .]

= −[ϕ(h) + ϕ(2h) + ϕ(3h) + . . .]

= −
∑

x∗

ϕ(x∗ +
h

2
) = −

∑

x∗

ϕ(x∗) − h

2

∑

x∗

ϕ′(x∗)

= −
∑

x∗

ϕ(x∗)

by (34). Substituting this result in Equation (39), the difference EX2 − EX∗2

becomes:

EX2 − EX∗2 =
h2

12

(

∑

x∗

hϕ(x∗) − 2
∑

x∗

hϕ(x∗)

)

=
h2

12
(−1) = −h

2

12

and

VX∗ = VX +
h2

12
.

Thus in the case of a piecewise linear grid density, Sheppard’s correction holds
exactly. The same is true for all the higher moments.
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One can also show that in this case the marginal distribution of δ is not only ap-
proximately but exactly uniformly distributed on [−h

2
, h

2
]. Indeed, by (27),

g(δ) =
∑

x∗

[

ϕ(x∗) − δϕ
′

(x∗)
]

=
1

h
, − h

2
≤ δ ≤ h

2

by (34) and (40).

These results can be generalized to the case of a piecewise linear grid density, which
is defined on the whole real line, as long as the slopes in the rounding intervals tend
to zero with x→ ±∞ at a sufficiently large rate.

The piecewise linear grid density may be a rather artificial density function. But
as far as other, more realistic, densities that tend to zero sufficiently fast as x →
±∞ can be approximated by a piecewise linear grid density, the latter serves as
a convenient model to explain the approximate relations between the moments of
rounded and unrounded data.

7.2 Uniform distribution

In this section, we investigate a special case of the distribution of X, where Shep-
pard’s correction does not work. We assume that X is uniformly distributed over
a specified range. Note that this distribution does not satisfy the requirements for
the Sheppard approximation. Therefore, different results must be expected.

With respect to the width of the rounding intervals at the end points of the distri-
bution function, we can distinguish two cases: All intervals are of the same width
or narrower intervals are placed at the end points of the distribution. Furthermore,
within these two cases we can differentiate between two possible placing schemes of
the rounding grid: a) the value zero is the midpoint of one rounding interval (i.e.,
a point of the grid) and b) zero lies on the border between two intervals (compare
Figure 8, pictures a and b).

Case 1

In the first case all rounding intervals are of the same width, compare Figure 8.
A simple example for rounding where the density function looks like the one in Fig-
ure 8a is rounding to integers with a rounding interval of width h = 1. The density
shown in Figure 8b refers, e.g., to rounding to odd numbers with a rounding interval
of width h = 2.

From Formula (2) we recall that:

X∗ = X + δ.
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Figure 8: Uniform distribution, Case 1

Now, in this case, δ is not only globally (i.e., marginally) but also locally uniformly
distributed. Indeed, by (3),

h(δ|x∗) =
1

h
, −h

2
≤ δ ≤ h

2
,

and therefore δ is independent of X∗. It also follows that

Eδ = 0, Vδ =
h2

12
.
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Then, for both of the two possibilities shown in Figures 8 a and b we obtain:

Cov(X∗, δ) = 0

VX = VX∗ + Vδ

= VX∗ +
h2

12
. (41)

Thus Sheppard’s correction is reversed in this special case. Instead of subtracting
h2

12
, as in (15), this term has to be added in order to correct VX∗ (see also Vardeman

2003).

We can also compute the covariance of X and δ by starting from

VX∗ = VX + Vδ + 2Cov(X, δ)

=

(

VX∗ +
h2

12

)

+
h2

12
+ 2Cov(X, δ)

and thus

Cov(X, δ) = −h
2

12
,

in contrast to the general relation Cov(X, δ) ≈ 0, see Section 5.

Now, consider a linear regression of Y on X:

Y = α + βX + ε

with ε independent of X. Then ε is independent of X∗, too. For the slope parameter
of the corresponding regression of Y and X∗ we have

β∗ =
Cov(X∗, Y )

VX∗ = β
Cov(X∗, X)

VX∗ +
Cov(X∗, ε)

VX∗ = β
Cov(X∗, X)

VX∗ = β,

where we used the identity

Cov(X∗, X) = VX∗ − Cov(X∗, δ) = VX∗.

Thus in Case 1 there is no bias in the regression parameter resulting from rounding.

Now we move on to the situation where the end intervals are only half as wide as
the internal intervals.

Case 2

This situation is plausible if there are natural limits of the variable values, e.g. (−50, 50).
Then, the last interval, say (45, 50), is narrower than the last but one interval (35, 45)
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since no unrounded values greater than 50 are allowed. Figure 9 shows the density
functions of X∗ for two interval placing schemes. In Case 2 we have again

Eδ = 0, Vδ =
h2

12
.

However, since the rounding intervals are narrower at the end points, the conditional
density of δ givenX∗ depends onX∗ and thus δ andX∗ are not independent. Indeed,
in Case 2a (and similarly in Case 2b)

E(δ|X∗ = kh) =
h

4
, E(δ|X∗ = −kh) = −h

4
.

and E(δ|X∗) = 0 for all other values of X∗. Consequently, we obtain for the previous
covariances and the variance ofX values different from those in Case 1. In particular
for Case 2a we have

Cov(X∗, δ) = E[X∗
E(δ|X∗)] =

[

h

4
kh− h

4
(−kh)

]

h

2
· 1

2kh
=
h2

8

VX = VX∗ − 2 Cov(X∗, δ) + Vδ = VX∗ − h2

4
+
h2

12
= VX∗ − h2

6

Cov(X∗, X) = VX∗ − Cov(X∗, δ) = VX∗ − h2

8

For a linear regression of Y on X with slope parameter β we get

β∗ =
Cov(X∗, Y )

VX∗ = β
Cov(X∗, X)

VX∗ = β
V X∗ − h2

8

V X∗ = β

(

1 − 1

8

(

h

σx∗

)2
)

.

The last equation shows that the regression parameter estimated from the rounded
data is asymptotically smaller than β, just as in the case where Sheppard’s correction
applies, but with quite a different correction (compare to (26)). Analogous formulas
can be derived for the Case 2b, where the value zero is a border of two adjacent
intervals instead of being the midpoint of an interval.

These examples show that completely different results with respect to Sheppard’s
correction can be obtaind when the assumptions for the Euler-Maclaurin formula
are not satisfied. See also Example 2.9 in Janson (2005).

The same can be said of any distribution ofX which, like the uniform, is restricted to
a finite interval and does not tend to 0 at the endpoints in a smooth way. A normal
distribution truncated at one or both sides is a case in point. The breakdown of
Sheppard’s correction for this case has been studied in Pairman and Pearson (1919).

A generalization of the uniform distribution is the so-called histogram density func-
tion, where the density is constant on each rounding interval, see Figure 10. In this
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Figure 9: Uniform distribution, Case 2

case (just like in Case 1 of the uniform distribution)

VX = VX∗ +
h2

12
,

and Sheppard’s correction would give a completely wrong result. The histogram
density is the counterpart to the piecewise linear grid density.
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Figure 10: Histogram density

8 Estimation and Testing

8.1 Estimation

Up to now we only dealt with various population parameters (moments and regres-
sion coefficients) of rounded und unrounded random variables and their relations to
each other. We did not consider estimation and testing problems.

Let us now consider estimating the mean µ = EX of the underlying random variable
X. As we do not observe X but rather the rounded variable X∗, we have to use
the rounded data x∗i , i = 1, · · · , n, in order to estimate µ. Let us assume that the
conditions for Sheppard’s correction are satisfied.

Now if the original, unrounded, data xi, i = 1, · · · , n, is an iid sample, so is the
rounded data x∗i , i = 1, · · · , n. The arithmetic mean x̄∗ of the x∗i is therefore an
unbiased as well as a strongly consistent estimate of µ∗ = EX∗. If the Euler-Mclaurin
conditions are satisfied, µ∗ and µ are approximately equal, and therefore x̄∗ =: µ̂∗

is also an approximately unbiased and consistent estimate of µ. So we can estimate
µ (at least approximately) without bias even if only rounded data are available:

Eµ̂∗ = plim
n→∞

µ̂∗ = µ∗ ≈ µ

In a similar way we can use the rounded data to estimate the variance ofX. However,
here we must observe Sheppard’s correction. Thus

Es2
x∗ = plims2

x∗ = σ2
x∗ , σ2

x ≈ σ2
x∗ − h2

12
.
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where s2
x∗ = 1

n−1

∑n

i=1(x
∗
i − x̄∗)2. Hence s2

x∗ − h2

12
is an approximately unbiased

estimate of σ2
x∗

Similarly the slope parameter β of a linear regression can be consistently estimated
with rounded data as long as Sheppard’s correction is taken into account.

It should, however, be kept in mind that all these estimates, although unbiased (in
the finite sample or asymptotic sense), are less efficient than those computed from
the unrounded data. Rounding leads to an efficiency loss.

This can be clearly seen in the case of estimating the mean. The variance of µ̂∗ = x̄∗

is 1
n
σ2

x∗ , while the variance of µ̂ = x̄ is 1
n
σ2

x and σ2
x∗ ≈ σ2

x + h2

12
> σ2

x. Thus the
estimate from the rounded data has a larger variance than the estimate from the
unrounded data. A confidence interval constructed from the rounded data,

x̄∗ ∓ t1−α
2

sx∗√
n
,

is always larger than the corresponding confidence interval from the unrounded data,

x̄∓ t1−α
2

sx√
n
.

The efficiency loss is measured by the ratio, see (15) (see also Gjeddeback (1956))

σ2
X

σ2
X∗

≈
(

1 − h2

12σ2
X

)−1

≈ 1 +
h2

12σ2
X

8.2 t-Test

The efficiency loss due to rounding can also be seen in parameter tests. As an
example, consider testing the mean of a N(µ, σ2) distribution. In the two-sided
case, the null hypothesis to be tested is

H0 : µ = µ0. (42)

Then, the t- test statistic, τ , computed from the unrounded data is given by:

τ =
µ̂− µ0

σ̂µ̂

, (43)

where µ̂ = x̄, σ̂µ̂ = σ̂X√
n

and σ̂2
X = 1

n−1

∑n

i (xi− x̄)2 is the sample variance of the data.

Under H0, the test statistic τ has the Student t-distribution, τ ∼ t. Now, for
rounded data, the null hypothesis can be stated as

H0 : µ∗ = µ0 (44)
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because µ∗ ≈ µ (assuming that the Euler-Maclaurin conditions are satisfied).

The corresponding test statistic is:

τ ∗ =
µ̂∗ − µ0

σ̂µ̂∗

, (45)

where µ̂∗ = x∗, σ̂µ̂∗ = σ̂X∗√
n

and σ̂2
X∗ = 1

n−1

∑n
i (x∗i − x∗)2. This test statistic is no

longer t-distributed because the rounded data are no longer normally distributed
- they follow a discrete distribution. However, for large n, the distribution of τ ∗

converges to the standard normal distribution N(0, 1), and this distribution can be
used to construct an asymptotic Gauss-test of H0. (Econometricians use to call such
a test still a t-test, although it is actually an asymptotic Gauss-test). The test is
constructed such that H0 is rejected whenever |τ ∗| > t1−α

2
, where t1−α

2
is the (1− α

2
)

quantile of the N(0, 1) distribution.

This test is unbiased (at least approximately so), but it has smaller power than
the corresponding test with the unrounded data. In order to compare the power
functions of both t-tests, we consider a one sided test, which tests the hypothesis

H0 : µ ≤ µ0

against the alternative
H1 : µ > µ0.

We use the same test statistics τ and τ ∗ for this test depending on whether we base
the test on unrounded or on rounded data.

The corrsponding power functions of these tests are given by:

π(µ) = P (τ > t1−α|µ)

π∗(µ) = P (τ ∗ > t1−α|µ).

We compute π(µ) for µ > µ0. For simpilicity of notation we denote t1−α by t.

π(µ) = P (
µ̂− µ0

σ̂µ̂

> t|µ)

= P (
µ̂− µ

σ̂µ̂

+
µ− µ0

σ̂µ̂

> t|µ).

For sufficiently large n, σ̂µ̂ can be replaced with σµ̂ = σx/
√
n and

µ̂− µ

σ̂µ̂

∼ N(0, 1).
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Figure 11: Two power functions

Thus for large n,

π(µ) = 1 − Φ(t− µ− µ0

σx

√
n). (46)

similarly

π∗(µ) = 1 − Φ(t− µ− µ0

σx∗

√
n). (47)

But since, by Sheppard’s correction,

σx∗ ≈ σx

√

1 +
1

12
(
h

σx

)2 > σx,

obviously
π∗(µ) < π(µ) under H1 : µ > µ0. (48)

So the test with rounded data has smaller power than the test with unrounded data
and is thus less efficient. Figure 11 shows the power functions π and π∗ as functions
of µ − µ0. π and π∗ have been computed according to (46) and (47) with n = 100,
α =5%, h = 10, σ2

x = 47.5.

A discussion of the t-test with rounded data for small sample size is given in Eisen-
hart et al (1947).
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9 ML Estimation of µ and σ when h is large

The approximation of the moments of the rounded data for large rounding intervals
h is rather poor, since the remainder term R is proportional to h2m−1 (see (17)).
For this reason, it is sometimes better to estimate the parameters of the data using
the Maximum Likelihood method. By way of example we present the estimation of
µ and σ2 of a normal distribution.

Suppose the variable X is normally distributed N(µ, σ2). The discrete distribution
of X∗ is given by:

p(x∗|µ, σ2) =

∫ x∗−h
2

x∗−h
2

ϕµ,σ(x)dx = Φµ,σ

(

x∗ +
h

2

)

− Φµ,σ

(

x∗ − h

2

)

, (49)

where

ϕµ,σ(x) =
1√
2πσ

e−
(x−µ)2

2σ2

is the density function of the normal distribution and Φµ,σ the corresponding dis-
tribution function. Given a sample of data x∗i , i = 1, · · · , n, the likelihood function
becomes:

L = L(µ, σ2) =
∏

i

p(x∗i |µ, σ2),

and the log-likelihood, l = log(L), is given by:

l = l(µ, σ2) =
∑

i

log p(x∗i |µ, σ2) → max
µ,σ2

. (50)

Solving this optimization problem yields the ML estimates µ̂ML and σ̂2
ML. One can

find the ML estimates by simply computing l(µi, σ
2
j ) on a sufficiently fine grid of

parameter points (µi, σ
2
j ) and picking the point with the largest value of l.

Figur 12 depicts l(µ, σ2) for a simulated set of height in inch as of 272 men with
mean 67.5 and variance 7.29. The idea of this simulation has been taken from a
historical example of slave men data in the USA, where the men have classified into
three groups, namely small medium and tall, Komlos (1994).

We rounded the simulated data with h = 6 to the points 60, 66, 72 so that we also
have three groups: 60 for small, 66 for medium, and 72 for tall. The sample consists
of 14, 183, and 75 individuals for small, medium and tall, respectively. Although h
is rather large (h = 2.2σ), we first try to estimate µ and σ2 with the rounded data.
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Figure 12: ML for µ and σ

We get x̄∗ = 67.4 and s2
x∗ = 10.3. correcting s2

x∗ by substracting h2

12
we receive the

estimate σ̂2 = 7.3, which comes very close to the true value of σ2. Nevertheless, we
also apply ML to estimate µ and σ2. Figure 12 shows the likelihood function. Its
maximum is found by a grid search and we find µ̂ML = 67.4 and σ̂2

ML
= 7.29.

A more systematic way of finding the maximum of l is to use Newton’s method (or
some other iterative algorithm): Let θ = (µ, σ2)⊤ and start with the simple estimate
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θ0 = (x̄∗, s2
x∗)⊤ as an initial parameter value. An improved estimate is given by

θ1 = θ0 −
(

∂2l

∂θ0∂θ
⊤
0

)−1
∂l

∂θ0
. (51)

This procedure may be repeated with θ1 in place of θ0, and so on. But θ1 is often
good enough, in particular if h is small. The working of this method for the normal
distribution can be studied in Gjeddeback (1949) and for other distributions, in
particular the exponential distribution, in Kulldorff (1961) and Tallis and Young
(1962), who both also consider unequal rounding intervals.

The derivatives in (51) are not always easy to compute, in particular when other
distributions besides the normal are considered. But for small h, following Lindley
(1949), approximations to these derivatives can be computed easily using a Taylor
expansion of ϕ(x) := ϕµ,σ(x) at x∗:

ϕ(x) = ϕ(x∗) + ϕ′(x∗)(x− x∗) +
1

2
ϕ′′(x∗)(x− x∗)2 + · · ·

Then, omitting terms of higher order in h, (49) yields

p(x∗) ≈ hϕ(x∗) +
h3

24
ϕ′′(x∗).

Taking logarithms, we obtain (again omitting terms of higher order in h)

log p(x∗) ≈ log h + logϕ(x∗) + log

(

1 +
h2

24

ϕ′′(x∗)

ϕ(x∗)

)

≈ log h + logϕ(x∗) +
h2

24

ϕ′′(x∗)

ϕ(x∗)
, (52)

and this expression can be substiuted in (50). Now by taking derivatives in (52), we
obtain for the derivatives in (51)

∂l

∂θ0
≈ h2

24

∑

i

∂

∂θ0

ϕ′′(x∗i )

ϕ(x∗i )
(53)

∂2l

∂θ0∂θ⊤0
≈

∑

i

∂2

∂θ0∂θ⊤0
logϕ(x∗i ). (54)

In (53) we made use of the fact that

∂

∂θ0

∑

logϕ(x∗i ) = 0. (55)

Indeed, the simple estimate θ0 is found by solving the likelihood score equation (55)
of the orignal model with the rounded data x∗i in place of the orignal data xi. In (54)
terms of order h2 were omitted.
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Substituting (53) and (54) in (51) yields a first step approximation to the ML esti-
mator of θ:

θ1 ≈ θ0 −
h2

24

(

∑

i

∂2

∂θ0∂θ
⊤
0

logϕ(x∗i )

)−1(
∑

i

∂

∂θ0

ϕ′′(x∗i )

ϕ(x∗i )

)

. (56)

The difference θ1−θ0 in (56) can be regarded as an analogue to Sheppard’s correction
stemming from ML estimation theory rather than from moment considerations. In
the case of estimating θ = (µ, σ2)⊤ from a normal distribution, we find with some
algebra from (53) and (54)

∂l

∂θ0
≈ − h2

12s4
x∗

∑

i

(

x∗i − x̄∗

(x∗

i −x̄∗)2

s2
x∗

− 1
2

)

= − h2n

12s4
x∗

(

0
1
2

)

∂2l

∂θ0∂θ⊤0
≈ − 1

s4
x∗

∑

i

(

s2
x∗ x∗i − x̄∗

x∗i − x̄∗
(x∗

i −x̄∗)2

s2
x∗

− 1
2

)

= − n

s4
x∗

(

s2
x∗ 0

0 1
2

)

.

(56) then yields

(

µ1

σ2
1

)

=

(

x̄∗

s2
x∗

)

− h2

12

(

0
1

)

,

and this is just Sheppard’s correction for µ and σ2. For extensions to other distribu-
tion see also Tallis (1967) and for a generalization to the multivariate case see Don
(1981). Fryer and Pethybridge (1972) extend Sheppard’s correction to higher orders
of h and do the same for the estimates of a linear regression.

In a similar manner one can derive Sheppard’s correction from the first step of an
EM algorithem so solve the ML equations for µ and σ2 of a normal distribution, cf.
Dempster and Rubin (1983).

10 Asymmetric Rounding

Sometimes the data have been rounded asymmetrically, which symmetricmeans that
the rounding intervals about x∗ and x∗ + h are not equal. A simple example of
asymmetric rounding is a situation where even numbers are preferred and values
(0.75 to 1.25) are rounded to 1 while values (1.25 to 2.75) are rounded to 2, see
Figure 13. Asymmetric rounding has no implications for the expected value, but it
does have an influence on the variance.
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We can determine the moments of X∗ in the same way as for the symmetric case
(Section 3). Let us assume that all values of X in the interval [2ih− rh, 2ih + rh],
0 ≤ r ≤ 1, are rounded to x∗ = 2ih while all values of X in the interval [(2i+ 1)h−
(1− r)h, (2i+ 1)h+ (1− r)h] are rounded to x∗ + h = (2i+ 1)h , i = 0,±1,±2, · · · ,
see Figure 13(Here we assume without loss of generality that a = 0, i.e., the origin
0 is a point of the grid).

First note that

p(2ih) := P(X∗ = 2ih) =

rh
∫

−rh

ϕ(2ih + u)du

p((2i+ 1)h) := P(X∗ = (2i+ 1)h) =

(1−r)h
∫

−(1−r)h

ϕ(2ih + u)du.

Then the k-th moments of X∗ is

EX∗k =
∑

i

(2ih)k

rh
∫

−rh

ϕ(2ih+ u)du+
∑

i

[(2i+ 1)h]k
(1−r)h
∫

−(1−r)h

ϕ((2i+ 1)h+ u)du.

Using the Euler-Maclaurin approximation, we obtain

EX∗k ≈
∞
∫

−∞

yk

2h

rh
∫

−rh

ϕ(y + u)dudy +

∞
∫

−∞

yk

2h

(1−r)h
∫

−(1−r)h

ϕ(y + u)dudy

=
1

2

∞
∫

−∞







r
∫

−r

(x− vh)kdv +

1−r
∫

−(1−r)

(x− vh)kdv






ϕ(x)dx.

Setting k = 1, we obtain a formula for the mean of X∗:

EX∗ ≈ 1

2

∞
∫

−∞

(

[

xv − v2

2
h

]r

−r

+

[

xv − v2

2
h

]1−r

−(1−r)

)

ϕ(x)dx

= r

∞
∫

−∞

xϕ(x)dx+ (1 − r)

∞
∫

−∞

xϕ(x)dx = EX. (57)

Thus the means of X∗ and X are approximately equal.
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Similarly, for k = 2:

EX∗2 ≈ 1

2

∞
∫

−∞

(

[

x2v − 2x
v2

2
h+

v3

3
h2

]r

−r

+

[

x2v − 2x
v2

2
h+

v3

3
h2

]1−r

−(1−r)

)

ϕ(x)dx

= rEX2 +
r3

3
h2 + (1 − r)EX2 +

(1 − r)3

3
h2

= EX2 +
1

3
(1 − 3r + 3r2)h2. (58)

Together with (57) this implies

VX∗ ≈ VX +
h2

3
(1 − 3r + 3r2) =: VX + f(r)h2. (59)

The shape of the function f(r) := r2 − r + 1
3

is shown in Figure 14 for 0 ≤ r ≤ 1.
f(r) has a minimum at r = 1

2
, which corresponds to symmetric rounding, and at

this point f(1
2
) = 1

12
, which is Sheppard’s correction. Thus the term f(r)h2 is a

generalization of Sheppard’s correction to the case of asymmetric rounding. The
function f(r) reaches its maximum for r = 0 and r = 1, which means that X∗ or
X∗ + h, respectively, has a rounding interval of width zero.

Figure 13: Asymmetric rounding

Multivariate moments are treated in the same way, see also Section 3.3. We find,
e.g., for the second mixed moment of X∗ and Y :

E(X∗Y ) =
∑

i

2ih

∞
∫

−∞

y

rh
∫

−rh

ϕ(2ih+ u, y)dudy

+
∑

i

(2i+ 1)h

∞
∫

−∞

y

(1−r)h
∫

−(1−r)h

ϕ((2i+ 1)h+ u, y)dudy.
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Figure 14: Shape of the function f(r)

With Euler-Maclaurin we get

E(X∗Y ) =

∞
∫

−∞

∞
∫

−∞

rh
∫

−rh

z

2h
yϕ(z + u, y)dudzdy

+

∞
∫

−∞

∞
∫

−∞

(1−r)h
∫

−(1−r)h

z

2h
yϕ(z + u, y)dudzdy.

With x = z + u, ũ = u
h

the right hand side becomes

1

2

∞
∫

−∞

∞
∫

−∞







r
∫

−r

(x− ũh)dũ+

1−r
∫

−(1−r)

(x− ũh)dũ






yϕ(x, y)dxdy =

=
1

2

∞
∫

−∞

∞
∫

−∞

[2rx+ 2(1 − r)x]yϕ(x, y)dxdy =

∞
∫

−∞

∞
∫

−∞

xyϕ(x, y)dxdy = E(XY ).

Thus

E(X∗Y ) ≈ E(XY ).

Similar relations hold if both X and Y or if only Y is (asymmetrically) rounded. As
a consequence, for the covariances of rounded and unrounded variables, the previous
esymmetricquations (18) and (19) hold also true in the case of asymmetric rounding.

Now we turn to linear regression in the case of asymmetric rounding. We consider
the case where only X is rounded.
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As in Section 4, see (22), we have

β∗ ≈ Cov(X, Y )VX

VXVX∗ ≈ β
VX∗ − f(r)h2

VX∗ = β

(

1 − f(r)

(

h

σx∗

)2
)

.

with f(r) = r2 − r + 1
3
.

11 Conclusion

Rounding of data has the inevitable consequence that their statistical moments, in
particular mean and variance, (and consequantly also regression parameters) com-
puted from such data are more or less distorted in comparison to the moments of the
unrounded data. This survey looks into the magnitude of this distortion and when
and how it can be approximated by simple expressions depending on the length
of the rounding interval. Sheppard’s correction for the variance is the best known
approximation in this context. We study cases where it is appropriate and, indeed,
where it is exact and other cases where it is completely misleading.

Most of the paper is concerned with population moments. But we also consider es-
timating and testing moments (and regression parameters) on the basis of a random
sample of rounded data. Clearly, rounding implies a loss of efficiency, even though
the bias may often be negligible, (after appropriate correction). When rounding is so
coarse that the approximation formulas fail, maximum likelihood must be employed
to get consistent estimates.

Sheppard’s correction is generalized to the case of asymmetric rounding. The cor-
rection turns out to be a function of the symmetry portion r.
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