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Abstract

In this paper we introduce a fractionally integrated exponential continuous
time GARCH(p, d, q) process. It is defined in such a way that it is a continuous
time extension of the discrete time FIEGARCH(p, d, q) process. We investigate
stationarity and moment properties of the new model. It is also shown that the
long memory effect introduced in the log-volatility propagates to the volatility
process.

Keywords: fractionally integrated exponential continuous time GARCH pro-
cess; long memory FIEGARCH;ECOGARCH; Lévy process; stationarity;
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1. Introduction

GARCH type processes have become very popular in financial econometrics to model
returns of stocks, exchange rates and other series observed at equidistant time points.
They have been designed (see Engle [12] and Bollerslev [6]) to capture so-called stylized
facts of such data, which are e.g. volatility clustering, dependence without correlation
and tail heaviness. Several authors have found empirical evidence for the existence of
long-run volatility persistence in financial data. Among these are e.g. Andersen and
Bollerslev [1], who analysed high-frequency foreign exchange data, Baillie et al. [5],
Bollerlev and Mikkelsen [7] and Baillie [4], who gave an overview over long memory
processes in econometrics. These findings have to be treated carefully since certain
empirical evidence, like a slow decay of the empirical autocorrelation function, could
also be due to non-stationarity of the data. This was e.g. shown by Mikosch and
Stărică [19] for a long time series of S&P 500 log-returns. In the following this problem
will not be our subject.
Since there are different ways to characterise long range dependence, we first want to
recall the definition of a long memory process as we will use it before we go on.

Definition 1.1.

Let Z be a stationary stochastic process and γZ(h) = Cov(Zt+h, Zt), h ∈ R, be its
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autocovariance function. If there exists 0 < d < 0.5 and a constant cZ > 0 such that

lim
h→∞

γZ(h)

h2d−1
= cZ , (1.1)

then Z is called a stationary process with long memory.

In the discrete time GARCH framework there are various models with long range
dependence in the volatility process. Among these are the IGARCH(p, q) process of
Engle and Bollerslev [13], the FIGARCH(p, d, q) process proposed by Baillie et al. [5]
or the fractionally integrated EGARCH(p, d, q) process of Bollerlev and Mikkelsen [7].
The FIGARCH process has to be treated carefully since the existence of a stationary
version is not clear; see section 4 in Mikosch and Stărică [19] and Remark 3.2 in
Kazakevičius and Leipus [15]. The FIEGARCH(p, d, q) process is a modification of the
EGARCH model of Nelson [21] in the sense that the log-volatility process is modeled
by a fractionally integrated ARMA(p, d, q) process instead of a short memory ARMA
process. This long memory effect introduced in the log-volatility process propagates to
the volatility and the squared return process. This was shown by Surgailis and Viano
[25].
The availability of high frequency data, which increased enormously in the last years, is
one reason to consider continuous time models with similar behaviour as discrete time
GARCH models. The reason for this is ofcourse that at the highest available frequency
the observations of the price process occur at irregularly spaced time points and
therefore it is kind of natural to assume an underlying continuous time model. Different
approaches have been taken to set up a continuous time model, which has the same
features as discrete time GARCH processes. Recently Klüppelberg et al. [16] developed
a continuous time GARCH(1, 1) model, which was extended by Brockwell et al. [9] to
a continuous time GARCH(p, q) process for general orders p, q ∈ N, q ≥ p, henceforth
called COGARCH(p, q). Their approach differs fundamentally from previous attempts,
which could be summarized as diffusion approximations (see e.g. Nelson [20]), by the
fact that their model is driven by only one source of randomness (like discrete time
GARCH) instead of two (like in the diffusion approximations). Haug and Czado [14]
have defined an exponential continuous time GARCH process, which is a continuous
time extension to the EGARCH process. All these models exhibit a short memory in
the volatiltiy process. To incorporated a long memory effect into a continuous time
model Comte and Renault [11] defined a continuous time stochastic volatility (SV)
model by specifying the log-volatility process as an OU process driven by a fractional
Brownian motion. Brockwell and Marquardt [10] proposed to model the stochastic
volatility as a non-negative fractionally integrated CARMA process. Another non-
Gaussian continuous time SV model with long memory was introduced by Anh et
al.[2], where they define their model via the Green function solution of a fractional
differential equation driven by a Lévy process. Since this shows considerable interest
in continuous time models with long memory in the volatility process, we now want to
show in this paper how to extend the ECOGARCH(p, q) in such a way.
The paper is now organized as follows. In section 2 we define the fractionally integrated
exponential continuous time GARCH(p, d, q) process after a short review of elementary
properties of Lévy processes and analyse stationarity conditions. The second order
behaviour of the volatility process is investigated in section 3, while section 4 deals
with second order behaviour of the return process.
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2. Fractionally integrated exponential COGARCH

In this section we want to construct a continuous time analogue of the discrete time
fractionally integrated EGARCH(p, d, q) process, which is defined in the following way:

Let p, q ∈ N, µ, α1, . . . , αq, β1, . . . , βp ∈ R, suppose αq 6= 0 , βp 6= 0 and that the
autoregressive polynomial

φ(z) := 1 − α1z − · · · − αqz
q

and the moving average polynomial

ψ(z) := β1 + β2z + · · · + βpz
p−1

have no common zeros and that φ(z) 6= 0 on {z ∈ C | |z| ≤ 1}. Let (ǫn)n∈Z be an i.i.d.
sequence with E(ǫ1) = 0 and Var(ǫ1) = 1 and −0.5 < d < 0.5. Define the measurable
function f : R → R by

f(x) := θx + γ[|x| − E(|x|)] , x ∈ R , (2.1)

with real coefficients θ and γ. Then we call (Xn)n∈Z, where Xn = σnǫn, a FIE-
GARCH(p,d,q) processif

log(σ2
n) = µ + φ(B)−1(1 − B)−d(1 + ψ(B))f(ǫn−1) , (2.2)

where B is the backward shift operator, BXn = Xn−1.

We will define the process using the idea of Klüppelberg et al. [16] to replace the
innovations ǫn of the discrete time model by the jumps of a Lévy process L = (Lt)t≥0.
Any Lévy process L on R has a characteristic function of the form

E(eiuLt) = exp{tψL(u)} , t ≥ 0,

with

ψL(u) := iγLu −
τ2
L

2
u2 +

∫

R

(eiux − 1 − iuxχ{|x|≤1})νL(dx) , u ∈ R,

where τ2
L ≥ 0, γL ∈ R, the measure νL satisfies

νL({0}) = 0 and

∫

R

min(x2, 1)νL(dx) < ∞

and χA(·) denotes the indicator function of the set A ⊂ R. The measure νL is called
the Lévy measure of L and the triplet (γL, τ2

L, νL) is called the characteristic triplet of
L. The map ψL is called the Lévy symbol or Lévy exponent. For L to have finite mean
and variance it is necessary and sufficient that

∫

|x|>1

|x|νL(dx) < ∞ and

∫

|x|>1

x2νL(dx) < ∞ ,
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respectively (Sato [23], Example 25.12). For more details on Lévy processes we refer
to Sato [23] or Applebaum [3].

We consider zero mean Lévy processes L defined on a probability space (Ω,F , P )
with jumps ∆Lt := Lt − Lt−. Since E(Lt) = t(γL +

∫
|x|>1

xνL(dx)), a zero mean

implies that γL = −
∫
|x|>1

xνL(dx) and hence the corresponding Lévy symbol is of the

form

ψL(u) = −τ2
L

u2

2
+

∫

R

(eiux − 1 − iux)νL(dx) , (2.3)

and the Lévy-Itô decomposition (see e.g. Theorem 2.4.16 of Applebaum [3]) of L is

Lt = Bt +

∫

R−{0}

xÑL(t, dx) , t ≥ 0, (2.4)

where B is a Brownian motion with variance τ2
L and ÑL(t, dx) = NL(t, dx) − tνL(dx),

t ≥ 0, is the compensated random measure associated to the Poisson random measure

NL(t, A) = #{0 ≤ s < t;∆Ls ∈ A} =
∑

0<s≤t

χA(∆Ls), A ∈ B(R − {0}),

on R+ × R − {0}, which is independent of B.

The Lévy process L can be extended to a Lévy process L∗ defined on the whole
real line by choosing a second Lévy process (L̃t)t≥0 independent of L and with the
same distribution as L and specifying

L∗
t := Ltχ[0,∞)(t) − L̃−t−χ(−∞,0)(t), t ∈ R,

where χA(·) denotes the indicator function of the set A. In the following we will work
with L∗ but write for simplicity L instead of L∗.

Now we are able to define the fractionally integrated exponential continuous time
GARCH(p, d, q) process , shortly called FIECOGARCH(p, d, q). We will see that if the
log-volatility process defined it is actually a fractionally integrated continuous time
ARMA(q, d, p − 1) process, henceforth called FICARMA(q, d, p − 1) process (see e.g.
Brockwell and Marquardt [10] for details on FICARMA processes). The driving noise
process of the log-volatility process will be defined similarly to (2.1).

Definition 2.1. Let L = (Lt)t≥0 be a Lévy process with E(L1) = 0, Var(L1) = 1 and
Lévy measure νL and let the q × q matrix A and vectors b ∈ R

q and 1q ∈ R
q be

defined by

A =





0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−aq −aq−1 −aq−2 · · · −a1




, b =





b1

b2

...
bq−1

bq




, 1q =





0
0
...
0
1
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with coefficients a1, . . . , aq, b1, . . . , bp ∈ R, where aq 6= 0, bp 6= 0, and bp+1 = · · · =
bq = 0.. Then for 0 < d < 0.5 we define the fractionally integrated exponential
COGARCH(p, d, q) process Gd as the stochastic process satisfying,

dGd,t = σd,tdLt, t > 0, G0 = 0, (2.5)

where the log-volatility process is given by

log(σ2
d,t+) = µ +

∫ t

−∞

gd(t − u)dMu, t > 0, (2.6)

with mean µ ∈ R and initial value log(σ2
d,0) independent of the driving Lévy process L.

The process

Mt :=

∫

R−{0}

h(x)ÑL(t, dx) , t > 0, (2.7)

is a zero mean Lévy process (see Remark 2.2) with

h(x) := θx + γ|x|

and parameters θ, γ ∈ R. The kernel function

gd(t) =

∫ t

0

g(t − u)
ud−1

Γ(d)
du , 0 < d < 0.5, (2.8)

is the Riemann-Liouville fractional integral or order d (see Definition 2.1 in Sako et
al. [22]) of the kernel function g(t) = bT eAt1qχ(0,∞)(t).

Returns over a time interval of length r > 0 are described by the increments of G

G
(r)
d,t := Gd,t − Gd,t−r =

∫

(t−r,t]

σd,s dLs , t ≥ r > 0 . (2.9)

On the other hand an equidistant sequence of such non-overlapping returns of length r

is given by (G
(r)
nr )n∈N. Thus this gives us the possibility to model ultra high frequency

data, which consists of returns over varying time intervals.

In the rest of the paper the following terminology will be used:

Gd (log-) price process

G
(r)
d (log-) return process

σ2
d volatility process

log(σ2
d) log-volatility process.

Remark 2.2. (i) The log-volatility process (2.6) is well-defined and stationary if the
real part of the eigenvalues of A is negative, since then

∫

R

∫

R−{0}

|gd(t − s)x|2νL(dx)ds , ∀ t ≥ 0,
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and we can apply Theorem 4.3.4 and 4.3.16 in Applebaum [3] from which the assump-
tions follow. In this case the log-volatility process is a FICARMA(p, d, q) process.
(ii) The process M defined by (2.7) is by construction a process with independent and
stationary increments and by Theorem 4.3.4 in Applebaum [3] well defined if

∫

E

|h(x)|2νL(dx) < ∞ . (2.10)

Condition (2.10) is satisfied since νL is a Lévy measure and L has finite variance. By
equation (2.9) of Applebaum [3] the characteristic function of M at time t ≥ 0 is given
by

E(eiuMt) = exp

(
t

∫

R

[eiux − 1 − iux]νM (dx)

)

= exp

(
t

{
iuγM +

∫

R

[eiux − 1 − iuxχ|x|≤1]νM (dx)

})

=: exp(tψM (u)) ,

where νM := νL ◦ h−1 is the Lévy measure of M and γM := −
∫
|x|>1

xνM (dx). The

concrete form of νM depends on the sign and size of θ and γ and is given in the
following:

νM ((−∞,−x]) =






νL([− x
θ+γ ,∞)) + νL((−∞,− x

θ−γ ]) , θ + γ < 0 and θ − γ > 0

νL((−∞,− x
θ−γ ]) , θ − γ > 0 and θ + γ > 0

νL([− x
θ+γ ,∞)) , θ + γ < 0 and θ − γ < 0

0 θ + γ > 0 and θ − γ < 0

and

νM ([x,∞)) =






νL([ x
θ+γ ,∞)) + νL((−∞, x

θ−γ ]) , θ + γ > 0 and θ − γ < 0

νL((−∞, x
θ−γ ]) , θ − γ < 0 and θ + γ < 0

νL([ x
θ+γ ,∞)) , θ + γ > 0 and θ − γ > 0

0 θ + γ < 0 and θ − γ > 0

for x > 0. One recognises that for θ + γ < 0 ∨ θ − γ > 0 M is a spectrally negative
Lévy process, i.e. M has only negative jumps, and for θ + γ > 0 ∨ θ − γ < 0 M is a
spectrally positive Lévy process. Therefore M has the characteristic triplet (γM , 0, νM ).
(iii) The model can of course also be defined for a different choice of h, as long as
condition (2.10) is satisfied.

Alternatively the log-volatility process can be defined in terms of the fractional Lévy
process Md associated with M . We recall the definition of a fractional Lévy process
from Marquardt [18].

Remark 2.3. Let M = (Mt)t∈R be a Lévy process on R with EM1 = 0, EM2
1 < ∞ and

without Brownian component. For the fractional integration parameter 0 < d < 0.5
the stochastic process

Md,t =
1

Γ(d + 1)

∫

R

[(t − s)d
+ − (−s)d

+]dMs , t ∈ R , (2.11)
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is called a fractional Lévy process.

The strictly stationary log-volatility process (2.6) is then equal to

µ +

∫ t

−∞

Dd
+gd(t − u)dMd,u, t > 0 , (2.12)

in the L2-sense, where Dd
+gd(x) = 1

Γ(1−d)
d
dx

∫ x

−∞
g(u)

(x−u)d du is the Riemann-Liouville

fractional derivative of gd of order d (see Definition 2.2 in Sako et al. [22]). Since
g ∈ L1(R) we get from Theorem 2.4 in Sako et al. [22] that Dd

+gd = g. The proof of
the equivalence of (2.6) and (2.12) can be found in Marquardt [18], Theorem 6.5 .

If the Lévy process M is of finite activity, i.e. νM (R) < ∞, then the corresponding
fractional Lévy process Md is of finite variation. In this case the integral in (2.12) can
be defined as a Riemann-Stieltjes integral. In case where M is not of finite activity the
corresponding fractional Lévy process is not a semimartingale, but for a deterministic
integrand the integral with respect to Md can be defined in the L2-sense (we refer to
section 5 of Marquardt [18] for details). We do not restrict the driving Lévy process
to be of finite activity but we only deal with deterministic integrands and hence this
turns out to be sufficient for our purpose.

The log-volatility process (2.12) is now the solution of the continuous time state
space model

log(σ2
d,t) = µ + bT Xd,t− , t > 0, log(σ2

d,0) = µ + bT Xd,0 (2.13)

dXd,t = AXd,tdt + 1qdMd,t , t > 0 , (2.14)

where Xd,0 is independent of (Md,t)t≥0 and A,b and 1q are defined in Definition 2.1.
The state space representation of the log-volatiltiy process is also advantageous for

the purpose of simulating the log-price process Gd. The simulation procedure is the
following:

1. Choose simulation times 0 = t0 < t1 < · · · < tn ≤ T , possibly random.

2. Generate increments Md,ti+1
− Md,ti

, i = 0, . . . , n − 1, of the driving fractional
Lévy process.

3. Approximate the state process (2.14) of the log-volatility by a stochastic Euler
scheme.

4. Compute
log(σ̂2

d,ti
) = µ + bT X̂d,ti−1

for i = 1, . . . , n.

5. Compute an approximation Ĝd by a stochastic Euler scheme:

Ĝd,ti
= Ĝd,ti−1

+ σ̂d,ti−1
Wi + σ̂d,ti−1

Ji,

where Wi ∼ N(0, ti − ti−1) and Ji is an increment of the jump part of L over the
time interval [ti−1, ti].
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Since the fractional Lévy process Md at time t is an integral with respect to the
driving Lévy process L it can be approximated by the corresponding Riemann sums.
This approximation is explained in chapter 2.4.3 in Marquardt [17].

Defined in this way log(σ2
d) is not strictly stationary by definition. The conditions

for stationarity of log(σ2
d) the volatility process σ2

d and the return process G
(r)
d are

summarized in the next proposition. The autocovariance function of the log-volatility
process and its asymptotic behaviour is also stated. Therefore we will call two functions
f1 and f2 asymptotically equivalent if limx→∞ f1(x)/f2(x) = 1 and denote it by f1(x) ∼
f2(x) as x → ∞. .

Proposition 2.4. Let log(σ2
d) be defined by (2.13) and (2.14) and Gd as in Definition

2.1. If the eigenvalues of A all have negative real parts and log(σ2
d,0) has the same

distribution as
∫ ∞

0
bT eAs1qdMd,s, then log(σ2

d) and σ2
d are strictly stationary and Gd

has strictly stationary increments. The log-volatility process is weakly stationary and
has autocovariance function

Cov(log(σ2
d,t+h), log(σ2

d,t)) = E(M2
1 )

∫

R

gd(u + h)gd(u)du, t > 0 , h ≥ 0 ,(2.15)

∼ C1h
2d−1 , as h → ∞ , (2.16)

where C1 := Γ(1−2d)
Γ(d)Γ(1−d)EM2

1

(∫
R

g(s)ds
)2

.

The strict stationarity of log(σ2
d), σ2

d and the increments of Gd follows from the same
reasoning as in the short memory case (see Proposition 3.3 and Corollary 3.5 in Haug
and Czado [14]). The proof of (2.15) and (2.16) is given in Marquardt [18], Theorem
6.7 and 6.6 .

Remark 2.5. The asymptotic behaviour of the autocovariance function of a FICARMA
process was derived by Brockwell [8]. The result depends on the asymptotic behaviour
of the kernel function gd

gd(s) ∼

(∫

R

g(x)dx

)
sd−1 , for s → ∞, (2.17)

which was shown in Brockwell [8], section 4. In the following the constant in (2.17)
will be denoted by C2.

3. Second order properties of the volatility process

Second order properties are now derived under the assumption that the log-volatility
process is strictly stationary. The integral in (2.6) is well defined and from (2.5) in
Sato and Yamazato [24] it follows that the characteristic function of log(σ2

d,t+) is given
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by

E(eiu log(σ2
d,t+)) = eiuµ exp

{∫ ∞

0

ψM (gd(s)u)ds

}

= eiuµ exp

{
iu

[∫ ∞

0

gd(s)γMds +

∫ ∞

0

∫

R

(χ{|gd(s)x|≤1} − χ{|x|≤1})νM (dx)ds

]

+

∫ ∞

0

∫

R

(eiugd(s)x − 1 − iugd(s)xχ{|gd(s)x|≤1})νM (dx)ds

}

= eiuµ exp

{
iuγ∞ +

∫

R

(eiux − 1 − iuxχ{|x|≤1}ν∞(dx)

}
,

since log(σ2
d,t)

d
= µ +

∫ ∞

0
gd(s)dMs.

The stationary distribution Fd of log(σ2
d) is therefore infinitely divisible with char-

acteristic triplet (γd,∞, 0, νd,∞), where

γd,∞ =

∫ ∞

0

gd(s)γMds

+

∫ ∞

0

∫

R

gd(s)x(χ{|gd(s)x|≤1} − χ{|x|≤1})νM (dx)ds (3.1)

νd,∞(B) =

∫ ∞

0

∫

R

χB(gd(s)x)νM (dx)ds, B ∈ B(R) . (3.2)

The second order behaviour is now summarised in the following proposition.

Proposition 3.1. Let log(σ2
d) be strictly stationary with marginal distribution Fd,

where Fd is infinitely divisible with characteristic triplet (γd,∞, 0, νd,∞). The k-th
moment of σ2

d,t is finite, if

k ∈ Kd,∞ = {s ∈ R :

∫

|x|>1

esxνd,∞(dx) < ∞} .

In this case

Ψd,∞(k) =

∫ ∞

0

ΨM (gd(s)k)ds , (3.3)

where ΨM (u) := ψM (−iu)), u ∈ R, is well defined and

E(σ2k
d,t) = eµk eΨd,∞(k) , ∀t ≥ 0 . (3.4)

Assume that E(σ4
d,t) < ∞. Let Ψh

d,∞(k) and Ψh
d(k) be defined by (3.3) with kernel

function gd replaced by

gh
d,∞(s) := gd(s) + gd(s + h) and gh

d (s) := gd(s)χ(0,h)(s)

respectively. Then the autocovariance function of σ2
d is given by

Cov(σ2
d,t+h, σ2

d,t) = e2µ(eΨh
d,∞(1)eΨh

d(1) − e2Ψd,∞(1)) . (3.5)
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If we replace the kernel functions in the proof of Proposition 4.3 and 4.5 in Haug
and Czado [14] appropriately with the kernel functions gd, g

h
d,∞ and gh

d , then the result
follows.

Next we will show that the long memory property introduced in the log volatility
process implies also a long memory effect in the volatility process. The proof is based
on a result for the FICARMA(p, d, q) process which can be found in Lemma 1.23 in
Marquardt [17].

Theorem 3.2. Let log(σ2
d) be the strictly stationary long memory process (2.6) with

long memory parameter 0 < d < 0.5 and assume that 2 ∈ Kd,∞. Then E(σ4
d,t) < ∞,

∀ t ≥ 0, and

Cov(σ2
d,t+h, σ2

d,t) ∼ e2(µ+Ψd,∞(1))C1h
2d−1 , as h → ∞, (3.6)

where C1 = Γ(1−2d)
Γ(d)Γ(1−d)EM2

1

(∫
R

g(s)ds
)2

.

Proof: From equation (3.5) it follows that

Cov(σ2
d,t+h, σ2

d,t) = e2µ(eΨh
d,∞(1)eΨh

d(1) − e2Ψd,∞(1))

= e2µe2Ψd,∞(1)(eΨh
d,∞(1)+Ψh

d(1)−2Ψd,∞(1) − 1)

= e2µe2Ψd,∞(1)(Ψh
d,∞(1) + Ψh

d(1) − 2Ψd,∞(1)

+O
(
(Ψh

d,∞(1) + Ψh
d(1) − 2Ψd,∞(1))2

)
.

If we can show that Ψh
d,∞(1) + Ψh

d(1) − 2Ψd,∞(1) ∼ C1h
2d−1, as h → ∞, the result

follows. Consider therefore

Ψh
d,∞(1) − Ψd,∞(1) + Ψh

d(1) − Ψd,∞(1)

=

∫ ∞

0

∫

R

{
egh

d,∞(s)x − 1 − gh
d,∞(s)x −

[
egd(s)x − 1 − gd(s)x

]}
νM (dx)ds

+

∫ ∞

0

∫

R

{
egh

d (s)x − 1 − gh
d (s)x −

[
egd(s)x − 1 − gd(s)x

]}
νM (dx)ds

=

∫ ∞

0

∫

R

{
egh

d,∞(s)x − egd(s)x + egh
d (s)x − egh

d,∞(s)x
}

νM (dx)ds

=

∫ ∞

0

∫

R

egd(s)x
{

egd(s+h)x − 1
}

νM (dx)ds −

∫ ∞

h

∫

R

{
1 − egd(s)x

}
νM (dx)ds .
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Series expansion of the exponential function yields

Ψh
d,∞(1) − Ψd,∞(1) + Ψh

d(1) − Ψd,∞(1)

=

∫ ∞

0

∫

R

{
∞∑

k=1

[gd(s + h)x]k

k!
+ gd(s)x

∞∑

k=1

[gd(s + h)x]k

k!

+

∞∑

m=2

(gd(s)x)m

m!

∞∑

k=1

(gd(s + h)x)k

k!
−

∞∑

k=1

[gd(s + h)x]k

k!

}
νM (dx)ds

=

∫ ∞

0

∫

R

[
xgd(s)

∞∑

m=1

(gd(s + h)x)m

m!
+

∞∑

m=2

(gd(s)x)m

m!

∞∑

k=1

(gd(s + h)x)k

k!

]
νM (dx)ds

=

∫ ∞

0

∫

R

[
x2gd(s)gd(s + h) + gd(s)x

∞∑

m=2

(gd(s + h)x)m

m!

+gd(s + h)x
∞∑

m=2

(gd(s)x)m

m!
+

∞∑

m=2

(gd(s)x)m

m!

∞∑

k=2

(gd(s + h)x)k

k!

]
νM (dx)ds

=

∫ ∞

0

∫

R

[
gd(s + h)x

∞∑

m=1

(gd(s)x)m

m!
+

∞∑

m=1

(gd(s)x)m

m!

∞∑

k=2

(gd(s + h)x)k

k!

]
νM (dx)ds .

Define Mj :=
∫

R
xjνM (dx), j ∈ N. Since

∫
|x|>1

exνd,∞(dx) < ∞ implies that∫
R
|x|kνM (dx) < ∞, k ≥ 2, we get that all moments Mj , j ≥ 2, of the Lévy measure

νM are finite. Consider now the integral

I1(h) :=

∫ ∞

0

gd(s + h)gd(s)

[
M2 +

∞∑

m=2

(gd(s))
m−1

m!
Mm+1

]
ds .

We want to show that

I1(h) ∼ M2

∫ ∞

0

Gd(s + h)Gd(s)ds =: IG(h) , as h → ∞, (3.7)

with Gd(s) := C2s
d−1, since IG(h) ∼ C1h

2d−1, h → ∞. We show first, that

gd(s + h + hd/2)gd(s + hd/2)

[
M2 +

∞∑

m=2

(gd(s + hd/2))m−1

m!
Mm+1

]

∼ M2Gd(s + h + hd/2)Gd(s + hd/2) ,

if h → ∞. Consider therefore the limit

lim
s≥0,h→∞

gd(s + h + hd/2)gd(s + hd/2)
[
M2 +

∑∞
m=2

(gd(s+hd/2))m−1

m! Mm+1

]

M2Gd(s + h + hd/2)Gd(s + hd/2)

= 1 + lim
s≥0,h→∞

M−1
2

∞∑

m=2

(gd(s + hd/2))m−1

m!
Mm+1 ,
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which is equal to 1 because of (2.17),
∣∣∣∣∣gd(s + hd/2)−1

∞∑

m=2

(gd(s + hd/2))m

m!
Mm+1

∣∣∣∣∣

≤ M∗|gd(s + hd/2)|−1
(
e|gd(s+hd/2)| − |gd(s + hd/2)| − 1

)
,

with M∗ := supj∈N |Mj | < ∞, and limx≥0,x→0 x−1(ex −x− 1) = 0 . From Lemma 1.22
in Marquardt [17] it follows that

Ĩ1(h) ∼ ĨG(h) , for h → ∞, (3.8)

where

Ĩ1(h) :=

∫ ∞

hd/2

gd(s + h)gd(s)

[
M2 +

∞∑

m=2

(gd(s))
m−1

m!
Mm+1

]
ds

and

ĨG(h) := M2

∫ ∞

hd/2

Gd(s + h)Gd(s)ds.

Now (3.7) follows if we can show

|I1(h) − IG(h)|

|IG(h)|
≤

|I1(h) − Ĩ1(h)|

|IG(h)|
+
|Ĩ1(h) − ĨG(h)|

|IG(h)|
+
|ĨG(h) − IG(h)|

|IG(h)|
→ 0 for h → ∞.

This can be done in a similar way as in the proof of Lemma 1.23 in Marquardt [17].
In particular, since |IG(h)| ≥ |ĨG(h)| it follows from (3.8) that

|Ĩ1(h) − ĨG(h)|

|IG(h)|
≤

|Ĩ1(h) − ĨG(h)|

|ĨG(h)|
→ 0 .

For d < 0.5 we get |IG(h)| ≥ |C2|
2 h2d−1

1−2d and for all h ≥ K,K large enough, we have

|gd(s + h)| ≤ 2|C2|h
d−1 . There exists also a constant Cg > 0 with sups≥0 |gd(s)| ≤ Cg.

This yields for h ≥ K

|I1(h) − Ĩ1(h)| =

∣∣∣∣∣

∫ hd/2

0

gd(s + h)gd(s)

[
M2 +

∞∑

m=2

(gd(s))
m−1

m!
Mm+1

]
ds

∣∣∣∣∣

≤

∫ hd/2

0

2|C2|h
d−1Cg

[
M2 + M∗C−1

g (eCg − Cg − 1)
]
ds

≤ 2|C2|Cg

[
M2 + M∗C−1

g (eCg − Cg − 1)
]
h2d−1−d/2

and hence

|I1(h) − Ĩ1(h)|

|IG(h)|
≤

2Cg

[
M2 + M∗C−1

g (eCg − Cg − 1)
]
h2d−1−d/2

|C2|
h2d−1

1−2d

→ 0 for h → ∞ .

Similarly we get

|ĨG(h) − IG(h)|

|IG(h)|
≤

Cgh
2d−1−d/2

|C2|
h2d−1

1−2d

for h → ∞ ,
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from which the result follows. Analogously we get with
∫ ∞

0

gk
d(s + h)gd(s)ds ∼ C3h

(k+1)d−k , k ≥ 2,

that

Ik(h) :=

∫ ∞

0

1

k!
gk

d(s + h)gd(s)

[
Mk+1 +

∞∑

m=2

(gd(s))
m−1

m!
Mm+k

]
ds = o(h2d−1) .

and hence it follows that

Ψh
d,∞(1) + Ψh

d(1) − 2Ψd,∞(1) ∼ C1h
2d−1, for h → ∞ ,

which proves the assertion. 2

Example 3.3. In this example we consider a fractionally integrated
ECOGARCH(1, 0.4, 1) process driven by a Lévy process L with Lévy symbol

ψL(u) = −
u2

2
+

∫

R

(eiux − 1)λΦ0,1/λ(dx) ,

where Φ0,1/λ(·) is the distribution function of a normal distribution with mean 0 and
variance 1/λ. This means that L is the sum of a standard Brownian motion W and
the compound Poisson process

Jt =

Nt∑

k=1

Zk , J−t =

−N−t∑

k=1

Z−k , t ≥ 0,

where (Nt)t∈R is an independent Poisson process with intensity λ > 0 and jump times
(Tk)k∈Z. The Poisson process N is also independent from the i.i.d. sequence of jump
sizes (Zk)k∈Z, with Z1 ∼ N(0, 1/λ). The Lévy process M is in this case given by the
following expression

Mt =

Nt∑

k=1

[θZk + γ|Zk|] − Ct , t > 0,

with C = γ
∫

R
|x|λΦ0,1/λ(dx) =

√
2λ
π γ. M−t, t ≥ 0 is defined analogously. The

parameter θ is equal to −0.15 and γ is equal to 0.1. The stationary log-volatility
process is of the form

log(σ2
d,t+) = µ +

∫ t

−∞

b1e
−a1(t−s)dMd,s , t > 0,

where µ = −5, a1 = 0.5 and b1 = 1. In Figure 1 we plotted the sample path of the
simulated log-price process Gd observed at 30 000 equidistant time points, on the left
hand side of the first row. On the right hand side one sees 6 000 observations of the

return process G
(1)
d . The second row shows the empirical autocorrelation function of

the volatility process σ2
d and the corresponding sample path. In the last row the log-

volatility process log(σ2
d) is described. The empirical autocorrelation function of the

volatility process shows the same asymptotic behaviour as the empirical autocorrelation
function of the log-volatility process.
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Figure 1: The log-price process Gd (top left ) and 6 000 observations of the return process

G
(1)
d

(top right) with parameters a1 = 0.5, b1 = 1, µ = −5, θ = −0.15, γ = 0.1 and d = 0.4;
empirical autocorrelation function of σ2

d (middle left) and 6 000 observations of the volatility
process σ2

d (middle right); empirical autocorrelation function of log(σ2
d) (bottom left) and 6 000

observations of the log-volatility process log(σ2
d) (bottom right). The jumps of the compound

Poisson process are N(0, 1/2) distributed.

Remark 3.4. In the last Theorem we have shown, that the autocovariance function
of the volatility process decays at a hyperbolic rate. For the discrete time EGARCH
process this was shown by Surgailis and Viano [25].
In the continuous time setting Comte and Renault [11] showed this effect for a long
memory stochastic volatility model, where the log-volatility process was modeled as
an OU process driven by a fractional Brownian motion. Hence our result can also be
applied to a continuous-time stochastic volatility model, where the log-price process
Y = (Yt)t≥0 satisfies

dYt = σtdWt , t ≥ 0, (3.9)

with a Brownian motion W , and the log-volatility process log(σ2) is described by a
FICARMA(p, d, q), p ≥ q, process, where the Lévy measure of the driving noise process
has finite moments of all orders k ≥ 2.
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4. Second order properties of the return process

Second order properties are now derived under the assumption that the log-volatility
process is strictly stationary. The structure of the price process Gd is the same as that
of an ECOGARCH(p, q) process. Therefore the result concerning the first and second
moment, as well as the autocovariance function, of the return process is analogously
to the result in Proposition 5.1 in Haug and Czado [14].

Proposition 4.1. Let L be a Lévy process with E(L1) = 0 and E(L2
1) < ∞. Assume

that log(σ2
d) is strictly stationary with marginal distribution Fd, where Fd is infinitely

divisible with characteristic triplet (γd,∞, 0, νd,∞) and 1 ∈ Kd,∞. Then E(G2
d,t) < ∞

for all t ≥ 0, and for every t, h ≥ r > 0 it holds

EG
(r)
d,t = 0 (4.1)

E(G
(r)
d,t)

2 = eµ+Ψd,∞(1)rE(L2
1) (4.2)

Cov(G
(r)
d,t , G

(r)
d,t+h) = 0 . (4.3)

If further E(L4
1) < ∞ and the volatility process has finite second moment, then

E(G4
d,t) < ∞ for all t ≥ 0 and for every t, h ≥ r > 0 it holds

Cov((G
(r)
d,t)

2, (G
(r)
d,t+h)2) = E(L2

1)

∫ h+r

h

Cov(G2
d,r, σ

2
s)ds . (4.4)
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439–459. Birkhäuser, Boston.

[20] Nelson DB. ARCH models as diffusion approximations. Journal of Econometrics 1990; 45: 7–38.

[21] Nelson DB. Conditional heteroskedasticity in asset returns: a new approach. Econometrica 1991;
59: 347–370.

[22] Samko SG, Kilbas AA and Marichev OI. Fractional Integrals and Derivatives 1993. Gordon &
Breach Science Publishers.
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