
Heim:

Space-Varying Coefficient Models for Diffusion Tensor
Imaging using 3d Wavelets

Sonderforschungsbereich 386, Paper 505 (2006)

Online unter: http://epub.ub.uni-muenchen.de/

Projektpartner

http://www.stat.uni-muenchen.de/
http://www.gsf.de/
http://www.mpg.de/
http://www.tum.de/


Space-Varying Coefficient Models for

Diffusion Tensor Imaging using 3d Wavelets

Susanne Heim

Department of Statistics, Ludwig-Maximilians-University,

Ludwigstrasse 33/II, 80539 Munich, Germany

susanne.heim@stat.uni-muenchen.de

Abstract

In this paper, the space-varying coefficients model on the basis of B-splines

(Heim et al., 2006) is adapted to wavelet basis functions and re-examined using

artificial and real data. For an introduction to diffusion tensor imaging refer to

Heim et al. (2005, Chap. 2). First, wavelet theory is introduced and explained

by means of 1d and 2d examples (Sections 1.1 – 1.3). Section 1.4 is dedicated to

the most common thresholding techniques that serve as regularization concepts

for wavelet based models. Prior to application of the 3d wavelet decomposition

to the space-varying coefficient fields, the SVCM needs to be rewritten. The

necessary steps are outlined in Section 2 together with the incorporation of the

positive definiteness constraint using log-Cholesky parametrization. Section 3

provides a simulation study as well as a comparison with the results obtained

through B-splines and standard kernel application. Finally, a real data example

is presented and discussed. The theoretical parts are based on books of Gençay

et al. (2002, Chap. 1, 4-6), Härdle et al. (1998), Ogden (1997) and Jansen

(2001) if not stated otherwise.

Key words: Wavelets; Varying coefficient model; Diffusion tensor; Brain imag-

ing;



1 Introduction to wavelets

Before defining wavelets and proceeding with their applicability to DTI data, I would like

to reason why the use of wavelets seems to be promising. Without loss of generality, space

will be the location index below, comprising time as special 1d space.

Looking at Fig. 1, the partition of the space-frequency plane is displayed for different

transformations. B-splines, as used in the previous chapter, are only localized in the

space domain (Fig. 1 (a)). For example, zero-degree B-splines are piecewise constants

covering one single interval. Hence, a 1d sequence of DTI signal intensities can be fully

represented by as many zero-degree B-splines as the sequence contains observations. In

contrast, a Fourier analysis using cosine and sine functions offers full resolution in the

frequency domain only (Fig. 1 (b)). Additional coarse localization in space can be gained

by windowing the original series and applying the Fourier analysis across each window

(Fig. 1 (c)). This modification is also known as short-time Fourier transform or Gabor

transform after its originator. However, spatial resolution is increased at the expense

of frequency resolution and spatial localization is still lacking within the fixed windows.

This phenomenon is due to Heisenbergs uncertainty principle, stating that a particle

cannot exactly be described by its position and momentum at the same time. Wavelet

transforms, by contrast, intelligently adapt to the space-frequency plane in that a narrow

space-window is provided to examine high-frequency content, but a wide space-window is

allowed when investigating low-frequency components (Fig. 1 (d)). Due to their resulting

localization in time/space and in frequency the use of wavelets promises local adaptive-

ness. In other words, the wavelet transform can be expected to zoom in higher frequencies

when distinctive spikes or sharp edges are met.

The switch to wavelets is furthermore motivated by recent reports about successful wavelet-

based filtering of MR images with best contrast rendering between different tissue types

and best spatial adaptivity. A selection of articles on the application of wavelets to radi-

ological imaging can be found in the special issue of the IEEE journal on Transactions in

Medical Medicine (March 2003). It was however in the early nineties when Weaver et al.

(1991) initially proposed the removal of random noise from MR images using selective

wavelet reconstruction which Donoho and Johnstone (1994) developed to a full statistical
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Figure 1: Partition of the space-frequency plane by different transforms.

technique. There is also a series of papers using wavelets in order to denoise fMRI data

as well as to enhance the power of statistical analyses, see e. g. Van de Ville et al. (2006)

and the references therein. Substantial contributions to the processing of MR modalities

also stem from the Biomedical Imaging Group (École Polytechnique Fédérale, Lausanne).

See the steadily updated homepage1 for the most recent publications.

1.1 Univariate wavelet basis

With the aim in view to design space-varying coefficient surfaces using 3d wavelet basis

functions, let me launch from the classical, by far more intuitive one-dimensional case. To

give a first impression, Fig. 2 shows different basis functions of the Daubechies extremal

phase wavelet class.

There is always a pair of so-called father and mother wavelet functions φ(x) andrespec-

1http://bigwww.epfl.ch/
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father wavelet φ(x) mother wavelet ψ(x) = φ(2x)−φ(2x−1)

Figure 2: Principal representatives of the Daubechies extremal phase wavelet class.

tively ψ(x), respectively. The father wavelet is also called scaling function, while the

mother wavelet is simply entitled the wavelet due to its prototype functionality for an

entire set of wavelets. As most essential property and kind of wedding ring, father and

mother wavelet are orthogonal to each other. With the Haar family, this can immediately

be seen from the graphic (top row) and, mathematically, by the corresponding definitions

of the scaling function

φ(x) =







1, x ∈ [0, 1)

0, otherwise

(1)

and the wavelet function

ψ(x) = φ(2x) − φ(2x− 1) =







1, x ∈ [0, 0.5)

−1, x ∈ [0.5, 1)

0, otherwise .

(2)

As furthermore obvious from Fig. 2, the representatives differ in (compact) support length

and the degree of smoothness. Apart from the Haar family, asymmetry holds for the

given wavelets and, in general, for most of the known families. Among the tremendous

number, the main families are Daubechies’ extremal phase wavelets, Daubechies’ linear
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phase wavelets (also known as least asymmetric wavelets or simply symlets) and coiflets.

Some other classes involve B-splines such as the Battle-Lemarié and Chui-Wang cardinal

spline families (both explained in Ogden (1997, pp. 23)), and the orthogonal fractional

B-spline wavelets (Blu and Unser, 2003). Interestingly, the Haar wavelet cannot only be

regarded as member of the Daubechies extremal phase but also of the Battle-Lemarié

family. For an excellent description of how to construct wavelet bases see e. g. Härdle

et al. (1998, Chap. 5-6).

Given its simplicity, the Haar wavelet will serve as the toy wavelet throughout this chapter.

Most other wavelet classes do not even possess an explicit space-domain formula and are

only defined implicitly.

There are two formal conditions for a function ψ(x), x ∈ �
, to be a wavelet. The admis-

sibility condition

∫

�
ψ(x)dx = 0

ensures integration to zero and existence of the inverse. It is equivalent to a zero-valued

zeroth moment. Further vanishing moments are reflected by the family attribute number,

e. g. Daubechies-4 wavelets expose four vanishing moments. Seldom the father wavelet

possesses vanishing moments, too, as it is the case for coiflets (Härdle et al., 1998). Note

that some authors let the attribute encode for the length of the mother wavelet which is

twice the number of vanishing moments. As evident from Fig. 2, the smoothness property

is more pronounced for wavelets with larger support, as there is more time/space to die

out to zero.

The second condition, namely the unit energy condition,

∫

�
ψ2(x)dx = 1

constrains ψ(x) to have normalized strength. The term energy refers to the “size” of a

signal. Whenever a signal is imagined as a function of varying amplitude through time,

the area under the curve seems to reason a good measurement of the signal strength.

Since the possibly negative parts do not have less strength than a positive signal of the

same size, energy is defined as the area under the squared signal. Hence the unit energy
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condition forces ψ(x), given its admissibilty, to take on nonzero values for some point

x. As a consequence any wavelet function will oscillate or wave around the abscissa.

The suffix ’let’ comes in from discrete dilation and translation of the mother’s shape,

eventually resulting in baby wavelets

ψj,k(x) =
1√
2−j

ψ

(
x− k2−j

2−j

)

= 2j/2ψ(2jx− k), j ∈ � +
0 , k ∈ � (3)

with support [k2−j, (k + 1)2−j).

Wavelets are thus functions in two parameters. Parameter k accounts for dyadic trans-

lational displacement in the time domain whereas index j constitutes a dyadic change in

frequency. The latter corresponds to compression or stretching of the wavelet on the time

axis as illustrated by selected representatives in Figure 3. The amount of ”localization”

is therefore controlled by the dilation parameter j.

φ0,0

ψ0,0

ψ j = 1 
k = 0

ψ j = 2 
k = 1,3

ψ j = 3 
k = 0,4,6

ψ j = 4 
k = 1,6,7,9

ψ j = 5 
k = 6,15,20,22,30

Figure 3: Selected members of the Haar family.

Application of the above two simple operations, namely dilation and translation, to the

mother wavelet and multiplication with a normalization constant 2j/2 naturally leads to
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an orthonormal system

{
{φ0,k}, {ψj,k}, k ∈ � , j ∈ � +

0

}

in L2(
�

), the space of square integrable functions2 (Härdle et al., 1998). The system of

wavelet functions allows to approximate any function f ∈ L2(
�

) aribitrarily well. For

a pre-assigned precision, the system turns into an orthonormal basis for a subspace of

L2(
�

). The shifted versions φ0,k(x) = φ(x− k) guarantee the coverage of
�

. An outline

of the theoretical underpinnings are postponed to the next section.

Orthogonality of the basis functions is achieved via critical sampling of the space-frequency

plane at the nodes in Fig. 1 (d). This way the continuous and redundant partitioning

becomes discrete and orthogonal with a minimum number of discrete points in space k2−j

and discrete frequencies 2−j. Wavelets obtained by Eq. (3) are therefore named discrete

wavelets though being (piecewise) continuous functions.

1.2 Wavelet decomposition and reconstruction

In analogy to the Fourier or the zero-degree B-spline transform, any function f ∈ L2(
�

)

can be approximated by a linear combination of wavelets

f(x) =

∞∑

k=−∞
α0kφ0k(x) +

∞∑

j=0

∞∑

k=−∞
βjkψjk(x),

with cofficients α0k and βjk (Härdle et al., 1998). This discrete decomposition directly

results from the basis of discrete wavelets claimed in Section 1.1 which will roughly be

reasoned in the following. In practice, only a discretized version of the function of interest

is observed and this, in general, under some additional noise. Assume the moreover finite

number of measurements to be equally spaced on the support region of dyadic length, say

[0, n = 2J). This constitutes a square-summable3 function fJ in the space VJ , defined as

VJ = {f ∈ l2( � ) : f is piecewise constant on [k2−J , (k + 1)2−J), k ∈ � }.
2A function f is square integrable or of finite energy if

∫ �
f2(x)dx < ∞.

3A sequence f is square-summable if
∑

x∈ � f2(x) < ∞.
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Here, l2( � ) denotes the space of square-summable functions with integer domain. To gain

a better understanding of how the concept of the discrete wavelet transform is derived

subsequently, consider J = 3 and Figure 4.

An approximation to f J can be generated by a member f J−1 of the subspace

VJ−1 = {f ∈ l2( � ) : f is piecewise constant on [k2−J+1, (k + 1)2−J+1), k ∈ � }.

As the level j, j = 0, . . . , J, decreases, the approximations f j turn coarser with values

on intervals of half the size as those for Vj+1 (see gray-colored basis functions in Fig. 4).

Eventually, the so-called reference space V0 is reached, containing step functions on unit

intervals. The overall sequence of spaces (Vj)j=0,...,J fulfills

V0 ⊂ V1 ⊂ V2 ⊂ . . .

where V0 can be build by the set of integer-shifted versions of the Haar scaling function

{φ0,k = φ(· − k), k ∈ � }. As obvious from Fig. 4, an orthonormal basis for any other

Vj, j > 0, is formally obtained by dilations of the father wavelet: {φj,k = 2j/2φ(2j ·−k), k ∈
� }. As a consequence, the central two-scale relationship can be established:

φj,k(x) =
(
φj+1,2k(x) + φj+1,2k+1(x)

)
/
√

2.

This means that a function at a given level evolves by averaging at the next higher level

(see also Figure 4).

Whenever a function f j is expressed in terms of the next coarser approximation, the

residuals represent the details of f j that are lost due to the approximation. In this case,

the details are constants of the same resolution as the function f j itself and can thus

be written as linear combination of the wavelets ψj−1,k, k ∈ � . As obvious from Figure

3, two wavelets with the same dilation index j but differing k cannot have overlapping

support. Intra-level orthogonality is therefore guaranteed, so that the set of wavelets at

a fixed level j defines a detail space:

Wj = span{ψj,k, k ∈ � }.
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In the Haar example, it is easily ascertained that φj,k and ψj′,k′ are orthogonal for j ≤ j ′

(compare black-colored functions in Figure 4). This implies that Wj−1 is the orthogonal

complement of Vj−1 in Vj:

Vj = Vj−1 ⊕Wj−1. (4)

Similar to the two-scale equation, the relationship of Haar father (Eq. 1) and mother

wavelet (Eq. 2) can be generalized:

ψj,k(x) =
(
φj+1,2k(x) − φj+1,2k+1(x)

)
/
√

2.

Hence, the residuals at a fixed level arise from differencing a function at the next higher

level.

Now, mutual orthogonality across levels holds since one of the wavelets is constant in the

shared support region (compare Figure 3). With this inter-space orthogonality between

V3 V2 V1 V0

W2

W1

W0

V0

Figure 4: Repeated splitting of a vector space into two orthogonal subspaces build the basis for

the discrete wavelet transform.
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Wj and Wj′, j 6= j ′, recursive decomposition in a global approximative part and level-

specific details yields

Vj = Vj−1 ⊕Wj−1 = Vj−2 ⊕Wj−2 ⊕Wj−1 = . . . = V0 ⊕
j−1
⊕

l=0

Wl. (5)

To be more general, replace V0 with Vj0 in Eq. (5), where j0 < j denotes the primary

decomposition level. It furthermore holds that L2(
�

) =
⋃

j∈ � Vj = V0 ⊕
⊕∞

j=0Wj =
⊕

j∈ � Wj (Härdle et al., 1998).

In conclusion, a finite and noisy signal of dyadic length, x ∈ {1, . . . , n = 2J} ⊂ � , has the

following wavelet expansion:

y(x) = f(x) + ε(x)

=
2j0−1∑

k=0

αj0kφj0k(x) +
J−1∑

j=j0

2j−1∑

k=0

βjkψjk(x) + ε(x), ε(x)
i.i.d.∼ N(0, σ2). (6)

The choice of the initial dilation level j0 determines the quality of the approximation

(Ogden, 1997), but will depend on personal experience and the given data because of

missing binding guidelines. If j0 > 0, one speaks of partial decomposition and, if j0 = 0,

of complete decomposition. In general, the number of vanishing moments of the father

wavelet determines the degree to which a polynomial is still exactly reproducible in V0.

Hence, V0 is equivalent to the null space of the smoothing spline penalty (Hastie et al.,

2001, Chap. 5.9).

Provided the recorded time series is scaled to the unit support interval, the complete

decomposition involves as many wavelet coefficients as there are observations. Namely,

there is the father plus 2j contributions at each level j = 0, . . . , J − 1. Summation of the

geometric sequence leads to 1 +
∑J−1

j=0 2j = 1 + (2J − 1) = n. Note that the coefficient

α0,0 coincides with the sample mean in the Haar case. Since an increase in level entails a

bisection of the wavelet’s support of 2−j on simultaneous doubling of the frequency (Figure

3), the resolution enhances accordingly. Attention should be paid to the notation. Some

authors revert the j-axis so that father and mother do no more lie at level j = 0. Level

j is then rather used in the meaning of decomposition depth. The definition in Eq. 3

changes accordingly. In addition, the technical term scale sometimes replaces level or two

to the power of level.
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(Inverse) discrete wavelet transform

The totality of the coefficients α0k and βjk is called discrete wavelet transform (DWT).

It is determined by the projection of the function f onto the subspaces V0 and Wj, j =

0, . . . , J−1, and reflects the degree of congruity of the function with the wavelets φ0k and

ψjk, respectively. While the α0k’s summarize the general form of the function, the βjk’s

represent local details. In contrast to the Fourier transform, that operates on a single

resolution level, the wavelet transform works on multiple resolution levels (Figure 1).

The multiresolution property constitutes the ability of the wavelet transform to capture

nonstationary events and to map irregulary occurring features. Hence, the recursive

decomposition of an arbitrary function in L2(
�

) in its smooth and rough parts is also

termed multiscale or multiresolution analysis. This becomes also immediately plausible

from the example given in Fig. 4. A formal definition can be found in e. g. Ogden (1997).

Metaphorically speaking, the visual acuity reduces continuously while stepping forward in

the hierachically organized decomposition. For instance, leaving a forest can be compared

to going away from fine structures of tiny leaves over twigs and branches, passing by stems

and whole trees to the entire wood till mere green color remains. The peculiarity of the

wavelet transform arises from the concurrence of the fine and coarse patterns.

Giving an example, Figure 5 depicts the decomposition of an NMR signal of length n =

1024 (Wavelab4) on the left side. The vertical bars correspond by position to the location

and by length to the quantity of the level-specific wavelet contributions. The largest

weights emerge from slowly changing features, whereas highly resolved features do not

play a big role for the representation of the NMR signal. Solely, the exclusive hallmark

of the sharp spike is correctly caught by a few high frequency wavelets that have small

support. This ideally demonstrates the adaptivity of wavelet analysis.

4Wavelab is a free library of Matlab rountines for wavelet analysis, downloadable from

http://www-stat.stanford.edu/∼wavelab
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Figure 5: Decomposition (left) and denoised reconstruction (right) of an NMR signal using Haar

wavelets.

To gain further insight into the properties of wavelet decomposition and to introduce the

inverse operation, Eq. (6) is reformulated in matrix notation setting j0 = 0:











y(1)

y(2)
...

y(n)











=











φ00(1) ψ00(1) ψ10(1) ψ11(1) · · · ψJ−1, n
2
−1(1)

φ00(2) ψ00(2) ψ10(2) ψ11(2) · · · ψJ−1, n
2
−1(2)

...

φ00(n) ψ00(n) ψ10(n) ψ11(n) · · · ψJ−1, n
2
−1(n)



























α00

β00

β10

β11

...

βJ−1, n
2
−1

















= Wγ

Solving the corresponding system of normal equations leads to the ordinary least squares

estimate of the wavelet transform:

γ̂ = (W′W)−1W′y

= W′y,
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the latter equality being due to the orthogonality of the basis functions in W. In fact,

this decomposition is loss-free, meaning that the information transported by y entirely

passes into the wavelet domain. Although concentrated in a much smaller fraction of the

components than in the raw data, the wavelet transform maintains the sample variance,

i. e. is energy (variance) preserving :

Var(γ̂) = W′Var(y)W = σ2I = Var(y).

Even though, in the more general case, y might be correlated data with Var(y) = Σ, the

DWT has the ability to dissolve the correlation structure and to produce a sparse covari-

ance matrix Var(γ̂) = W′ΣW. This means the wavelet coefficients exhibit a flat, almost

white spectrum (Gençay et al., 2002, Chap. 5). Hence, the discrete wavelet transform

is esteemed for its decorrelation or whitening property. The fMRI community recently

detected this fundamental feature for their purpose of multiple test-correction: Signifi-

cant clusters of activated voxels can be determined in the wavelet domain by the simple

Bonferroni correction. (Van de Ville et al., 2006).

Define the inverse discrete wavelet transform (IDWT) to be

ŷ = Wγ̂.

Again supposing j0 = 0, even perfect reconstruction of the input signal is accomplished:

ŷ = Wγ̂ = WW′y = W′Wy = y.

Here, ’perfect’ is used in the sense of completely recoverable as no information is lost.

Preview on denoised reconstruction

Yet, the analyst’s interest does usually not focus on the recorded measurements but on

strategies to reveal the underlying function. As anticipated previously, the wavelet de-

composition allows to determine basis functions of marginal meaning by their absolute

weight. The left plot of Figure 5 suggests to discard, above all, coefficients at large levels

where extremely localized features of high frequency are mapped. Similar to analysis of
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variance, coefficients are considered to be noise or, on the other hand, significantly impor-

tant according to their explanatory strength. Applying an appropriate cut-off value and

performing the inverse wavelet transform yields a regularized version of the initial NMR

signal. The result for the Haar basis is depicted on the right side of Figure 5. Particularly

coefficients at large levels vanish, thereby suppressing rapid changes of the input signal.

Though the essential form is clearly worked out, smoother wavelets are obviously required

to meet the nature of the true NMR signal. On the other hand, the characteristic sharp

peak is appropriately reproduced since wavelets concentrate the mass of oscillations on a

small interval. Note the single distinct deflexion in W7 that indicates the singularity of the

original series. In total, a sparse and compressed wavelet representation of the input data

is achieved. This mechanism also underlies the standardized image format JPEG20005

which allows the user to specify a compression rate. If no compression is desired, the loss-

free reconstruction case is given with the same memory amount as required by the object

itself. In the compression case, the use of special decoders leads to considerable memory

reduction storing non-zero coefficients only. Multidimensional wavelets are presented in

Section 1.3, while Section 1.4 deals with different thresholding and shrinkage approaches.

Practical matters

In view of the above, two more practical issues come to mind. First, the Haar basis clearly

adapts to the unit interval, any finite sequence can be scaled to. But wavelets of other

families cannot straightforwardly be forced to have support ⊆ [0, 1). As a consequence,

discontinuities at the interval boundaries can occur when a multiresolution analysis of the

sequence is performed. These might be mitigated by symmetric or periodic expansion

of the signal. Second, if a non-dyadic sampling rate is encountered, zero-padding or

interpolating of the signal up to dyadic length has to be considered beside symmetric and

periodic boundary handling (Ogden, 1997). Some approaches will introduce correlations

among the coefficients. Rather than manipulating the data, other transforms for signals

of unconstrained length seem advisable such as the maximum-overlap discrete wavelet

transform (MODWT) (Gençay et al., 2002), biorthogonal wavelet transforms (Ogden,

1997), or lifting schemes (Jansen, 2001). The MODWT is also known as non-decimated,

5JPEG is based on cosine functions; JPEG2000 works with wavelets.
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redundant, translation-invariant, or stationary wavelet transform.

The fast wavelet transform algorithm

When it comes to implementation of the (inverse) discrete wavelet transform, Mallat’s

pyramidal algorithm is usually employed for its computational efficiency. The core aspect

here is that the decomposition in smooth and rough parts can be interpreted as application

of high- and low-pass filters. Indeed, the low-pass filter coefficients conform with the two-

scale relationship of the scaling function:

lk = < φ, φ1,k >
Haar
=







1√
2
, k = 0, 1

0, otherwise.

By m-times application of filter operator L, represented by the sequence {lk}k∈ � , to the

scaling coefficients at a particular level, represented by αj,· = {αj,k}k∈ � , scaling function

coefficients at the m-times lower level are obtained:

αj−m,· = Lmαj,· = Lm−1

{
∑

i∈ �

li−2kαj,i

}

k∈ �

.

The second equality sheds some light on the downsampling by two, inherent to each

filtering step (compare Figure 6). This is hidden in the indices of {li} that are all offset

by two.

The high-pass filter operator H can be defined by the quadratur mirror relationship (see

e. g. Gençay et al., 2002):

hk = (−1)kl1−k, k ∈ � .

Similar to the relation of father and mother wavelet, unique application of H to the scaling

coefficients at level j leads to the wavelets coefficients at level j − 1:

βj−1,· = Hαj,·.

Combining L and H yields

βj−m,· = HLm−1αj,·.

14



Iteratively subsampling every other coefficient in either filter steps gives the pyramidal or

cascade scheme of the decomposition illustrated in Figure 6. The reconstruction follows

the reverse principle. At a particular level, the upsampling step performs zero-padding

and is necessary for the convolution with the filter sequence of double length.

l �
��
↓2

h �
��
↓2

l �
��
↓2

h �
��
↓2

l �
��
↓2

h �
��
↓2

�
��
↑2 l

�
��
↑2 h 6

?h+

�
��
↑2 l

�
��
↑2 h

6

?h+

�
��
↑2 l

�
��
↑2 h

6

?h+

Figure 6: Decomposition (top) and synthesis (bottom) of a signal using the pyramidal algorithm.

The branches refer to convolution with either low-pass ( l ) or high-pass filter coefficients ( h

). The icons ↓2 and ↑2 denote down- and upsampling by two.

In fact, the combination of low- and high-pass filters results in band-pass filters. Specifi-

cally, a band-pass filter over the frequency interval [1/4, 1/2] results from serial application

of an ideal filter pair L and H. For this purpose let L pass the frequencies lower than

1/2 and H capture frequency dynamics greater than 1/4. Therefore, one says that the

pryamidal algorithm decomposes an input signal into sub-bands. In addtion, this view-

point allows the following conclusion: The closer a wavelet filter approaches an ideal filter

the less leakage of frequencies occurs, thus, the better the edge preservation property be-

comes (Gençay et al., 2002). Beyond this, the primary decomposition level is often chosen

on a desired low-pass cut-off frequency.
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1.3 Multidimensional wavelets decomposition - a 2d example

One-dimensional wavelets can easily be extended to the higher dimensional case via tensor

products (see e. g. Ogden, 1997). Note that consecutive operations on columns, rows, lay-

ers etc of n-dimensional observational arrays generate separable basis functions. It is well

known that these functions are likely to lack isotropy. In contrast, non-separable wavelets

offer more freedom but at the expense of computational cost. Therefore, the discus-

sion limits itself to separable wavelet functions. The decomposition idea is exemplified by

means of 2d wavelets intended to analyze square-integrable 2d functions f(x, y) ∈ L2(
� 2).

Wavelet basis functions in
� 2

To begin with, define the 2d father: φ(x, y) = φ(x)φ(y). As before, translations and

dilations of the father,

{φj,k1,k2
(x, y) = 2jφ(2jx− k1, 2

jy − k2), j, k1, k2 ∈ � }

constitute a basis for V x,y
j = V x

j ⊗V y
j . Deploying the multiresolution property and Eq. (4),

the space V x,y
j+1 of 2d block functions with resolution 2j+1 × 2j+1 can be approximated by

the successive space V x,y
j of twice as coarse squares and the complimentary residual space:

V x,y
j+1 = V x

j+1 ⊗ V y
j+1

= (V x
j ⊕W x

j ) ⊗ (V y
j ⊕W y

j )

= (V x
j ⊗ V y

j ) ⊕
(
(V x

j ⊗W y
j ) ⊕ (W x

j ⊗ V y
j ) ⊕ (W x

j ⊗W y
j )

)

= V x,y
j ⊕W x,y

j .

The rewriting reveals that the 2d space W x,y
j is made up of three orthogonal subspaces,

each of which endowed with a tensor product basis of its components. So define the

corresponding 2d mother wavelets

ψ1(x, y) = φ(x)ψ(y)

ψ2(x, y) = ψ(x)φ(y)

ψ3(x, y) = ψ(x)ψ(y)
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and build the wavelet basis for W x,y
j by means of translation and dilation:

{ψd
j,k1,k2

(x, y) = 2jψd(2jx− k1, 2
jy − k2), d = 1, 2, 3, j, k1, k2 ∈ � }.

Note that the basis functions are tensor products within the same scale. This distin-

guishes the square wavelet transform from the rectangular wavelet transform that in-

volves tensor product across scales (Jansen, 2001). Figure 7 shows the four functions

φ(x, y), ψ1(x, y), ψ2(x, y) and ψ3(x, y) associated with the 1d symlet with two vanishing

moments. The clearly recognizable orientation in space tells us that ψ1 emphazises edges

Figure 7: Scaling function and mother wavelet functions of 2d symlet with two vanishing mo-

ments.

in the horizontal direction, ψ2 in the vertical and ψ3 in the diagonal direction. These

properties can be understood in view of the low- and high-pass filter analogons and are

most intuitively accessed through the shapes of 2d Haar wavelets (Figure 8). Note also

that the effective support of 2d tensor product wavelets shrinks by 2× 2 when increasing

the dilation parameter by one.

A finite and noisy 2d signal, e. g. an (n1 × n2)-image Y , thus has the following wavelet
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Figure 8: Exemplary basis functions of the 2d Haar family, projected onto the xy-plane. The

exponent denotes the level j, while the subscripts correspond to shift parameters k1 and k2.

representation:

Y (x, y) = f(x, y) + ε(x, y)

=

2j0−1∑

k1=0

2j0−1∑

k2=0

αj0,k1,k2
φj0,k1,k2

(x, y) +

3∑

d=1

J−1∑

j=j0

2j−1∑

k1=0

2j−1∑

k2=0

βd
j,k1,k2

ψd
j,k1,k2

(x, y) + ε(x, y),

with ε(x, y) ∼ N(0, σ2), J = log2(min(n1, n2)).

2d decomposition scheme

In analogy to the 1d case, the pyramidal algorithm also adapts to the 2d wavelet de-

composition. In a first step, a pair of low- and high-pass filters runs over the rows, and

afterwards along the columns of the given image. This procedure is repeated on each

purely low-pass filtered output, i. e. the coefficient matrix (αj,k1,k2
) k1=0,...2j

−1

k2=0,...2j
−1

. It is de-

noted by LLj in Figure 9 for pointing out the filter link and filter order. Note that LLJ

encodes for the input image itself. Convolution of the detail wavelets ψ1(x, y), ψ2(x, y) and

ψ3(x, y) with the approximating part LLj+1 results in horizontal, vertical and diagonal

detail components LHj,HLj, and HHj, respectively. Each iteration causes the filtered
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output to be downsampled by 2 per direction which establishes the pyramidal structure

and allows for the nested visualization. It also gives the algorithm its speed since in each

step only 1/4 of the number of coefficients needs to be decomposed. The inverse process

of reconstruction is governed by dyadic upsampling.

LL J−2 HL J−2

LH J−2 HH J−2

HL J−1

LH J−1 HH J−1

HL J

LH J HH J

Figure 9: Nested two-dimensional signal decomposition on three scales.

A black-and-white picture of the Siegestor in Munich serves as subject in Figure 10. Jux-

taposed to the (256×256)-image matrix are two nested steps of the 2d DWT. The decom-

position units exhibit their directional preferences in plain manner: brightness contrasts

on columns (vertical features) are extracted separately from beams (horizontal features)

and perspective alignments (diagonal features). It is worth emphazising that components

including a high-pass filtering step have been adjusted for comparable visualization with

the residual image. Background sprinkles are present, though hardly visible to the human

eye due to poor reproduction quality. They can however be removed in an intermediate

denoising, i. e. thresholding, step before performing the 2d IDWT.

By means of the Siegestor photography and the 2d Haar basis, I would like to elucidate the

successive approximations associated with spaces VJ ⊃ . . . ⊃ V0. Figure 11 demonstrates

how with decreasing level the grey colores contained in a scaling image concentrate on a
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Figure 10: Original greyscaled image and 2d DWT based on Haar wavelets.

”grand mean” value. At the same time, the wavelet’s blocky support reaches the size of

the input image. Subsequent to the third decomposition level, the coefficients do no more

reflect any visual features of the original image. Therefore, an appropriate DWT would

stop at this specific level, just allowing to sort out features of reasonable frequency. In

particular, variance reduces rapidly during the last four decomposition levels. Hence, a

’kink’ in the curve of the squared sum of scaling coefficients could indicate an adaequate

primary decomposition level j0.

Generalization to 3d

With the thorough introduction and examination of 1d and 2d wavelets as well as of

the corresponding decomposition schemes, the extension to the 3d wavelet analysis is

straightforward. In brief, the 3d scaling function φ(x, y, z) and seven wavelets in all cross-

spatial horizontal, vertical and diagonal directions are designed as tensor product of 1d

20



original level 7 level 6

level 5 level 4 level 3

level 2 level 1 level 0

original level 7 level 6

level 5 level 4 level 3

level 2 level 1 level 0

0.0 0.4 0.8 0.0 0.4 0.8 0.0 0.4 0.8

0.0 0.4 0.8 0.0 0.4 0.8 0.0 0.4 0.8

0.0 0.4 0.8 0.0 0.4 0.8 0.0 0.4 0.8

Figure 11: Purely low-pass filtered coefficient matrices of different levels (left) with overlaid

normalized histograms (right).

wavelets:

φ(x, y, z) = φ(x)φ(y)φ(z)

ψ1(x, y, z) = φ(x)φ(y)ψ(z)

ψ2(x, y, z) = φ(x)ψ(y)φ(z)

ψ3(x, y, z) = ψ(x)φ(y)φ(z)

ψ4(x, y, z) = ψ(x)ψ(y)φ(z)

ψ5(x, y, z) = ψ(x)φ(y)ψ(z)

ψ6(x, y, z) = φ(x)ψ(y)ψ(z)

ψ7(x, y, z) = ψ(x)ψ(y)ψ(z).

All operations, such as dilation and translation, orthogonal subspace representation and

the pyramidal filterbank algorithm, can be adapted to the above 3d initial wavelet func-

tions. Finally, the wavelet analysis of square-summable function f(x, y, z) ∈ l2(
� 3) can

be conducted.
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1.4 Thresholding and shrinkage

Given the motivating preview on denoising (p. 12), this section serves to state more

precisely what is meant by removing “small” coefficients. Let me derive noise reduction

procedures from the commonly used additive noise model. To ease readability, the location

parameter is dropped for the moment. Suppose the observations y relate to the true

function f but are corrupted by Gaussian white noise, i. e. the observations are realizations

of independent and identically distributed Gaussian random variables:

y = f + ε, ε ∼ N(0, σ2I).

Due to the linearity of the wavelet transform, the additivity remains unchanged:

W′y
︸︷︷︸

= W′f
︸︷︷︸

+ W′ε
︸︷︷︸

γ̂ = γ + η .

Obviously, the wavelet coefficients of a noisy sample can be regarded as noise contaminated

observations of hidden wavelet coefficients. Moreover, if W is orthogonal, the wavelet

transform of the stationary and white noise will also be stationary and white:

Var(η) = Var(W′ε) = W′Var(ε)W = σ2I = Var(ε). (7)

The wavelet transform creates a sparse signal representation in the sense that most empir-

ical coefficients are zero or close to zero (compare Fig. 5). Only a few distinct coefficients

reflect important signal singularities beyond the overall shape. In other words, the trans-

form preserves the sum of squares (isometry of risks), but concentrated in a much smaller

fraction of the components than in the raw data.

Thresholding rules

The most straightforward method for noise reduction suggests to let the informative co-

efficients survive while rigorously zeroing every “small” coefficient. This “keep-or-kill”

strategy involves a well-chosen threshold λ that demarcates the cutoff between essen-

tial variables (or basis functions) and noise. The method is therefore also called hard
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thresholding and can formally be expressed as a function δ:

γ̂λ,i = δH(γ̂i, λ) =







γ̂i, |γ̂i| ≥ λ

0, otherwise.

Figure 12 displays the corresponding function on the left hand side with λ = 1.

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

γ̂

δH
(γ̂

,λ
)

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

γ̂

δS
(γ̂

,λ
)

Figure 12: Classical hard (left) and soft (right) thresholding rules with λ = 1.

The second well-known denoising approach is soft thresholding :

γ̂λ,i = δS(γ̂i, λ) = sign(γ̂i) (|γ̂i| − λ)+ =







γ̂i + λ, γ̂i < −λ

0, −λ ≤ γ̂i < λ

γ̂i − λ, γ̂i ≥ λ .

The difference to hard thresholding is that, in addition to the truncation at λ, all other

wavelet weights are shrunken by λ. This way soft thresholding becomes a continuous

operation (right side of Fig. 12), offering considerable advantages. For instance, noise

coefficients that have spuriously passed the hard threshold may appear as annoying ’blips’.

Yet, soft thresholding shrinks these false structures and does therefore not suffer as much

from high variability (Hastie et al., 2001).

The denoising mechanisms can be embedded in the general class of nonparametric regres-

sion models. Aiming at regularization, the objective to be minimized is formulated as
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trade-off between closeness to the data and sparsity/smoothness, governed by a tuning

parameter:

‖y − Wγλ‖2
2 + λPen(γλ) −→ min

γλ

. (8)

In the signal processing language, the balance between data flexibility and penalty is

described as compromise between ’energy’ and ’entropy’. The entropy is a measure of the

disorder of a system and is linked to the information content of that system. On the one

hand, one could say that a high entropy state is information poor because there is so much

disorder, and the disorder is essentially random. On the other hand, one could argue that

a high entropy state is information rich because a truthful description of the exact state

of randomness in all its detail would require lots of information. It is this latter sense

which underlies Shannon’s definition for discrete data: The information entropy is the log

of the number of accessible states, and is dimensionless.Hence, attention has to be paid

to avoid possible confusion because this definition is a measure of the lack of order in a

system. In Fig. 11, the entropy of the scaling image decreases with level until one single

gray value remains. This monochromic state contains the least information according to

Shannon’s entropy. In contrast, a uniformly distributed histogram would have maximum

entropy and maximum information.

To proceed with the topic of smoothing approaches, recapitulate that y = Wγ̂ by perfect

reconstruction. Then the orthogonality of the wavelet transform allows to replace the

data term by the squared differences between untouched coefficients and thresholded

counterparts:

‖γ̂ − γλ‖2
2 + λPen(γλ) −→ min

γλ

.

The penalty term can take on different forms. For example, using the L2 norm

Pen(γλ) = ‖γλ‖2
2 =

∑

i

γ2
λ,i,

yields a scaled version of the ordinary least squares coefficients:

γ̂λ =
1

1 + λ
γ̂.
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Unless the intercept, i. e. the scaling wavelet coefficients α0k, is left out from penalization,

this corresponds to linear shrinkage of the observed data:

ŷ =
1

1 + λ
y.

The procedure is also known as ridge regression (Hastie et al., 2001, Chap. 3). However,

the L2 norm measures energy rather than sparsity or smoothness: selection does not take

place. Hence consider the use of the L1 norm

Pen(γλ) = ‖γλ‖2
1 =

∑

i

|γλ,i|,

which leads to the same framework as in Eq. (8), also familiar under the name of lasso

regression (Hastie et al., 2001, Chap. 3). Because W is orthogonal, the lasso criterion

results in the simple solution of soft thresholding. The method is highly esteemed for its

adaptivity founded on least absolute shrinkage and selection from the parameter space.

A wavelet fit constrained to the L1 norm represents a nonlinear smoothing procedure.

Likewise, hard thresholding turns out to be a nonlinear operation. In this case, the

objective consists of the usual residual sum of squares and a penalty term that amounts

to the number of non-zero coefficients:

Pen(γλ) =
∑

i

1[γλ,i 6= 0],

where 1[condition] is an indicator function.

Hard thresholding is said to perform better in spike detection, whereas soft thresholding is

preferred if smoothness is paramount. For a discussion on risk, bias and variance of these

two approaches refer to Jansen (2001, Chap. 5.5). More sophisticated rules are available

such as n-degree garrote or Bayesian thresholding rules (Gençay et al., 2002; Jansen, 2001;

Johnstone and Silverman, 2005). These schemes model the transition between rejected

and shrunken coefficients in a smoother fashion but are computationally more intensive.

Note that also ridge and lasso regression can be viewed as Bayesian estimates with different

priors, either Gaussian or Laplace (e. g. Hastie et al., 2001). In both models, posterior

modes are derived as Bayesian estimates instead of the more commonly used posterior
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means. The equality of posterior mode and mean only holds in case of ridge regression.

The lasso regularization constraint was promoted by Donoho and Johnstone (1994) as

SURE shrinkage (Stein’s Unbiased Risk Estimation). Donoho and Johnstone investigated

optimality properties and contributed seminal work on the choice of the threshold value.

Thresholding values

Regardless of the selection of an available thresholding rule, the cutoff value λ needs to be

chosen with care. If the noise proportion was known, a complete noise removal could be

accomplished by hard thresholding with λ = σ due to Eq. (7). A threshold less than the

true error variance would cause undesired noise relicts while a too loose threshold leads

to information loss. Yet, σ is unknown. A bunch of suitable procedures to determine λ is

published, two of which will be presented here.

On the background of the additive Gaussian white noise model, a straightforward rationale

is to remove all wavelet coefficients that are smaller than the expected maximum of an

assumed i. i. d. normal noise sequence of given size. This approach yields the universal

threshold :

λUNIV = σ
√

2 log(n). (9)

Its name reflects the global validity for all sufficiently smooth signals of length n (Jansen,

2001). It can even be stated that the universal threshold is adaptive to unknown smooth-

ness. The interested reader may consult e. g. Härdle et al. (1998) for more detailed

information on smoothness within the framework of Besov spaces.

The universal threshold operates as an oracle that reveals which coefficients are above σ

but not their exact values. Donoho and Johnstone (1994) showed that, within a loga-

rithmic factor, universal soft-thresholding performs as well as optimal wavelet coefficient

selection which, in turn, is essentially not less powerful than any piecewise polynomial and

spline method. Moreover, λUNIV possesses minimax property, i. e. the minimax thresh-

old asymptotically coincides with the universal threshold. However, instead of balancing

energy and entropy, smoothness comes prior to goodness of fit. This renders the results

visually appealing, leading to the procedure’s synonym VisuShrink.
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The noise level in definition (9) has to be estimated from the data. Donoho and John-

stone (1994) use the median absolute deviation of the wavelet coefficients at the finest level

J = log2(n), divided by 0.6745. As motivated on p. 12, this level mirrors high frequency

features and thus essentially noise. The use of a robust variance measure is intended to

correct the bias due to some isolated signal occuring at that level. The various denoising

techniques apply also to images and image volumes. Yet in the higher dimensional case,

multiple components are available at each level (2d: three, 3d: seven). The question arises

whether noise estimation should be based only on purely high-pass filtered coefficients or,

whether high- and low-pass filtered output should be considered equally. Furthermore, n

has to be adjusted accordingly.

If minimum risk optimality is paramount, soft-thresholding with the cutoff chosen ac-

cording to Stein’s Unbiased Risk Estimation (SURE) seems more suitable. Donoho and

Johnstone (1995) call this procedure SureShrink. In contrast to the level invariant univer-

sal threshold, the SURE thresholds are independently derived from each resolution level

j = j0, . . . , J = log2(n) by minimizing the level-specific risk E‖γ̂λ,j −γj‖2. Depending on

j, the subvector γj = (γj0, . . . γjk, . . . , γj(2j−1))
′ of γ comprises either the coefficients of

the scaling functions or the levelwise wavelets, here uniformly denoted by double-indexed

γjk. In general, most of the wavelet literature formulates SURE shrinkage as a result in

multivariate normal decision theory. Yet, I prefer to stay in the wavelet context though

running the risk of complex notation.

After variance standardization in Eq. (7), the empirical OLS wavelet coefficients are mul-

tivariate normally distributed: γOLS
j ∼ N(γj, I). Stein proved that any (almost arbitrary)

estimator for γj of the form γ̂λ,j(γ
OLS
j ) = γOLS

j + g(γOLS
j ) with g :

� 2j −→ � 2j

weakly

differentiable6 leads to an unbiased estimate of the l2 loss:

Eγj
‖γ̂λ,j

(
γOLS

j

)
− γj‖2 = 2j + Eγj

(
‖g(γOLS

j )‖2 + 2 5 g(γOLS
j )

)
,

where 5g(γOLS
j ) =

∑2j−1
k=0

∂
∂γOLS

jk

gk(γ
OLS
j ). Employing soft thresholding allows the follow-

6 Let g and h be functions defined on the real-line and integrable on every bounded interval. Then g is

weakly differentiable with weak derivative h if
∫

g(t)u′(t)dt = −
∫

h(t)u(t)dt is satisfied for all infinitely

many times differentiable test functions u with compact support (Härdle et al., 1998). Generalization to

the higher-dimensional case is straightforward.
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ing specification:

gk(γ
OLS
j ) = δS

λ (γOLS
jk ) − γOLS

jk =







λ, γOLS
jk < −λ

−γOLS
jk , −λ ≤ γOLS

jk < λ

−λ, γOLS
jk ≥ λ ,

so that ‖g(γOLS
j )‖2 = ‖min(|γOLS

j |, λ)‖2. Similarly, 5g(γOLS
j ) =

∑2j−1
k=0 (−1)1[−λ≤γOLS

jk
≤λ] =

−#{k : |γOLS
jk | ≤ λ}. To sum up, Stein’s estimate of risk can be rewritten as

SURE(λ,γOLS
j ) = 2j − 2#{k : |γOLS

jk | ≤ λ} + ‖min(|γOLS
j |, λ)‖2.

Recall that the expectation Eγj
SURE(λ,γOLS

j ) is unbiased. The all-dominant and crucial

threshold is given by

λSURE
j = arg min

λ≥0
SURE(λ,γOLS

j ).

In fact, the SURE threshold takes on the value of one of the coefficients |γOLS
jk |, k =

0, . . . , 2j−1. Moreover, one can show that SURE shrinkage is the same as lasso regression

(Hastie et al., 2001).

Risk minimization in the sense of the L2 norm can be regarded as seeking after the

equilibrium between variance and (squared) bias. Without relying on a priori knowledge

about the underlying smoothness, some noise artefacts will eventually sneak in at every

scale. This, however, makes the SURE shrinkage automatically smoothness-adaptive (for

theoretical results see Donoho and Johnstone, 1995). One could say, that the outcome

of universal thresholding is visually attractive while results from SURE shrinkage are

qualitatively convincing: The reconstructions jump where the true object jumps; at the

same time, the fits are smooth where the true object is smooth.

In this category of minimum risk thresholds falls also the minimax estimator itself (named

RiskShrink by Donoho and Johnstone (1994)) and the GCV strategy (Jansen, 2001). In

general, SURE and related procedures are more conservative and are more convenient

when small details of f lie near the noise range. A hybrid approach was conceived in

order to switch from SURE to universal thresholding whenever the level-specific signal-

to-noise ratio is very small and the SURE result would be too noisy. Multiple alternative
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threshold criteria are available such as the false discovery rate (FDR) for the multiple

testing problem whether the n wavelet coefficients are significantly zero (Ogden, 1997,

Chap. 8.2). The FDR-based threshold yields similarly smooth results as the universal

threshold (Jansen, 2001; Gençay et al., 2002).

1.5 Resolution increment

Since, in practice, wavelet analysis uses the repeated application of filter sequences (see

Section 1.2, pp. 14), there exists no such possibility to enhance resolution as for B-splines.

This means, we cannot simply evaluate the basis functions at the desired points and sum

over their estimated weight. Yet, different alternatives are conceivable.

The naive approach would be to paste multiple zeros into the level’s j0 filtering output

before reconstruction. Hence, the upsampling step requires modification.

A more sophisticated procedure is given by lifting schemes that gradually increase the

complexity of the overall transform (Jansen, 2001). This is achieved by repeated dual

(prediction) and primal (update) lifting steps. Hence, lifting is not only an alternative to

classical filter banks but also offers the wavelet transform to work on non-dyadic and even

irregular grids. In addition, lifting allows the reconstruction to be limited to integers as

desired by e. g. digital image processing.

Donoho (1992) discusses several interpolating scaling functions, for instance of the Des-

lauriers-Dubuc wavelet basis or the spline wavelet basis (see also recent work by the

Biomedical imaging group, Lausanne7). It holds that the autocorrelation function of an

orthogonal scaling function is an interpolating scaling function. Even more, the autocor-

relation of a Daubechies scaling function is a Deslauriers-Dubuc scaling function. Image

interpolation is then achieved within the multiresolution analysis (MRA) framework.

Other authors (e. g. Su and Ward, 2006) use bi-orthogonal wavelets and rely on the

smooth reconstruction filter for improved image quality. The given image is considered

to be the low-resolution image, from which the detail components can be predicted in a

suitable way. Adding the horizontal, vertical and diagonal edge information to the low-

resolution image yields a high-resolution image of twice the size as the original.

7http://bigwww.epfl.ch/publications/
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All these interpolation approaches allow image enlargement up to a fixed size. Yet in

view of the application of interest, the fiber tracking algorithm needs to be able to calcu-

late the desired tensor information at any arbitrary point. Therefore, I will not explore

wavelet interpolation but rather use, on top of the wavelet based tensor estimation, the

Runge-Kutta scheme as implemented by the fiber tracking tool (Gössl et al., 2002).

2 Restating the SVCM

Due to the deficiencies mentioned in (Heim et al., 2006), the major goal is to improve the

SVCM by substituting B-splines with wavelets. For this purpose, recall the estimation

problem inherent to DTI (Heim et al., 2005, Chap. 2). Formally, it is a matter of repeated

measurement design

y(s) = Xβ(s) + ε(s), ε(s) ∼ N(0, σ2I) (10)

with β(s) = (β1, . . . , βp)
′(s) encoding for the p = 6 unknown elements that determine

the symmetric covariance matrix at position s in 3d space, i. e. the local diffusion tensor

within the brain. As substantially argued in Heim et al. (2006), the covariance elements

are preferentially modelled nonparametrically as space-varying coefficient surfaces:

βj = Bγj, j = 1, . . . , p.

The matrix B stands for B-splines and contains the basis functions evaluated at grid

points s, s = 1, . . . , n, as employed previously. A naive proposal would simply exchange

B with the matrix W of wavelet basis functions. This is however hardly recommendable

with Mallat’s efficient pyramidal algorithm at hand (p. 14). Using the filterbank imple-

mentation, merely the wavelet coefficients are computed but not the wavelets themselves.

Therefore prior to the application of the fast and memory-saving decomposition tool, the

initial regression formula Eq. (10) has to be rewritten to get rid of X:

y(s) = Xβ(s) + ε(s), ε(s) ∼ N(0, σ2I)

⇐⇒ (X′X)−1X′y(s)
︸ ︷︷ ︸

y∗(s)

= β(s) + ε∗(s), ε∗(s) ∼ N(0, σ2(X′X)−1) (11)
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Multiplication with the Moore-Penrose matrix inverse leads to the interpretation that the

observed covariance entries y∗(s) are equal to the true covariance entries β(s) corrupted

by noise.

Incorporation of the positive definiteness constraint

Log-Cholesky parametrization (Pinheiro and Bates, 1996) seems most suitable to meet the

positive-definiteness constraint of the given estimation problem. Note that the restriction

had not yet been imposed in the B-spline based SVCM. Cholesky factorization states

that if R is upper triangular with non-zero diagonal elements, then R′R will be positive

definite. Thus as long as the diagonal entries are exclusively negative or exclusively

positive, the off-diagonal elements of the Cholesky factor R are unique. Either way, the

intended uniqueness of R represents once more a constrained estimation problem. Yet

if the diagonal shall comply with positive values, the logarithm can serve as auxillary

function to alter the parameter space unlimited on the real line. Hence, ensure positive

definiteness of the diffusion tensor D,

D =








β1 β2 β4

β2 β3 β5

β4 β5 β6








= R′R =








r1 r2 r4

0 r3 r5

0 0 r6








′ 






r1 r2 r4

0 r3 r5

0 0 r6








by unique and simultaneously unconstrained log-Cholesky factorization:

ρ = (log(r1), r2, log(r3), r4, r5, log(r6))
′.

Finally, reparameterize β as vector-valued function in ρ by definition of

β(ρ) =
(
exp(ρ1)

2, exp(ρ1)ρ2, ρ
2
2 + exp(ρ3)

2,

exp(ρ1)ρ4, ρ2ρ4 + exp(ρ3)ρ5, ρ
2
4 + ρ2

5 + exp(ρ6)
2
)′
.

In summary, the initially constrained estimation problem Eq. (11) can be rendered into

an unconstrained estimation problem using log-Cholesky parametrization:

ρobs(s) = ρtrue(s) + ε](s), ε](s) ∼ N(0, diag(σ2
],j)). (12)
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The error term is an approximation in that independence is postulated for the transformed

covariance elements ρj, j = 1, . . . , p. With the log-Cholesky parametrization no further

care is then needed in keeping track of the error term: The 3d wavelet decomposition can

promptly be applied to each 3d field {ρobs,j(s) : s = 1, . . . , n}, where σ2
],j is estimated

from the high-frequency weights of the first decomposition step. Hence, project elements

ρobs,j, j = 1, . . . , p, onto 3d tensor product wavelets:

ρobs,j = Wγj + ε
]
j.

The ordinary least squares estimate of the wavelet coefficient surfaces holds:

γOLS
j = (W′W)−1

︸ ︷︷ ︸

= I

W′ρobs,j.

As explained in Section 1.4, the choice of a thresholding value and rule yields a sparse

(and possibly shrunken) vector of wavelet contributions:

γ̂λ,j = δλ(γ
OLS
j ).

After having run the inverse discrete 3d wavelet transform, the regularized estimate

ρ̂j = Wγ̂λ,j,

can be reparameterized to:

β̂j = β(ρ̂j) =

















exp(ρ̂1)
2

exp(ρ̂1)ρ̂2

ρ̂2
2 + exp(ρ̂3)

2

exp(ρ̂1)ρ̂4

ρ̂2ρ̂4 + exp(ρ̂3)ρ̂5

ρ̂2
4 + ρ̂2

5 + exp(ρ̂6)
2

















.

Note that the competitive log matrix transformation (Pinheiro and Bates, 1996) is more

stable but does not lead to the desired independence of the parametrized elements either.
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Certainly, the assumption of independently distributed errors in Eq. (12) is strong but

indispensable for looping over the six 3d fields of parametrized tensor elements. In con-

trary, spatial correlation could be considered by special wavelet transforms for colored

noise. Also level-dependent thresholding is said to be more suitable in such a case.

In conclusion, the bunch of processing steps described above yields an equivalent estimate

for the 3d array of covariance matrices as the SVCM based on tensor product B-splines

(Heim et al., 2006).

3 Simulation study

3.1 Simulation model

The simulation model as presented in Fig. 2 (Heim et al., 2005) is not apt for wavelet

analysis. Of course, a mere resampling would satisfy the demand of dyadic dimensions.

However, the miminum logarithm to the basis 2 of the 3d array size determines the

maximum possible decomposition depth. For this reason, periodic extension along the

z-axis is performed prior to discrete sampling into 32 × 32 × 32 voxels (see Fig. 13).

Thanks to additional concentric nesting of two spirals of five and twelve centimeters

radius, respectively, each transversal slice contains enough virtual fiber structure (overall

13.87% fiber voxels). The degree of anisotropy in fiber as well as non-fiber voxels has been

kept the same as in Heim et al. (2005). Given the simulation model, N = 100 data sets

were generated consisting of six diffusion weighted images corrupted by noise (σ = 10).

3.2 Study design

The parameter setup of the discrete wavelet analysis involves the wavelet family, the

primary thresholding level j0, the thresholding rule and the threshold itself. Boundary

condition is not up for discussion as the employed R-package waveslim (Whitcher, 2005)

handles border distortions only in a periodic fashion.

Since the basis function should mimic the underlying features of the given object, the

choice of the wavelet family is crucial. Typical criteria are symmetry useful in avoiding
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Figure 13: Geometrical model used for simulation studies with respect to wavelet analysis.

dephasing in image processing, the number of vanishing moments important for compres-

sion purposes, and the regularity to get nice smoothness. Moreover, the length of the

mother wavelet should not exceed the number of available observations. Apart from the

Haar family, no wavelet system satisfies the demands of compact support (among others

preferable for numerical stability) and symmetry at the same time. The latter condi-

tion is however indispensable in imaging if spatial directions are equally likely. Therefore,

Daubechies least asymmetric wavelets with four vanishing moments (LA4) are investigated

in addition to Haar (Haar) and Daubechies extremal phase wavelets (D2) with one and two

vanishing moments, respectively. Also minimum bandwidth wavelets with four vanishing

moments (MB4) are considered. This latter family is closely related to Daubechies ex-

tremal phase family, i. e. the members coincide for two vanishing moments and are almost

the reverse of each other for more than two vanishing moments (φDaub(x) = −φMB(x)).

The important difference consists in superior frequency-domain properties and, thus, su-

perior edge-preserving property of minimum-bandwidth wavelets compared to Daubechies

wavelets given the same number of vanishing moments (Chap. 4.3.3 Gençay et al., 2002).

The effect of the primary decomposition level was found to be neglibible according to a

pilot study. Complete decomposition (j0 = 0) is therefore performed.

Since hard thresholding can, in principle, be combined with the univeral or SURE thresh-
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old and since this seems more natural to a non-statistician (Donoho and Johnstone,

1994), it is taken into account. Thus, the comparison comprises four shrinkage methods:

hard universal (hUNIV), soft universal (sUNIV), hard SURE (hSURE), and soft SURE

(sSURE) thresholding. Every variant includes a noise estimate which, theoretically, can

be level-dependent and/or orientation-dependent.

A preparatory study aims to investigate the impact of the noise estimation limited to

the use of Haar wavelets. The estimation is either based on the highest resolution level

(sigma1) or depends on each orientation (sigma2), each level (sigma3) or each level and

each orientation (sigma4). As in Heim et al. (2006), the quality is assessed via the error

measures averaged mean squred error (AMSE) of the tensor fit, depending on the voxel

type ’spiral’:

AMSE(i)
sp

=
1

p nsp

∑

s∈spiral

∥
∥
∥β(s) − β̂

(i)
(s)

∥
∥
∥

2

, i = 1, . . . , N ,

or ’background’:

AMSE
(i)
bg =

1

p nbg

∑

s∈background

∥
∥
∥β(s) − β̂

(i)
(s)

∥
∥
∥

2

, i = 1, . . . , N ,

as well as by the voxelwise mean squared error (VMSE) defined as

VMSE
(s)
j =

1

N

N∑

i=1

(

βj(s) − β̂
(i)

j (s)
)2

, s = 1, . . . , n .

A second study concentrates on the impact of the wavelet type. For this purpose, the DWT

of the simulated data is conducted using wavelets from the Haar (Haar) , the Daubechies

extremal phase (D2), the least asymmetric (LA4), and the minimum-bandwidth (MB4)

family. The DWTs are then thresholded according to the above rules hUNIV, sUNIV,

hSURE, and sSURE in combination with the two different noise estimates sigma1 and

sigma2.

3.3 Simulation results

Concerning the preparatory study, Figures 14 and 15 display the results by means of

boxplots. Clearly recognizable is the familiar distribution of smaller errors in background
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than in spiral voxels. The discrepancy between these two tissue classes becomes more

pronounced with soft thresholding (second and fourth row from top). Concerning the

noise estimation, level-dependent approaches fail as expected from the simulation design

that does not incorporate correlated noise. This is also true for the SURE approach,

although whatsoever less evident when combined with the hard rule (third row from top).

In contrast, the exclusive specification with respect to orientation (horizontal, vertical,

diagonal details) shows hardly an effect compared to the uniform approach sigma1. A

slight improvement in terms of smaller log AMSE errors is visible for the SURE threshold

applied either hard or soft (Fig. 14, bottom rows).

Boxplots according to the second study design are not suited for visual inference because

of apparent similarity. Tables 1 and 2 contain instead the principal boxplot statistics

corresponding to the logarithmized average and voxelwise MSE, respectively.

At first glance, the wavelet type plays hardly a role, in particular with respect to the

errors of D2, LA4 and MB4. The resembling behavior points at an oversized filter length

given the scale of the features to be preserved. In view of this, especially the minimum-

bandwidth wavelet is not able to develop its superior edge-preserving property. Yet, the

Haar wavelet has the shortest support among the examined families and can therefore still

capture substantial structures at finer scales. Not surprisingly, the Haar wavelet performs

best under almost all shrinkage conditions in terms of an overall error measurement (log

AMSE). Regarding the local error (log VMSE), the D2 family outperforms the Haar

family in background voxels but not in spiral voxels.

The performance on these two tissue types is quite similar if hard thresholding is applied.

In contrast, soft thresholding leads to dinstinctively larger errors in the region of the

fiber bundle. At the same time, the shrinkage entails a smooth and less erroneously

reconstructed background. This holds for all parameter settings and both error measures.

Log AMSE errors obtained with the SURE threshold tend to be smaller than those of

universal thresholding. Solely with the main focus on log VMSE errors, universal hard

thresholding seems to be preferrable over the SURE counterpart.

The choice of the noise estimate does, in general, not affect the MSE ranking of the

wavelet types (compare black and gray prints). This results corroborates the previous

finding obtained from the Haar wavelet alone.
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Figure 14: Boxplots of log AMSE for hUNIV, sUNIV, hSURE, and sSURE (top to bottom) with

the noise estimated on the basis of the highest resolution level (sigma1), orientation-dependent

(sigma2), level-dependent (sigma3) and (orientation and level)-dependent (sigma4) using Haar

wavelets.
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Figure 15: Boxplots of log VMSE for hUNIV, sUNIV, hSURE, and sSURE (top to bottom) with

the noise estimated on the basis of the highest resolution level (sigma1), orientation-dependent

(sigma2), level-dependent (sigma3) and (orientation and level)-dependent (sigma4) using Haar

wavelets.
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non-fiber fiber

Haar D2 LA4 MB4 Haar D2 LA4 MB4

-21.99 -21.69 -21.65 -21.55 -20.89 -20.60 -20.61 -20.59
maximum

-22.00 -21.62 -21.59 -21.49 -20.74 -20.37 -20.38 -20.34

-21.98 -21.67 -21.64 -21.54 -20.85 -20.58 -20.59 -20.56
upper hinge

-21.99 -21.62 -21.59 -21.47 -20.71 -20.35 -20.36 -20.31

-21.97 -21.67 -21.64 -21.53 -20.84 -20.56 -20.58 -20.55
hUNIV median

-21.98 -21.61 -21.58 -21.47 -20.71 -20.34 -20.35 -20.30

-21.96 -21.66 -21.63 -21.53 -20.83 -20.55 -20.57 -20.53
lower hinge

-21.98 -21.61 -21.58 -21.46 -20.70 -20.33 -20.34 -20.29

-21.94 -21.65 -21.62 -21.51 -20.80 -20.52 -20.54 -20.49
minimum

-21.96 -21.59 -21.57 -21.45 -20.67 -20.31 -20.32 -20.27

non-fiber fiber

Haar D2 LA4 MB4 Haar D2 LA4 MB4

-22.39 -22.07 -22.00 -21.88 -19.28 -19.14 -19.20 -19.19
maximum

-22.33 -21.96 -21.90 -21.80 -19.08 -18.86 -18.90 -18.87

-22.38 -22.05 -21.99 -21.87 -19.24 -19.11 -19.17 -19.16
upper hinge

-22.32 -21.95 -21.88 -21.79 -19.06 -18.84 -18.88 -18.86

-22.37 -22.04 -21.98 -21.86 -19.23 -19.10 -19.16 -19.15
sUNIV median

-22.32 -21.94 -21.88 -21.78 -19.05 -18.84 -18.88 -18.85

-22.36 -22.03 -21.97 -21.86 -19.22 -19.09 -19.15 -19.14
lower hinge

-22.31 -21.94 -21.87 -21.78 -19.05 -18.83 -18.87 -18.85

-22.35 -22.02 -21.96 -21.85 -19.20 -19.07 -19.12 -19.12
minimum

-22.29 -21.93 -21.86 -21.76 -19.03 -18.82 -18.86 -18.83

non-fiber fiber

Haar D2 LA4 MB4 Haar D2 LA4 MB4

-21.68 -21.59 -21.58 -21.53 -21.16 -21.02 -21.03 -21.02
maximum

-21.70 -21.62 -21.61 -21.56 -21.17 -21.00 -21.01 -20.99

-21.66 -21.57 -21.56 -21.51 -21.14 -20.99 -21.00 -20.99
upper hinge

-21.68 -21.60 -21.59 -21.54 -21.14 -20.98 -20.99 -20.96

-21.65 -21.56 -21.55 -21.51 -21.13 -20.99 -21.00 -20.98
hSURE median

-21.67 -21.60 -21.58 -21.54 -21.14 -20.97 -20.98 -20.95

-21.64 -21.56 -21.54 -21.50 -21.12 -20.98 -20.99 -20.97
lower hinge

-21.67 -21.59 -21.58 -21.53 -21.13 -20.96 -20.97 -20.93

-21.62 -21.53 -21.52 -21.48 -21.10 -20.95 -20.96 -20.91
minimum

-21.64 -21.57 -21.56 -21.51 -21.11 -20.93 -20.94 -20.90

non-fiber fiber

Haar D2 LA4 MB4 Haar D2 LA4 MB4

-22.58 -22.28 -22.22 -22.11 -20.04 -19.82 -19.87 -19.80
maximum

-22.57 -22.27 -22.21 -22.09 -20.04 -19.78 -19.82 -19.74

-22.57 -22.27 -22.21 -22.09 -20.00 -19.76 -19.79 -19.75
upper hinge

-22.56 -22.25 -22.19 -22.08 -20.00 -19.75 -19.76 -19.72

-22.56 -22.26 -22.20 -22.09 -19.99 -19.75 -19.78 -19.73
sSURE median

-22.55 -22.25 -22.19 -22.07 -19.99 -19.73 -19.75 -19.70

-22.56 -22.25 -22.20 -22.08 -19.97 -19.73 -19.76 -19.71
lower hinge

-22.55 -22.24 -22.18 -22.06 -19.97 -19.72 -19.73 -19.68

-22.53 -22.24 -22.19 -22.06 -19.94 -19.70 -19.73 -19.63
minimum

-22.53 -22.23 -22.18 -22.04 -19.94 -19.68 -19.69 -19.65

Table 1: Boxplot statistics of log AMSE for different thresholding rules with either sigma1 (black)

or sigma2 (gray) noise estimation using different wavelet families.
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non-fiber fiber

Haar D2 LA4 MB4 Haar D2 LA4 MB4

-25.87 -26.97 -26.39 -25.97 -24.49 -24.42 -24.37 -24.22
maximum

-26.20 -27.29 -26.76 -26.14 -24.53 -24.59 -24.39 -24.31

-23.28 -23.23 -23.19 -23.14 -21.95 -21.86 -21.93 -22.00
upper hinge

-23.41 -23.37 -23.32 -23.25 -21.93 -21.80 -21.86 -21.93

-22.75 -22.57 -22.50 -22.33 -21.41 -20.93 -20.98 -21.00
hUNIV median

-22.97 -22.76 -22.67 -22.48 -21.41 -20.83 -20.86 -20.90

-22.07 -21.46 -21.38 -21.20 -20.78 -20.31 -20.35 -20.36
lower hinge

-22.19 -21.47 -21.39 -21.19 -20.72 -20.11 -20.15 -20.15

-18.64 -18.73 -18.45 -18.26 -18.38 -17.90 -17.68 -17.50
minimum

-18.45 -18.28 -18.40 -18.03 -18.06 -17.57 -17.37 -17.10

non-fiber fiber

Haar D2 LA4 MB4 Haar D2 LA4 MB4

-27.48 -28.49 -28.29 -27.56 -27.68 -27.61 -27.63 -27.38
maximum

-27.62 -28.59 -28.45 -27.70 -27.79 -27.72 -27.79 -27.43

-25.45 -25.64 -25.48 -25.35 -21.63 -21.57 -21.66 -21.71
upper hinge

-25.55 -25.74 -25.56 -25.44 -21.58 -21.49 -21.58 -21.60

-24.04 -24.03 -23.87 -23.65 -20.07 -20.06 -20.17 -20.23
sUNIV median

-24.03 -24.05 -23.91 -23.71 -19.88 -19.76 -19.86 -19.84

-22.67 -22.24 -22.25 -22.06 -19.06 -18.83 -18.88 -18.91
lower hinge

-22.60 -22.17 -22.18 -21.99 -18.85 -18.53 -18.56 -18.56

-17.53 -17.74 -17.73 -17.27 -16.31 -16.39 -16.49 -16.23
minimum

-17.53 -17.63 -17.80 -17.23 -16.19 -16.18 -16.31 -16.11

non-fiber fiber

Haar D2 LA4 MB4 Haar D2 LA4 MB4

-24.66 -25.04 -24.53 -24.43 -24.41 -24.86 -24.61 -24.31
maximum

-25.05 -25.14 -24.94 -24.72 -24.72 -25.30 -24.92 -24.57

-23.06 -23.07 -23.07 -23.06 -21.86 -21.84 -21.89 -21.97
upper hinge

-23.22 -23.21 -23.25 -23.26 -21.91 -21.93 -22.00 -22.11

-21.69 -21.69 -21.69 -21.68 -21.21 -21.09 -21.09 -21.09
hSURE median

-21.71 -21.76 -21.75 -21.75 -21.23 -21.11 -21.11 -21.10

-21.26 -21.19 -21.15 -21.05 -20.78 -20.61 -20.63 -20.63
lower hinge

-21.29 -21.23 -21.20 -21.10 -20.79 -20.60 -20.62 -20.62

-19.82 -19.78 -19.59 -19.43 -19.57 -19.19 -18.99 -18.74
minimum

-19.73 -19.54 -19.44 -19.18 -19.50 -18.91 -18.81 -18.55

non-fiber fiber

Haar D2 LA4 MB4 Haar D2 LA4 MB4

-27.52 -28.42 -28.05 -27.84 -27.99 -27.84 -28.00 -27.64
maximum

-27.63 -28.33 -28.14 -28.02 -27.95 -27.95 -27.75 -27.74

-25.13 -25.35 -25.26 -25.14 -21.70 -21.61 -21.69 -21.76
upper hinge

-25.13 -25.31 -25.25 -25.11 -21.74 -21.66 -21.74 -21.82

-23.54 -23.55 -23.46 -23.30 -20.69 -20.53 -20.63 -20.66
sSURE median

-23.54 -23.60 -23.51 -23.33 -20.71 -20.54 -20.63 -20.67

-22.62 -22.20 -22.17 -22.01 -19.89 -19.58 -19.60 -19.57
lower hinge

-22.62 -22.21 -22.19 -22.02 -19.89 -19.56 -19.57 -19.54

-18.20 -18.30 -18.19 -17.74 -16.98 -16.92 -16.96 -16.68
minimum

-18.14 -18.21 -18.08 -17.66 -16.95 -16.85 -16.93 -16.59

Table 2: Boxplot statistics of log VMSE for different thresholding rules with either sigma1 (black)

or sigma2 (gray) noise estimation using different wavelet families.
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3.4 Comparison to standard approaches

Coming back to the goal of improving the SVCM estimates by exchanging the basis, the

comparison to previous methods is essential. Figure 16 therefore depicts the error boxplots

of voxelwise regression with subsequent Gaussian smoothing (ST2), sequential SVCM with

linear B-splines, one knot per 1.28 voxels and global tuning parameter (DXglob-lin), as

well as the SVCM once based on Haar wavelets combined with universal thresholding

(hUNIV-Haar) and once based on Daubechies wavelets combined with SURE shrinkage

(sSURE-D2). Noise estimation conforms to sigma1.

Clearly, both wavelet transforms convince with satisfactory error reduction. The improve-

ment appears larger from an overall (top row) than from a local perspective (bottom row).

In particular, errors in fiber voxels can be lowered using SURE shrinkage, outperforming

ST2 and the B-splines based SVCM.
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Figure 16: Boxplots of log AMSE (top) and log VMSE (bottom) for ST2, DXglob-lin, hUNIV-
Haar and sSURE-D2.

The VMSE errors, collapsed into distributional characteristics in Fig. 16, can alterna-

tively be presented as maps to enable local assignment. For this purpose, log ratios of
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VMSEmethod 1 and VMSEmethod 2 are build as in Section 4 in Heim et al. (2005). Where

previously results from the B-spline based SVCM were contrasted with those obtained

by ST2 (Fig. 5 Heim et al., 2005), wavelet based SVCMs are now related to ST2 and to

each other. Figure 17 contains maps of log(VMSEhUNIV-Haar/VMSEsSURE-D2) in the upper

right, log(VMSEhUNIV-Haar/VMSEST2) in the lower left and log(VMSEsSURE-D2/VMSEST2)

in the lower right corner. The interpretation is as follows: Rose colors indicate superi-

ority of the numerator, while green colors hint to a better performance of denominator

method. As obvious from the rose color dominance, both wavelet approaches outperform
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Figure 17: Template coefficient surfaces (top left) correspond to the six elements of the 3d tensor
field. Log ratio of VMSE is given for both hUNIV-Haar (bottom left) and sSURE-D2 approach
(bottom right) relative to ST2. Top right shows the log ratio of VMSE from hUNIV-Haar versus
sSURE-D2. All subfigures show exemplary middle slices 14 to 18.

42



the standard voxelwise regression followed by Gaussian smoothing (bottom subfigures).

In the interspiral space, however, ST2 shows higher accuracy. This becomes particularly

evident when compared to sSURE-D2 (bottom right). The green pattern furthermore

gives rise to the presumption of Gibb’s artefacts caused by sSURE-D2. This phenomenon

might be traceable in the estimation results themselves (Fig. 18). In general, the wavelet

original ST1 ST2 DXglob−lin hUNIV−Haar sSURE−D2

Figure 18: Surface excerpt (slices 14 to 18) of the first diagonal diffusion tensor element as noise-
free template (left) and estimated using voxelwise regression (ST1) with subsequent gaussian
smoothing (ST2) and space-varying coefficient approaches based on B-splines (DXglob lin), Haar
(hUNIV Haar) or Daubechies wavelets (sSURE D2).

SVCMs seem to outperform the B-spline SVCMs with respect to background smoothness.

This can be concluded without explicit comparison of the SVCM subtypes (B-splines or

wavelets), since ST2 represents the benchmark in both figures 5 (Heim et al., 2005) and

17. However, the behavior at ridges is not as stable as in the B-spline case. For example,

the wavelet approaches have severe difficulties to reproduce flat signals (green spots in
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the fifth and sixth column).

As it can be judged from the upper right subfigure, hUNIV-Haar performs better at

edges and yields smoother background in the first and second diagonal element, whereas

sSURE-D2 primarily succeeds better in catching up the signal magnitude at ridges.

The white cross-shaped pattern hints to the presence of blocking artefacts, i. e. effects

at different scales that are due to the squared support of the Haar wavelet. Blocking

artefacts do not emerge with the D2 wavelet (bottom right).

Facing ambigously informative figures of the error ratios, a look onto the estimated dif-

fusion tensors themselves seems worthwhile. For display feasibility, the focus is limited

on the middle slices 14 to 18 and on the first diagonal tensor element for which error ex-

tremes as well as Gibbs and blocking distortions are both present (see Fig. 17). Figure 18

compares the original noise-free template with the standard approaches as well as SVCM

approaches applied to data from one exemplary simulation run.

Depending on the printing quality, all method-specific drawbacks and advantages become

more or less apparent at a glance:.

ST1 Mere voxelwise regression completely lacks spatial smoothness though the signal

magnitude seems to be satisfactorily caught in fiber voxels.

ST2 Consecutive application of a Gaussian kernel with FWHM equal to 0.75 voxels

seriously oversmoothes, in particular in z-direction.

DXglob lin Space-varying coefficient surfaces designed with penalized B-splines are less

overregulated, contrasts are enhanced compared to ST2. Gibbs-like shadows are

reduced to a minimum using linear basis functions.

hUNIV Haar Features are correctly mapped regarding brightness and edge location.

Smoothing is manifest but at the expense of blocking artefacts. For instance, par-

tial failure of the spiral pathway happens at eight o’clock, top row. In the back-

ground, the Haar basis function is even fully recognizable (compare to Fig. 8). Gibbs

phenomena are best visible as black voxels neighboring the bright curve segments.

sSURE D2 For the first time, edge preservation appears satisfactorily balanced to smooth-

ing. The interspiral space is slightly more turbulent for the D2 than for the Haar
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approach. Gibbs artefacts are still present, whereas blocking does hardly disturb

the visual impression.

4 Real life example

In this section, an exemplary DTI dataset of the human brain is processed using the very

one wavelet SVCM that is rated best in the above simulations. For this purpose, the input

data consists of six measurement repeats, each comprising 16 successive slices of originally

128 × 128 voxels. Although in-plane decomposition can in principle be determined by

j0 = 7, the possible maximum decomposition level in z-direction limits the thresholding

to coefficients at the first four levels. This way, a realistic noise cutoff frequency is met

at least within plane. Given the structural variety and the larger dimensions of real

data, symmlets and minimum-bandwidth wavelets serve re-examination. The analysis

is therefore conducted with the wavelet families D2, LA4 as well as MB4 together with

SURE shrinkage and level-independent noise estimate (sigma1). After tensor estimation,

the volume is resized to the same six slices of 90× 75 voxels as used in Heim et al. (2005,

Chap. 5).

A main difficulty, that did not occur with simulated samples, results from log-Cholesky

parametrization of the real data subsequent to their transformation according to Eq. (11).

In few voxels, the Cholesky decomposition is not feasible straight away. Owing to the

various sources of noise in MR imaging or to signal drop, the observed covariance matrices

are singular in about 0.5% of all 40500 voxels. For the locations of the affected voxels

refer to Fig. 19. According to Skare et al. (2000), negative eigenvalues are more likely

with increasing noise and increasing FA. The latter statement exactly applies to the

affected voxel that seem to lie at the boundary to the ventricles where highly organized

white matter is in direct neighborhood (Fig. 19). Hence, ensuring positive definiteness

is particularly important with respect to fiber tracking. As remedy in such cases, small

positive amounts are added on the diagonal elements prior to Cholesky decomposition.

The problem of visualizing an estimated tensor field is equivalent to the problem of visu-

alizing a vector field along with a scalar function on the same plot. Apart from showing

the principal eigen vectors together with a color-code for the degree of local anisotropy,
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Figure 19: Mask of six middle human brain slices with problematic voxels superimposed in white.
These indicate where the observed diffusion tensor is singular.

FA color-encoded ellipsoids are most intuitive and also somewhat more informative at

first sight. For example, planar-shaped tensors allow to rise the conjecture of possible

fiber crossings or branchings. Figure 20 was generated using the software module ’Ten-

sorViewer’ developed by (Fillard and Toussaint, 2006).

Figure 20: An exemplary slice of the 3d diffusion tensor field estimated from human DTI data
using (a) ST1, (b) ST2, (c) DXglob-lin and (d) sSURE-D4, and displayed as FA color-encoded
ellipsoids.
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Clearly, ST1 produces the most unsettled impression (Fig. 20 (a)), and is hardly dis-

cernible from the SVCM involving D4 wavelets (Fig. 20 (d)). The disturbing effect is

triggered by a few ellipsoids of bigger size than average, in particular present at the slice

center and border. These tensors can be assigned to full or partial volumes of cerebro-

spinal fluid (CSF), e. g. in central ventricles where diffusion is free. Usually, a mask, built

on the basis of the b0 image, is applied to sort out CSF. In addition, these voxels are

often excluded from tensor estimation when fiber tracking and, therefore, tissue voxels

are of interest. Since no masking was performed prior to estimation, the wavelet approach

smears the ventricle compartement into the splenium of the corpus callosum. This result

is completely contrary to what is anticipated from wavelet theory and lacks justification.

Also, regularization is hardly given. The results obtained by LA4 and MB4 wavelets do

not differ significantly.

In contrast, the tensor fields in Fig. 20 (b) and (c) convince by apparent smoothness.

However, Gaussian kernel smoothing (Fig. 20 (b)) leads to overblurring in comparison to

the SVCM with penalized B-splines. For example, the red-colored voxels in genu and sple-

nium of the corpus callosum are less cigar-shaped though this region is highly anisotropic.

Also in red, u-shaped region in grey matter contain more planar ellipsoids.

5 Discussion

Various simulation studies have been conducted accounting for different noise estimates,

the use of different wavelet families and the application of different thresholding values

and thresholding rules. As expected, scale-dependent noise estimation proved to be inad-

equate to simulated data imposed with Gaussian white noise. Hard thresholding allows

to reproduce structural aspects in almost full accuracy while uniform regions are still

subjected to some error. Soft thresholding generally leads to smoother results, i. e. a

correctly smooth background but also slightly blurred features. Depending on the appli-

cation of interest, the soft shrinkage results are clearly to be favored with their moderate

and adaptive regularization. The use of Haar wavelets should be avoided since undesired

blocking effects are likely to emerge. Least asymmetric separable 3d wavelets as well as

minimum bandwidth wavelets showed neither beneficial nor detrimental over the use of
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Daubechies extremal phase family.

In contrast to former methods such as simple kernel smoothing or the B-spline based

SVCM, the multiscale analysis with wavelets yields significantly less erroneous results

due to the wavelets’ built-in spatial-adaptivity. Space-frequency resolution particularly

matters for the sensitivity to local curvature changes. B-splines (degree > 0), for example,

cannot model aprupt changes due to their wide and overlapping support regions.

However, comparative error maps pointed to Gibbs-like phenomena generated by wavelet

based SVCMs. Although these Gibbs artefacts are much more damped compared to the

output from B-spline SVCMs, orthogonal wavelet analysis is not able to remedy them

completely. Jansen (2001, p. 120) derives a theoretical explanation for the oscillation

causes by looking at the optimal and experimental thresholding rules. According to

(Jansen, 2001), hard thresholding is more biased than soft thresholding and, thus, more

likely to develop over- and undershoots near singularities. Yet, in the given simulation

study, also the wavelet reconstruction using SURE shrinkage shows oscillatory behavior

at fiber rims. Another reasoning considered the lack of translation invariance inherent to

the DWT as origin of Gibbs effects (see Ogden (1997, p. 183) and the references therein).

The use of the translation invariant wavelet transform (MODWT) might therefore be

recommended.

Rather bizarre appears the fact that an SVCM involving Haar wavelets yields the best

reconstruction in terms of MSE. The discrepancy between the resulting 3d step function

and the intended smooth surface tackles the basic problem of the most relevant measure

of error. Obviously, “mean squared errors (MSE) does not correspond to a human per-

ception of generality. Since our visual system seems to work on a multiscale basis, a norm

based on a multiresolution decomposition might be a better expression of visual quality”

(Jansen, 2001, p. 49). In conclusion, the problem raises the question after the usefulness

of theoretical optimality for experimental setups. Several proposals to encounter this

“paradoxon” are made in Marron and Tsybakov (1995).

Finally, note that smaller errors of the tensor estimates do not necessarily imply smaller

errors of the principal eigen vectors. Due to the non-linearity of the eigen decomposi-

tion, directional information of the main diffusivity could likely remain stable despite
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large AMSE and VMSE errors of the tensor entries. Recall that any tracking algorithm

primarily exploit the eigen vectors. Hence, future studies should at least investigate the

angular distribution between noise-free and reconstructed eigen vectors as well.

Concerning the human brain example, the SVCM on the basis of penalized linear B-

splines yields the best visual result. Gaussian kernel smoothing leads to oversmoothing, as

excepted, and voxelwise tensor estimation is obviously not apt for the ultimate goal of fiber

tracking. Against the theoretical background and the results obtained in the simulation

study, the wavelet approach fails in producing an appropriately regularized tensor field.

Moreover, the edge-preserving property is challenged by unmasked CSF voxels. This

disappointing result calls for further investigation of available wavelet transforms and

thresholding mechanisms. Last but not least, the wavelet procedure needs to be adapted

to the non-unit voxel size that is common in practice. Either the use of an anisotropic

basis or a scaling step seems advisable.
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Gençay, R., Selçuk, F. and Whitcher, B. (2002). An introduction to wavelets and other

filtering methods in finance and economics, Academic Press London.
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