
Matthias Schmid & Torsten Hothorn

Boosting Additive Models using
Component-wise P-Splines

Technical Report Number 002, 2007
Department of Statistics
University of Munich

http://www.stat.uni-muenchen.de

Boosting Additive Models using

Component-wise P-Splines

Matthias Schmid1

Institut für Medizininformatik, Biometrie und Epidemiologie

Friedrich-Alexander-Universität Erlangen-Nürnberg
Waldstraße 6, D–91054 Erlangen, Germany

Torsten Hothorn1

Institut für Statistik
Ludwig-Maximilians-Universität München

Ludwigstraße 33, D–80539 München, Germany

Abstract

We consider an efficient approximation of Bühlmann & Yu’s L2Boosting algorithm
with component-wise smoothing splines. Smoothing spline base-learners are replaced
by P-spline base-learners which yield similar prediction errors but are more advanta-
geous from a computational point of view. In particular, we give a detailed analysis
on the effect of various P-spline hyper-parameters on the boosting fit. In addition,
we derive a new theoretical result on the relationship between the boosting stopping
iteration and the step length factor used for shrinking the boosting estimates.

Key words: L2Boosting, P-splines, smoothing splines, additive models, variable selection,
component-wise base-learners

1 Introduction

In recent years boosting has developed into one of the most important techniques for fitting
regression models in high-dimensional data settings. Originally, the technique was designed
as a machine learning procedure for improving the prediction of binary outcomes (Freund
and Schapire, 1996, 1997). Later, Breiman (1998, 1999) and Friedman et al. (2000) have
shown that boosting can also be regarded as a gradient-descent algorithm in function space:

1Supported by Deutsche Forschungsgemeinschaft, grant HO 3242/1–3

1

In each iteration of the algorithm, a so-called base-learner (e.g., a tree or a least squares
estimator) is fitted to the negative gradient of a pre-specified loss function. The current
estimate of the predictor function is then updated with the actual estimate of the negative
gradient, which automatically results in an additive model fit. Since the work of Friedman
et al. (2000), a variety of boosting algorithms for various statistical problems and loss
functions has been suggested in the literature; for an overview, we refer to Bühlmann and
Hothorn (2008).

By explicitly considering least squares base-learners in combination with the L2 loss func-
tion, Bühlmann and Yu (2003) have established boosting as a technique for fitting additive
regression models (”L2Boosting”). In particular, the authors showed how to choose an
alternative base-learner such that the boosting algorithm includes a built-in variable se-
lection technique (Bühlmann and Yu, 2003; Bühlmann, 2006). Thus, when the number of
covariates p in a data set is large (and when selecting a small number of relevant covariates
is desirable), boosting is usually superior to standard estimation techniques for regression
models (such as stepwise linear regression, which, e.g., cannot be applied if p is larger than
the number of observations n).

In this paper, the focus is on a promising application of L2Boosting: We consider fit-
ting additive regression models with a continuous outcome and smooth functions of the
predictors. In this case, a smooth function is fitted to the negative gradient of the loss
function in each iteration. The starting point of the paper is the well-established approach
of Bühlmann and Yu (2003), who used smoothing splines as the base-learner. Apart from
deriving a number of theoretically appealing results on smoothing spline base-learners,
Bühlmann and Yu (2003) have shown that this strategy is competitive with standard es-
timation techniques for additive models (e.g., backfitting) and is even able to outperform
them.

From a computational point of view, however, smoothing splines are clearly less efficient
than other smooth base-learners. This is mainly due to the structure of their integrated
squared second-order derivative penalty which is relatively time-consuming to evaluate
(Eilers and Marx, 1996; Marx and Eilers, 1998). We therefore investigate whether smooth-
ing spline base-learners can be replaced by a simpler base-learner yielding approximately
the same performance results. A natural choice to approximate smoothing splines is the
P-spline approach introduced by Eilers and Marx (1996). P-splines, which have become a
standard tool for estimating generalized additive models, use a penalty based on higher-
order differences of regression coefficients of adjacent knots. If the difference order is equal
to 2, the penalty is a discrete approximation of the smoothing spline penalty. A major
benefit of this approximation is that the dimensionality of the penalty is greatly reduced,
so that P-spline estimates are far less time-consuming to evaluate. Thus, when used as
base-learners for a large number of variables, P-splines can greatly increase the efficiency
of a boosting algorithm.

In the following we will show that this increase in efficiency is possible even without de-
creasing the predictive performance of the L2Boosting algorithm. By means of theoretical

2

results and an extensive simulation study we compare smoothing spline base-learners to P-
spline base-learners and show that using the latter is a successful alternative to Bühlmann
and Yu’s approach using smoothing spline base-learners. In addition, we investigate the
effect of various P-spline hyper-parameters (such as the smoothing parameter and the
number of knots) on the performance of L2Boosting.

It should be noted that P-splines have been used before in a boosting context (Tutz and
Binder, 2006). However, the authors used a likelihood-based learning procedure, which is
related but not equivalent to L2Boosting. Also, Tutz and Binder (2006) did not provide a
systematic investigation on the effect of P-spline hyper-parameters on the boosting fit.

The paper is organized as follows: In Section 2, we briefly outline the concept of L2Boosting
with smooth components. Moreover, we analyze the effect of various boosting tuning
parameters and P-spline hyper-parameters on the behavior of the L2Boosting algorithm. In
Section 3, smoothing spline base-learners and P-spline base-learners are compared by means
of a simulation study. This study is based on artificial data, as well as on a real world data
set originally analyzed by Garcia et al. (2005). Section 4 deals with various computational
issues involved in making L2Boosting with P-spline base-learners a computationally feasible
estimation technique. A summary of the results of this paper is given in Section 5.

2 L2Boosting with smooth components

2.1 The FGD algorithm

Consider a set of realizations of i.i.d. random variables (X1, Y1), . . . , (Xn, Yn), where
X1, . . . , Xn are p-dimensional vectors of covariates and Y1, . . . , Yn are one-dimensional re-
sponse variables. We want to minimize the real-valued function

f ∗ := argmin
f(·)

E[ρ(Y, f(X))] , (1)

where (X, Y) follows the same distribution as each of the (Xi, Yi), i = 1, . . . , n. The
function ρ is a loss function that is assumed to be differentiable with respect to f(X).
Estimation of f ∗ is performed by minimizing the empirical risk

∑n

i=1 ρ(Yi, f(Xi)) with
respect to f . We consider the following boosting algorithm introduced by Friedman et al.
(2000) and Friedman (2001):

1. Initialize the n-dimensional vector f̂ [0] with an offset value, e.g., f̂ [0] ≡ 0. Set m = 0
and specify a base-learner with one dependent variable and one covariate (e.g., a
simple linear regression estimator).

2. Increase m by 1. Compute the negative gradient− ∂
∂f

ρ(Y, f) and evaluate at f̂ [m−1](Xi),

i = 1, . . . , n. This yields the negative gradient vector U [m−1] = (U
[m−1]
i)i=1,...,n :=

(− ∂
∂f

ρ(Y, f)|Y =Yi,f=f̂ [m−1](Xi)
)i=1,...,n.

3

3. Fit the negative gradient U [m−1] to each of the p components of X (i.e., to each
covariate) separately by p times using the regression estimator specified in (1). This
yields p vectors, where each vector is an estimate of the negative gradient vector
U [m−1].

4. Select the component of X which fits U [m−1] best according to a pre-specified goodness-
of-fit criterion. Set Û [m−1] equal to the fitted values from the corresponding best
model fitted in (3).

5. Update f̂ [m] = f̂ [m−1] + ν Û [m−1], where 0 < ν ≤ 1 is a real-valued step length factor.

6. Iterate Steps 2–5 until m = mstop for some stopping iteration mstop.

The above algorithm can be interpreted as a negative gradient descent algorithm in function
space: In each step, an estimate of the true negative gradient of the loss function is added
to the current estimate of f ∗. Thus, a structural (regression) relationship between Y and
the covariate vector X is established. It can also be seen that the above algorithm carries
out variable selection in each iteration, as only one component of X is updated in Step (5).
This property makes the algorithm applicable even if p > n. Due to the additive structure
in (5), the final boosting estimate at iteration mstop can be interpreted as an additive model
fit but will typically depend on only a subset of the p components of X. We refer to the
above algorithm as ”component-wise functional gradient descent (FGD) boosting”.

Choosing an appropriate value of mstop, i.e., stopping the algorithm before convergence, is
necessary to prevent component-wise FGD from overfitting the data. The tuning parame-
ter ν can be regarded as the step length of the gradient descent algorithm, or, alternatively,
as a shrinkage factor of the regression coefficient estimates. For details on how to find ap-
propriate values of mstop and ν we refer to Section 2.2.

As we want to consider additive models with a continuous outcome, we assume Y1, . . . , Yn

to be continuous and set ρ equal to the squared error loss (Y − f(X))2. In this case,

FGD corresponds to a stagewise re-fitting of the residuals Û
[m−1]
i = Yi − f̂

[m−1]
i , i =

1, . . . , n. A natural choice for the goodness-of-fit criterion in Step (4) is the fraction of
explained variance R2. To incorporate smooth functions of the covariates into the model
fit, we use smoothing splines (Green and Silverman, 1994) and P-splines (Eilers and Marx,
1996) as base-learners. The final boosting estimate f̂ [mstop] then becomes a sum of spline
functions and can be interpreted as the fit of an additive model with smooth functions of
the predictors.

Using cubic smoothing spline base-learners for boosting additive models has been suggested
by Bühlmann and Yu (2003). In this case, the knot positions of the splines coincide with
the data values. The roughness penalty is an integral of the squared second derivative of the
corresponding spline – see Green and Silverman (1994) or Hastie and Tibshirani (1990) for
details. P-splines are a special form of penalized regression splines. In this paper, we pursue
the strategy of Eilers and Marx (1996), who suggested to use the numerically advantageous
B-spline basis, along with a large number of equidistant knots and a roughness penalty

4

based on higher-order squared differences of the coefficients of adjacent basis functions.
Eilers and Marx (1996) showed that setting the difference order to k = 2 corresponds to
an approximation of the integrated squared second derivative penalty used by smoothing
splines. Therefore, as we want to compare P-spline base-learners with smoothing spline
base-learners, we choose cubic B-spline basis functions and set the difference order equal
to k = 2.

2.2 Reflections on boosting tuning parameters and hyper-para-

meters of smoothing spline and P-spline base-learners

Boosting with smoothing spline base-learners and cubic P-spline base-learners (with dif-
ference order k = 2) generally involves the following parameters:

1. the stopping iteration mstop,

2. the step length factor / shrinkage parameter ν,

3. the degrees of freedom df, which are equal to the trace of the smoothing spline /
P-spline hat matrix. Small values of df correspond to a large amount of smoothing,
i.e., to a relatively large bias and small variance of the respective spline.

4. the number of equidistant knots P (only when P-spline base-learners are used; in case
of smoothing spline base-learners, the knots are not equidistant and their number is
always equal to n).

First consider the stopping iteration mstop, which should be chosen such that overfitting
of the data is prevented. In the literature, two strategies for determining mstop have
been suggested: cross-validation and AIC-type stopping criteria (Bühlmann, 2006). In
this paper, we use the AIC approach, which is computationally far less intensive than
cross-validation and which has been shown to work well in a boosting context.

AIC-based stopping works as follows: Define Hj to be the n×n hat matrix of the (smooth-
ing or P-spline) fitting operator using the jth component of X. It can then be shown (cf.
Bühlmann and Yu, 2003) that the hat matrix of L2Boosting at iteration m is equal to

Bm = I − (I − νHSm) · . . . · (I − νHS1) , (2)

where Sr ∈ {1, . . . , p} denotes the index of the covariate which is selected by the component-
wise base-learner in the rth boosting iteration. In the special case where there is only one
covariate (X one-dimensional), (2) reduces to

Bm = I − (I − νH1)m . (3)

Thus, for each iteration, one obtains a corrected AIC criterion (Hurvich et al., 1998) given
by

AIC(m) = log(σ̂2
m) +

1 + df(m)/n

(1− df(m) + 2)/n
, (4)

5

where σ̂2
m := n−1

∑n

i=1(Yi− (BmY)i)
2 is an estimate of the residual variance of the additive

model and df(m) is the trace of Bm, i.e., the degrees of freedom at iteration m. The
series of corrected AIC values (m = 1, . . .) yields the stopping iteration mstop, which is the
iteration with lowest corresponding AIC value.

Next consider the value of the step length ν. In the spirit of functional gradient descent
methods, Friedman (2001) has suggested to estimate ν = ν(m) in each boosting iteration
by performing a line search. Other authors (see Bühlmann and Hothorn, 2008) have argued
that this (rather time-consuming) procedure is of relatively low importance when it comes
to the predictive ability of FGD. They favored to use a constant value of the step length ν,
with the only requirement that ν should be small (in order to obtain a stagewise adaption
of the true predictor function f ∗). In this paper, we use constant values of ν, e.g., ν = 0.01
or ν = 0.1.

Bühlmann and Hothorn (2008) also noted that the number mstop of boosting operations
usually increases with decreasing value of ν, so there seems to be a dependence between
mstop and ν. We now give an argument that when using the corrected AIC criterion (4) for
stopping, this dependence is approximately linear , so that mstop is approximately inversely
proportional to ν. To derive this relationship, we assume that there is only one covariate,
such that the hat matrix Bm is of the form (3).

Theorem 1. Suppose that L2Boosting is applied to an i.i.d. data set with a one-dimensional
response variable Y and a one-dimensional covariate X. Consider a constant step length
value 0 < ν < 1 and a proportionality factor κ > 1. Define H to be the hat matrix of the
the base-learner and let H = ΓΛΓ⊤ be its spectral decomposition (i.e., Γ is an orthogonal
matrix and Λ is a diagonal matrix containing the eigenvalues of H on its main diagonal).
Then the following relationship holds:

(

I −
ν

κ
H

)κ

= I − νH +R , (5)

where R := ν2

2
κ−1

κ
ΓΛ2(I − ν∗

κ
Λ)κ−1Γ⊤ and 0 ≤ ν∗ ≤ ν.

Proof. Since H = ΓΛΓ⊤, we obtain (I − ν
κ
H)κ = Γ(I − ν

κ
Λ)κΓ⊤. Let η1, . . . , ηn be the

eigenvalues of H, i.e., the diagonal elements of Λ. Define

fi(ν) :=
(

1−
ν

κ
ηi

)κ

, i = 1, . . . , n . (6)

Theorem 1 then follows from a Taylor series expansion of the functions fi at ν0 = 0.

The interpretation of Theorem 1 is as follows: Since (a) the eigenvalues ηi, i = 1, . . . , n, of
the smoothing and P-spline hat matrices H are contained in [0, 1] and (b) the value of ν is
contained in (0, 1) by assumption, the elements ofR typically become small. Consequently,
(I− ν

κ
H)κ can be approximated by I−νH, and the hat matrix of the boosting fit at iteration

6

m can be approximated by

Bm = I − (I − νH)m ≈ I −
(

I −
ν

κ
H

)κm

. (7)

We thus see that the boosting hat matrix Bm with step size ν is approximately the same
as the boosting hat matrix Bκm with step size ν/κ. Since the corrected AIC criterion (4) is
a function of the boosting hat matrix Bm only, the stopping iteration mstop corresponding
to step size ν/κ will also be approximately κ times the stopping iteration corresponding
to step size ν. The choice of ν therefore is of rather low importance if the corrected AIC
criterion (4) is used for stopping: The stopping iteration mstop automatically adapts to the
value of ν, yielding approximately the same boosting fit. Note that we have only shown
this relationship for FGD with one covariate. Empirically, we will see in Section 3 that the
same relationship also holds true for the component-wise FGD algorithm.

Next consider the value of the degrees of freedom df. Important results on this parameter
have been derived by Bühlmann and Yu (2003), who argued that smoothing spline base-
learners should have a large bias but low variance (”weak learners”). Only in this case a
stagewise adaption of the true predictor function f ∗ (and thus a good predictive perfor-
mance of FGD) is possible. When spline functions are used as base-learners, a large bias
and low variance can be obtained by making the degrees of freedom df := tr(H1) small.
Bühlmann and Yu (2003) showed that for a sufficiently small value of df, the overall bias
of the boosting estimate can nevertheless be made small by carrying out an appropriate
number of boosting iterations mstop. Moreover, boosting with weak smoothing spline base-
learners is even able to adapt to higher order degree smoothness in the data (e.g., spline
functions with a degree larger than 3). Bühlmann and Yu (2003) therefore recommended
to chose a small value of df for the base-learner (e.g., df = 4), and to keep this number
fixed in each boosting iteration. Clearly, small values of df correspond to large smoothing
parameters λ of a smoothing spline (and also of a P-spline).

We now give an additional justification for measuring the weakness of a smoothing spline
or P-spline base-learner by its degrees of freedom. Consider the boosting hat matrix (3)
with only one covariate. As noted by Bühlmann and Hothorn (2008), (3) suggests that if
0 < ||I − νH1|| < 1 for a suitable norm, the boosting algorithm has a ”learning capacity”,
in the sense that the residual vector is ”smaller” than the response vector Y . If ||I− νH1||
is close to 1, the base-learner is weak, and a large value mstop is required for obtaining the
”optimal” fit. Consequently, the weakness of a base-learner can be measured by ||I−νH1||.
The following theorem states that if using a scaled version of the Frobenius matrix norm,
the weakness of a smoothing spline or P-spline base-learner can be directly related to its
degrees of freedom df = tr(H1).

Theorem 2. For fixed n, consider a smoothing spline or P-spline with smoothing parameter
λ > 0 and hat matrix H = H(λ). Further consider the scaled squared Frobenius norm
||I−νH|| := n−1tr((I−νH)⊤(I−νH)) of the matrix I−νH, which measures the weakness
of the corresponding smoothing spline or P-spline base-learner. If 0 < ν < 1, the following

7

results hold:

a) ||I − νH|| is strictly increasing in λ.

b) ||I − νH|| converges to 1 as λ →∞.

Proof. It is well known from the literature that the trace of the hat matrixH of a smoothing
spline or P-spline is equal to

tr(H) = tr
(

(I + λK)−1
)

, (8)

where K is a positive semi-definite matrix with eigenvalues d1, . . . , dn ≥ 0. Consequently,
tr(H) =

∑n

i=1 1/(1+λdi) and tr(H2) =
∑n

i=1 1/(1+λdi)
2. Now consider the scaled squared

Frobenius norm of I − νH. We obtain

||I − νH|| =
1

n
tr

(

(I − νH)2
)

=
1

n

[

tr(I)− 2νtr(H) + ν2tr(H2)
]

= 1−
2ν

n

n
∑

i=1

1

(1 + λdi)
+

ν2

n

n
∑

i=1

1

(1 + λdi)2
. (9)

The derivative of (9) with respect to λ is

∂

∂λ
||I − νH|| =

2ν

n

n
∑

i=1

di

[

1

(1 + λdi)2
− ν

1

(1 + λdi)3

]

, (10)

which is greater than 0 since 0 < ν < 1. This proves a). From (9) it is also clear that
||I − νH|| converges to 1 as λ →∞. This proves b).

Although the choice of the Frobenius norm is somewhat arbitrary, we see from Theorem 2
that as the smoothing parameter λ increases, the weakness of a smoothing spline or P-
spline base-learner increases as well. An increase in λ clearly implies a decrease in the
degrees of freedom df of the smoothing spline or P-spline. Thus, Theorem 2 backs the
results of Bühlmann and Yu (2003), who suggested to measure the weakness of smoothing
spline base-learners by their degrees of freedom. In the following, we will use the same
value of df for all components of X. Note that Theorem 2 also backs the argument that ν
should be small: In fact, if λ is fixed and ν becomes too large, (9) becomes greater than 1,
so that the boosting algorithm loses its learning capacity.

Finally consider the number of equidistant knots P when P-spline base-learners are used
for boosting. Generally, in a non-boosting context, the number of knots used for a P-spline
is not likely to have a big effect on the respective spline regression fit. Ruppert (2002)
has shown that there is a minimum necessary number of knots which has to be reached.
Further increasing P beyond this number will typically not improve the regression fit. In
practice, it is common to use 20–50 knots, which is sufficient for most data situations. In
Section 3 we investigate whether the same results hold true when P-splines are used as
base-learners for component-wise FGD.

8

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
10

−
5

0
5

10

X1, X2, X7, X8

f 1
, f

2,
 f 7

, f
8

f1
f2
f7
f8

Figure 1: The smooth predictor functions f1, f2, f7, and f8 used for simulation study 1.

3 Simulations and real world data example

We carried out two simulation studies on the issues discussed in Section 2. Simulation
study 1 was based on artificial data with nine covariates X1, . . . , X9 and n = 100 i.i.d.
observations. Each of the p = 9 covariates took values on a grid from 0–3 but were
randomly permuted so that X1, . . . , X9 became independent. The values of the outcome
variable Y were generated by means of the model

Y = 1 + 8 · sin(X1) + 3 · log(X2)− 0.8 · (X4
7 −X3

7 − 5 ·X2
7)− 3 ·X8 + ǫ , (11)

where ǫ ∼ N (0, 32). Thus, only 4 of the 9 covariates had an effect on Y . The functions
f1(X1) := 8 · sin(X1), f2(X2) := 3 · log(X2), f7(X7) := −0.8 · (X4

7 − X3
7 − 5 · X2

7), and
f8(X8) := −3 ·X8 are smooth functions of these four covariates (see Fig. 1).

Simulation study 2 was based on a real world data set originally analyzed by Garcia et al.
(2005). In this study, the aim was to predict the body fat content of n = 71 healthy German
women by means of p = 9 common anthropometric measurements (such as circumference
or knee breadth). The dependent variable Y was obtained by Dual X-Ray Absorptiometry
(DXA). DXA is an accurate method for measuring the body fat content. However, it is
also very expensive, so that, in order to reduce costs, a regression equation for predicting
DXA measurements by means of anthropometric measurements is desirable.

The issues to be investigated in both simulation studies were as follows:

9

1. Does the choice of the base-learner (smoothing splines vs. P-splines) have an effect
on the performance of component-wise FGD?

2. Do the simulations studies confirm the theoretical results of Theorems 1 and 2?

3. Which combination of the hyper-parameters discussed in Section 2 yields the best
prediction values?

4. Does the component-wise FGD algorithm correctly select the relevant variables X1,
X2, X7, X8 in simulation study 1?

For both simulation studies, the quality of a prediction was measured by the mean squared
predictive error (MSE). To obtain unbiased prediction errors, we used training and test data
sets generated in the following way: In simulation study 1, we first generated ntraining = 100
observations for each covariate. Next, 100 samples of Y (of size ntraining = 100 each) were
generated from model (11) by using the covariate values and by repeatedly drawing the
values of ǫ from a N (0, 32) distribution. These 100 samples, along with the covariate
values, constituted the training data sets. The corresponding 100 test data sets (of size
ntest = 100 each) were generated in the same way. For each training data set, component-
wise FGD was applied, and an estimate of the mean squared prediction error was obtained
from the respective test data set. In simulation study 2, we drew 100 bootstrap samples
of size n = 71 out of the 71 observations. These bootstrap samples constituted the 100
training data sets. Estimates of the mean squared prediction error were obtained from the
respective out-of-bootstrap observations.

All simulations were conducted with the R system for statistical computing (version 2.5.0, R
Development Core Team, 2007) using the mboost add-on package (version 0.6-2, Bühlmann
and Hothorn, 2008; Hothorn et al., 2007). The function gamboost() in mboost allows for
running component-wise FGD with either smoothing spline or P-spline base-learners. For
P-spline base-learners, it allows the user to specify the number of knots P , the difference
order k, and the degrees of freedom df. For smoothing spline base-learners, the degrees of
freedom df can be specified.

3.1 Results of simulation study 1

We analyzed the component-wise FGD algorithm with two kinds of base-learners: Smooth-
ing splines (denoted by SSP) and P-Splines with a cubic B-spline basis (de Boor, 1978)
and difference order k = 2 (denoted by PSP).

Figure 2 shows the mean squared prediction errors (MSE) obtained from the 100 test
samples at iteration mstop (P = 50, ν = 0.1). Obviously, P-spline base-learners are a very
good approximation to smoothing spline base-learners in terms of MSE. This seems to be
true for all values of df. Moreover, the corresponding graphs for all other tested values
of P (P = 20, 30, . . . , 80, figures not shown here) are very similar to Figure 2. This implies
that the number of knots P does not seem to have a big effect on the predictive power of

10

df

M
S

E

8

10

12

14

16

18

2.5 3 3.5 4 4.5 5 5.5 6

P−Spline

2.5 3 3.5 4 4.5 5 5.5 6

8

10

12

14

16

18

Smoothing Spline

Figure 2: Simulation study 1 - mean squared predictive errors obtained from component–
wise FDG with P–spline and smoothing spline base learners (P = 50, ν = 0.1).

component-wise FGD. Concerning the degrees of freedom df, we see that small values of df
(corresponding to ”weak” base-learners) result in smaller prediction errors: The medians
of the boxplots shown in Figure 2 take their minima at df ≈ 3 − 4. If df is larger than
four, the medians are slightly increasing in df.

We next illustrate the inversely proportional relationship between ν and mstop (derived in
Theorem 1 for FGD with one covariate). The above simulation study with P-spline base-
learners was repeated, this time using ν = 0.01. Figure 3 shows a plot of the average values
of mstop when ν = 0.1 versus the average values of mstop, divided by 10, when ν = 0.01
(P = 50). Figure 3 clearly indicates the approximate inversely proportional relationship
between mstop and ν. Even more important, the MSE values of the two component-wise
FDG algorithms (ν = 0.1 and ν = 0.01) are very similar (see Figure 4). Thus, decreasing
an already small value of ν does not lead to an improvement in the predictive performance
of component-wise FGD. For all other values of P , similar results were obtained.

Furthermore, to assess the systematic influence of df, P , and ν on the PSP fit, we estimated
the following linear mixed model from the simulated data:

MSE ∼ df + df2 + P + nu | sample , (12)

where df and P are (quasi-)continuous covariates corresponding to df and P , respectively,
and nu is a binary factor variable with levels ”ν = 0.1” and ”ν = 0.01”. Since the same 100
training and test samples were used for all value combinations of df, P , and ν, model (12)

11

100 200 300 400 500

10
0

20
0

30
0

40
0

50
0

mstop, ν=0.1

m
st

op
10

, ν
=

0.
01

df=2.5

df=3

df=3.5

df=4
df=4.5

df=5
df=5.5df=6

Figure 3: Simulation study 1 - average stopping iterations mstop for step sizes ν = 0.1 and
ν = 0.01 (obtained from PSP, P = 50).

11.5 12.0 12.5 13.0

11
.5

12
.0

12
.5

13
.0

MSE, ν=0.1

M
S

E
, ν

=
0.

01

df=2.5

df=3df=3.5

df=4

df=4.5

df=5

df=5.5

df=6

Figure 4: Simulation study 1 - average MSE values for step sizes ν = 0.1 and ν = 0.01
(obtained from PSP, P = 50).

12

Table 1: Simulation study 1 - parameter estimates and hypothesis tests of the fixed effects
in model (12). A χ2-test on the hypothesis ”df = df2 = 0” resulted in a p-value < 0.001.

Effect Estimate Std. Error z-value p-value
(Intercept) 13.3087 0.1910 69.6764 < 0.001
df −1.1946 0.0275 −43.3972 < 0.001
df2 0.1938 0.0032 60.2473 < 0.001
P 0.0012 0.0002 6.7374 < 0.001
ν = 0.01 0.0522 0.0074 7.0824 < 0.001

includes a random intercept sample indicating the number of the training/test sample.
The estimation results from model (12), which are shown in Table 1, confirm the results
presented in Figure 2: the estimates of the fixed effects corresponding to df and df2 are
different from zero, while the fixed effects for P and nu are negligibly small. Although P

and nu have a significant influence on the predictive performance of PSP (at level α = 0.05),
this finding is most likely due to the large number of simulation runs (N = 11200).

Finally, we investigated whether component-wise FGD did a good job at selecting the
relevant variables X1, X2, X7, and X8 from the data. Since the true functions f1, f2, f7,
and f8 are known, we were able to compare these functions with their boosting estimates.
In Figure 5 the PSP estimates obtained from component-wise FGD (based on the first of the
100 training data sets) are plotted along with the respective true functions (ν = 0.1, P =
50, df = 3.5). We see that f1, f2, f7, and f8 are well-approximated by their corresponding
estimates. In addition, although the variables X4, X5, and X9 have been erroneously
selected, the corresponding function estimates are close to zero (and can therefore be
interpreted as random errors). Similar results were obtained for all 100 training data sets
in simulation study 1. This suggests that component-wise FGD with P-spline base-learners
is able to select the correct subset of relevant covariates from a data set.

3.2 Results of the simulation study on example 2

Figure 6 shows that the simulation results obtained from the body fat data are very similar
to the results obtained from simulation study 1: For all values of df, P-spline base-learners
are a good approximation of smoothing spline base-learners in terms of MSE. This is also
true if the number of knots P is altered (figures not shown here), so that P does not
have a big effect on the P-spline boosting fit. The medians of the MSE values in Figure 6
are smallest when df is small and are only very slightly increasing in df. The inversely
proportional relationship between ν and mstop stated in Theorem 1 was also confirmed, see
Figures 7 and 8. In addition, we estimated model (12) from the body fat data. The results,
which are shown in Table 2, are basically the same as the results obtained from simulation
study 1. Note that, despite the large number of simulation runs (N = 11200), nu does not

13

0.0 1.0 2.0 3.0

−
10

0
5

X 1
f 1

0.0 1.0 2.0 3.0

−
10

0
5

X 2

f 2

0.0 1.0 2.0 3.0

−
10

0
5

X 3

f 3

0.0 1.0 2.0 3.0

−
10

0
5

X 4

f 4

0.0 1.0 2.0 3.0

−
10

0
5

X 5
f 5

0.0 1.0 2.0 3.0

−
10

0
5

X 6

f 6

0.0 1.0 2.0 3.0

−
10

0
5

X 7

f 7

0.0 1.0 2.0 3.0

−
10

0
5

X 8

f 8

0.0 1.0 2.0 3.0

−
10

0
5

X 9
f 9

Figure 5: Simulation study 1 - plots of function estimates vs. the data values of X1 −X9

(training data set #1, ν = 0.1, P = 50, df = 3.5). The solid lines correspond to the true
functions f1, f2, f7, and f8.

have a significant influence on the predictive performance of PSP (at level α = 0.05).

4 Implementation of smoothing spline and P-spline

base-learners

In the previous section we have seen that boosting with P-spline base-learners and boosting
with smoothing spline base-learners yield very similar prediction results. From a computa-

Table 2: Simulation study 2 - parameter estimates and hypothesis tests of the fixed effects
in model (12). A χ2-test on the hypothesis ”df = df2 = 0” resulted in a p-value < 0.001.

Effect Estimate Std. Error z-value p-value
(Intercept) 9.6489 0.3096 31.1631 < 0.001
df 0.2105 0.0634 3.3225 < 0.001
df2 0.0083 0.0074 1.1210 0.2623
P 0.0009 0.0004 2.1838 0.0290
ν = 0.01 0.0056 0.0170 0.3309 0.7407

14

df

M
S

E

5

10

15

20

25

2.5 3 3.5 4 4.5 5 5.5 6

P−Spline

2.5 3 3.5 4 4.5 5 5.5 6

5

10

15

20

25

Smoothing Spline

Figure 6: Simulation study 2 - mean squared predictive errors obtained from component–
wise FDG with P–spline and smoothing spline base learners (P = 50, ν = 0.1).

168 170 172 174 176 178 180

16
8

17
0

17
2

17
4

17
6

17
8

18
0

mstop, ν=0.1

m
st

op
10

, ν
=

0.
01

df=2.5

df=3

df=3.5

df=4

df=4.5

df=5

df=5.5

df=6

Figure 7: Simulation study 2 - average stopping iterations mstop for step sizes ν = 0.1 and
ν = 0.01 (obtained from PSP, P = 50).

15

10.2 10.4 10.6 10.8 11.0 11.2 11.4

10
.2

10
.4

10
.6

10
.8

11
.0

11
.2

11
.4

MSE, ν=0.1

M
S

E
, ν

=
0.

01

df=2.5

df=3

df=3.5

df=4

df=4.5

df=5

df=5.5

df=6

Figure 8: Simulation study 2 - average MSE values for step sizes ν = 0.1 and ν = 0.01
(obtained from PSP, P = 50).

tional point of view, P-splines are clearly preferable: In contrast to the integrated squared
second derivative penalty of smoothing splines, the P-spline difference penalty is discrete
and can easily be evaluated. Also, as pointed out by Eilers and Marx (1996) and Marx and
Eilers (1998), the dimensionality of the P-spline penalty is equal to P , while the smoothing
spline penalty has a dimensionality equal to n (which is typically much larger than P). For
these reasons, using P-spline base-learners will usually be a more efficient strategy than
using smoothing spline base-learners.

As a consequence of these results, we have applied the following strategy to implement
smoothing spline and P-spline base-learners in R package mboost: If smoothing splines are
chosen as base-learners, gamboost() uses the well-established stats::smooth.spline()

function. smooth.spline() computes the integrated squared second derivative penalty,
along with the corresponding smoothing spline fit of the negative gradient.

In case of P-spline base-learners, gamboost() uses a similar but improved strategy: In
fact, smooth.spline() recomputes the values of the basis functions in each iteration of
component-wise FGD, as well as the elements of the p penalty matrices. Moreover, in each
iteration, smooth.spline() converts the value of df into the corresponding values of the p
smoothing parameters λ1, . . . , λp. When considering the component-wise FDG algorithm
in Section 2.1, however, it is clear that re-computing these expressions in each iteration
is not necessary. Instead, evaluating the basis functions and penalty matrices is only
required once at the beginning of component-wise FGD, as well as computing λ1, . . . , λp

16

from df. This is exactly the strategy we pursued when implementing P-spline base-learners
in gamboost(): The hat matrices H1, . . . ,Hp are computed once and are then stored, so
that they can be re-used in each iteration. Concerning the conversion of df into λ1, . . . , λp

(which is needed for computing H1, . . . ,Hp), we make use of the following theorem:

Theorem 3. Consider applying component-wise FDG with P-spline base-
learners to a data set with p covariates. Denote by Bj the matrix containing the eval-
uated B-spline basis functions corresponding to the jth covariate and by D the penalty
matrix based on kth order differences. Then the degrees of freedom df of the P-spline base-
learner, which are equal to the trace of the hat matrix Hj = Bj(B

⊤

j Bj +λjD)−1B⊤

j , can be
written as

df = tr
(

Bj(B
⊤

j Bj + λjD)−1B⊤

j

)

(13)

= tr
(

diag(d)
[

(diag(d) + λjU
⊤DV)

]−1
)

where U · diag(d) · V ⊤ is the singular value decomposition of B⊤

j Bj, i.e., U and V are
orthogonal matrices and diag(d) is a diagonal matrix having the same rank as B⊤

j Bj.

Proof. Define A := B⊤
j Bj . We have

tr
(

Bj(B
⊤

j Bj + λjD)−1B⊤

j

)

= tr
(

(B⊤

j Bj + λjD)−1B⊤

j Bj

)

(14)

= tr
(

(A + λjD)−1A
)

(15)

and

tr
(

(A + λjD)−1A
)

= tr
(

(U · diag(d) · V ⊤ + λjD)−1U · diag(d) · V ⊤
)

= tr
(

[

U⊤(U · diag(d) · V ⊤ + λjD)
]−1

diag(d) · V ⊤

)

= tr
(

diag(d) · V ⊤
[

(diag(d) · V ⊤ + λjU
⊤D)

]−1
)

= tr
(

diag(d)
[

(diag(d) · V ⊤ + λjU
⊤D)V

]−1
)

= tr
(

diag(d)
[

(diag(d) + λjU
⊤DV)

]−1
)

. (16)

By comparing (14) to (16), the benefit of Theorem 3 can be easily seen: Since d can be
stored as a vector and since multiplying a matrix with diag(d) is the same as multiplying its
columns or rows with the elements of d, the number of elementary multiplications is much
smaller when evaluating (16) than when evaluating (14). The singular value decomposition
of A can be efficiently computed in R by using the svd() function in the R add-on package
base.

17

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

0
5

10
15

df

ru
nn

in
g

tim
e

S
S

P
 /

ru
nn

in
g

tim
e

P
S

P

P=20
P=30
P=40
P=50
P=60
P=70

Figure 9: Simulation study 1 - ratio of the average running times of SSP and PSP (ν = 0.1).

Finally, to obtain λj from a given value of df, (16) has to be solved numerically for λj. An
empirical study we have conducted has shown that solving (16) for λj is about 30% faster
than solving (14) for λj.

The benefit of using P-spline base-learners with k = 2 instead of smoothing spline base-
learners can be seen in Figure 9, which shows the average running times of simulation
study 1 (ν = 0.1): Obviously, the running time of SSP using the smooth.spline() function
is always higher on average than the running time of PSP using the strategy described
above. As an example, if P = 50, the running time of SSP is about five times larger than
the running time of PSP.

5 Concluding remarks

Since their introduction by Eilers and Marx (1996), P-splines have been successfully used
in regression as an approximation of smoothing splines. We have shown that this approx-
imation is also successful in a boosting context: By using P-spline base-learners instead
of smoothing spline base-learners, the computational effort of component-wise L2Boosting
can be greatly reduced, while there is only a minor effect on the predictive performance of
the boosting algorithm.

As P-spline hat matrices can easily be derived, stopping of the component-wise FGD algo-
rithm can also be done very efficiently by means of the corrected AIC criterion. Moreover,

18

by using the AIC-based stopping approach, we have shown that the choice of the step
length factor ν is of minor importance: Decreasing ν will only lead to an increase of the
number of boosting iterations (in an inversely proportional way) but will not improve the
boosting fit. The results of the simulation studies in Section 3 suggest that setting ν = 0.1
is a suitable strategy for obtaining good predictive performance results.

Concerning the choice of P-spline hyper-parameters, we have seen that the number of
knots only has a very small effect on the boosting fit. Just as with standard regression
problems, choosing 20–50 knots should be a suitable strategy for obtaining a good boosting
fit. Moreover, the results of Section 3 suggest that the degrees of freedom of smoothing
spline / P-spline base-learners should be small (df ≈ 3.5). By Theorem 2, small values
of df correspond to ”weak” base-learners, whose favorable properties have been analyzed
previously by Bühlmann and Yu (2003).

There is a number of possible extensions of the P-spline approach presented in this paper.
First, in order to approximate smoothing splines by P-splines, we kept the degree of the
B-spline basis functions and the difference order of the P-spline penalty fixed. These
parameters could additionally be altered and could possibly improve the boosting fit in
some situations. Second, we exclusively used the B-spline basis in our simulation study.
Although B-splines are advantageous due to their numerical stability (cf. Eilers and Marx,
1996, 2004), there are various other approaches on how to construct a spline basis. As
an example, Ruppert et al. (2003) used a truncated power series basis for their penalized
spline approach. In a boosting context, Bühlmann (2006) used thin plate splines, while
Leitenstorfer and Tutz (2007) used a base-learner constructed from radial basis functions.
Future work should thus include an investigation on the effect of different spline bases
on the performance of L2Boosting. We finally point out that we exclusively considered
Bühlmann and Yu’s L2Boosting algorithm with the squared error loss. It is therefore not
guaranteed that boosting with other loss functions (such as the negative log-likelihood loss
in Binomial and Poisson regression) shows a similar behavior. Although we believe that the
results presented in this paper carry over to these loss functions, there is a need for further
investigating the use of P-spline base-learners when fitting generalized additive models by
means of boosting algorithms.

References

Breiman, L., 1998. Arcing classifiers (with discussion). The Annals of Statistics 26, 801–
849.

Breiman, L., 1999. Prediction games and arcing algorithms. Neural Computation 11, 1493–
1517.

Bühlmann, P., 2006. Boosting for high-dimensional linear models. The Annals of Statistics
34 (2), 559–583.

19

Bühlmann, P., Hothorn, T., 2008. Boosting algorithms: regularization, prediction and
model fitting. Statistical Science, accepted.

Bühlmann, P., Yu, B., 2003. Boosting with the L2 loss: regression and classification.
Journal of the American Statistical Association 98, 324–339.

de Boor, C., 1978. A practical guide to splines. Springer, New York.

Eilers, P. H. C., Marx, B. D., 1996. Flexible smoothing with B-splines and penalties (with
comments and rejoinder). Statistical Science 11 (2), 89–121.

Eilers, P. H. C., Marx, B. D., 2004. Splines, knots and penalties, unpublished manuscript.
URL http://www.stat.lsu.edu/faculty/marx/splines knots penalties.pdf

Freund, Y., Schapire, R., 1996. Experiments with a new boosting algorithm. In: Pro-
ceedings of the Thirteenth International Conference on Machine Learning Theory. San
Francisco: Morgan Kaufmann Publishers Inc.

Freund, Y., Schapire, R., 1997. A decision-theoretic generalization of on-line learning and
an application to boosting. Journal of Computer and System Sciences 55, 119–139.

Friedman, J. H., 2001. Greedy function approximation: a gradient boosting machine. The
Annals of Statistics 29, 1189–1232.

Friedman, J. H., Hastie, T., Tibshirani, R., 2000. Additive logistic regression: a statistical
view of boosting (with discussion). The Annals of Statistics 28, 337–407.

Garcia, A. L., Wagner, K., Hothorn, T., Koebnick, C., Zunft, H.-J. F., Tippo, U., 2005.
Improved prediction of body fat by measuring skinfold thickness, circumferences, and
bone breadths. Obesity Research 13 (3), 626–634.

Green, P. J., Silverman, B. W., 1994. Nonparametric regression and generalized linear
models: a roughness penalty approach. Chapman & Hall, London.

Hastie, T., Tibshirani, R., 1990. Generalized additive models. Chapman & Hall, London.

Hothorn, T., Bühlmann, P., Kneib, T., Schmid, M., 2007. mboost: Model-Based Boosting.
R package version 0.6-2.
URL http://R-forge.R-project.org

Hurvich, C. M., Simonoff, J. S., Tsai, C.-L., 1998. Smoothing parameter selection in non-
parametric regression using an improved akaike information criterion. Journal of the
Royal Statististical Society, Series B 60, 271–293.

Leitenstorfer, F., Tutz, G., 2007. Knot selection by boosting techniques. Computational
Statistics & Data Analysis 51, 4605–4621.

Marx, B. D., Eilers, P. H., 1998. Direct generalized additive modeling with penalized
likelihood. Computational Statistics & Data Analysis 28, 193–209.

20

R Development Core Team, 2007. R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0.
URL http://www.R-project.org

Ruppert, D., 2002. Selecting the number of knots for penalized splines. Journal of Com-
putational and Graphical Statistics 11, 735–757.

Ruppert, D., Wand, M. P., Carroll, R. J., 2003. Semiparametric Regression. University
Press, Cambridge.

Tutz, G., Binder, H., 2006. Generalized additive modelling with implicit variable selection
by likelihood based boosting. Biometrics 62, 961–971.

21

