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Abstract

Most genetic diseases are complex, i.e. associated to combinations of

SNPs rather than individual SNPs. In the last few years, this topic has

often been addressed in terms of SNP-SNP interaction patterns given as

expressions linked by logical operators. Methods for multiple testing in

high-dimensional settings can be applied when many SNPs are considered

simultaneously. However, another less well-known multiple testing problem

arises within a �xed subset of SNPs when the logic expression is chosen

optimally. In this article, we propose a general asymptotic approach for

deriving the distribution of the maximally selected chi-square statistic in

various situations. We show how this result can be used for testing logic ex-

pressions -in particular SNP-SNP interaction patterns- while controlling for

multiple comparisons. Simulations show that our method provides multiple

testing adjustment when the logic expression is chosen such as to maximize

the statistic. Its bene�t is demonstrated through an application to a real

dataset from a large population-based study considering allergy and asthma
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in KORA. An implementation of our method is available from the Compre-

hensive R Archive Network (CRAN) as R package 'SNPmaxsel'.

1 Introduction

Meanwhile, there are more than 10 million (year 2005: > 9.2 million according to

Consortium (2005)) single nucleotide polymorphisms (SNPs) of the human genome

available in public databases. These SNPs are almost all biallelic with two of the

four bases A (adenine), C (cytosine), T (thymine) and G (guanine) occurring at

the considered locus. From a statistical point of view, a SNP may be seen as a

categorical variable with three categories: if the SNP alleles are, e.g., adenine and

cytosine, the three possible genotypes are AA, AC and CC. Association studies

aim at identifying genetic factors associated with a certain disease. One of the

standard approaches to deal with such data is the chi-square test of independence

(Sasieni, 1997).

For a given SNP, data can be dichotomized in three di�erent ways: AA vs.

{AC, CC}, CC vs. {AA, AC} or AC vs. {AA, CC}. In general none of these

three genetic models for a speci�c SNP is favored a priori. Performing three tests

simultaneously (one for each dichotomization), however, yields a multiple testing

problem for which adjustment is needed.

Most diseases are complex, i.e. associated to combinations of SNPs rather than

individual SNPs. Hence, many studies focus on associations between a disease

and haplotypes rather than or in addition to individual SNP analyses (Becker and

Knapp, 2004). A major drawback of such approaches is the uncertainty involved

in inferring haplotypes from unphased genotype SNP data and the involvement of

a computationally expensive estimation algorithm. Another important approach,

which has been given much attention in the last few years and will be considered

here, considers combinations of the form, e.g.,

(SNP1 = AA) ∧ (SNP2 ∈ {TT, TG}) (1)

that may lead to higher or lower risk of developing a certain disease. In the

present article, we denote as a pattern a rule like that of Eq. (1) involving one or



more conditions of the type SNPi ∈ Si. An interaction pattern is then de�ned

as a pattern involving two or more conditions that are linked with the logical

operators ∧ and ∨, where i is the index of the considered SNP and Si denotes

a subset of the three possible genotypes of SNPi. Searching for such interaction

patterns in high-dimensional data is a daunting task. Many search algorithms

have been suggested in the context of SNP and gene expression data. Some of

them are based on logic regression (Ruczinski et al., 2003) and use a simulated

annealing or a Monte-Carlo approach (Ruczinski et al., 2003, 2004; Kooperberg

and Ruczinski, 2005; Schwender and Ickstadt, 2007) to search the space of possible

interactions. Tree-based methods can also be applied to the search of interactions.

They are used by Lunetta et al. (2004); Huang et al. (2004); Bureau et al. (2005)

to identify interactions in SNP data, whereas Boulesteix et al. (2003); Boulesteix

and Tutz (2006) apply a CART-based algorithm to gene expression data for the

same purpose. Nelson et al. (2001) suggest a combinatorial partitioning method.

'Polymorphism interaction analysis' (PIA) is another enumeration-based recently

developed method (Goodman et al., 2006). A study involving quantitative traits

instead of a disease status can be found in Nelson et al. (2001). For an interesting

review, see Hoh and Ott (2003).

Unlike standard logistic regression, all these approaches are not based on ad-

ditive models. They can typically identify main e�ects in form of a pattern of

order one. However, in the presence of two main e�ects, they can not tell if there

is an additional interaction e�ect in the sense of linear models. To answer such

questions, one may rely on models and predictor selection procedures such as those

discussed by Bogdan et al. (2004); Baierl et al. (2006) for the case of quantitative

trait loci. Nevertheless, methods based on logical expressions are usually more

intuitive to interpret than logistic regression models with interactions, which has

probably contributed to their spectacular development observed in the last few

years.

Validation and statistical signi�cance of the located (interaction) patterns are

delicate issues. Most of the articles mentioned above address the problem in terms

of cross-validation error or model size selection. In the present paper, we examine

the problem from a completely di�erent point of view: for a given interaction

between two variables, we examine the statistical signi�cance in terms of multiple



testing, which is not done in the other articles. More precisely, the multiple testing

problem occurring in association studies involving interactions can be decomposed

into two components:

• If p denotes the number of SNPs in the study, there are
(

p
q

)
ways to choose a

subset of q SNPs for constructing a pattern. Correction for multiple testing

is essential. It is typically performed via Bonferroni correction (Marchini

et al., 2005) or by controlling the False Discovery Rate using the original

procedure by Benjamini and Hochberg (1995) or one of its later variants,

e.g. Storey (2002). Methods based on the local False Discovery Rate (Efron

and Tibshirani, 2002) can also be used in this context. Since the di�erent

pairs of SNPs are expected to show strong association, it might be sensible

to use a method which is valid for correlated hypotheses (Benjamini and

Yekutieli, 2001).

• For a �xed subset of SNPs {SNP1, . . . , SNPq}, there are 3q possible combi-

nations of genotypes from a combinatorial point of view, yielding 23q−1 − 1

possible partitions in binary split analysis. If one considers patterns involv-

ing only the operator ∧, the number of possible partitions decreases to 6q or

4q if the heterozygous model is not considered. However, even for q = 2, this

multiple testing component is not negligible. This problem is related to the

well-known selection bias occurring in recursive partitioning when the best

binary splitting is selected from predictors with di�erent numbers of cate-

gories (Kim and Loh, 2001; Boulesteix, 2006a; Strobl et al., 2007). Note that

this problem is also crucial in classical methods based on logistic regression,

though it is then most often ignored in practice.

In the present article, we focus on the second aspect of the multiple testing issue,

which is often ignored in practical studies, and introduce a general framework that

can be applied to various problems involving, e.g., interactions between SNPs.

One option consists of adjusting the p-values using the maxT procedure based on

computationally expensive permutation algorithms. This method is adopted by

Sladek et al. (2007) when testing the association of single SNPs with the phenotype

in three di�erent models (additive, dominant, recessive). In the present paper, we

generalize this idea to interactions and suggest a very fast computation approach



which is not based on permutations. More precisely, we derive the asymptotic

distribution of the chi-square statistic yielded by the optimal dichotomization of

a multicategorical nominal variable. By optimal dichotomization, we mean the

dichotomization that yields the highest chi-square statistic out of a set of user-

de�ned candidate dichotomizations. This result is applied to the special case of

SNP-SNP interactions.

Our approach can be applied to all types of association studies involving in-

dependent patients, including population-based or case-control studies. It is im-

plemented in the R system for statistical computing and freely available as a

user-friendly package ('SNPmaxsel') from the Comprehensive R Archive Network

(CRAN) at

http://cran.r-project.org/src/contrib/Descriptions/SNPmaxsel.html.

2 Approach

This section introduces a new general statistical method related to maximally

selected statistics and handling any type of categorical variable. The application

to SNP patterns, especially SNP-SNP interactions, is outlined in Section 3.

2.1 Chi-square tests

Let the (unordered) categories of a nominal random variable X (for example a

SNP or the pseudo-variable X1,2 de�ned in Section 3) be denoted as 1, . . . , K.

In the case of a SNP, we have K = 3, whereas K = 9 for X1,2 (see Section 3).

The two categories of the binary random variable Y (e.g. the disease status) are

denoted as 0, 1. Let p and pk, for k = 1, . . . , K be de�ned as p = P (Y = 1) and

pk = P (Y = 1|X = k).

We consider a sample of independent identically distributed observations

(xi, yi)i=1,...,N . For k = 1, . . . , K and c = 0, 1, we de�ne

Nk. =
∑n

i=1 I(xi = k),

N.c =
∑n

i=1 I(yi = c),

nkc =
∑n

i=1 I(xi = k) · I(yi = c).



The sample estimators of p and pk are then given as p̂ = N.1

N
and p̂k = nk1

Nk.
,

respectively. More generally, if A is a subset of {1, . . . , K}, we de�ne

pA = P (Y = 1|X ∈ A),

NA. =
∑n

i=1 I(xi ∈ A),

nAc =
∑n

i=1 I(xi ∈ A) · I(yi = c),

p̂A = nA1

NA.
.

If B is the complementary set of A, i.e. the set such that A ∩ B = ∅ and

A ∪B = {1, . . . , K}, the chi-square statistic used to compare pA and pB is

χ2
A,B =

N(nA1nB0 − nA0nB1)
2

N.0N.1NA.NB.

. (2)

It can be easily shown that χ2
A,B = Z2

A,B, where

ZA,B =
p̂A − p̂B√

p̂(1− p̂)
(

1
NA.

+ 1
NB.

) . (3)

Thus, for any t ≥ 0, we have

χ2
A,B ≤ t ⇔ −

√
t ≤ ZA,B ≤

√
t.

It is well-known that ZA,B is asymptotically normally distributed under the null-

hypothesis pA = pB. The chi-square asymptotic test may be performed equiv-

alently based on the chi-square statistic of Eq. (2) or on the Z statistic of Eq.

(3).

Suppose we perform m such tests to compare pAi
and pBi

, where

(A1, B1), . . . , (Am, Bm) are pairs of complementary subsets of {1, . . . , K}. Note

that the theory presented in Section 2.3 can be easily generalized to sets Ai and

Bi that are not complementary. Let

χ2
max = max

i=1,...,m
χ2

Ai,Bi
(4)



de�ne the maximum chi-square statistic. For t ≥ 0, we have

P (χ2
max ≤ t) = P

(
∩m

i=1(−
√

t ≤ ZAi,Bi
≤
√

t)
)

. (5)

In Section 2.3, we derive the asymptotic joint distribution of ZA1,B1 , . . . , ZAm,Bm

under the null-hypothesis of no association between X and Y , which can be ex-

pressed as H0 : p1 = · · · = pK .

2.2 Connection to the maxT multiple testing procedure

The distribution of χ2
max under the null-hypothesis H0 : p1 = · · · = pK may be

used to adjust p-values for multiple testing. For i = 1, . . . ,m, let H
(i)
0 denote the

null-hypothesis pAi
= pBi

and p(i) the p-value of the corresponding asymptotic

chi-square test. H0 can be written as H0 = ∩m
i=1H

(i)
0 . Correction of the p-values

p(1), . . . , p(m) for multiple testing may be performed using, e.g., Bonferroni's ad-

justment procedure. However, in the case of dependent test statistics, the so-called

maxT procedure (Westfall and Young, 1993) may be much more powerful (Dudoit

et al., 2003). If t(i) denotes the (observed) i-th test statistic, the i-th maxT ad-

justed p-value p̃(i) is given as p̃(i) = P (χ2
max ≥ t(i)|H0). Interested readers may

refer to Dudoit et al. (2003) for more details on adjustment procedures. For large

sample sizes, we have P (χ2
max ≥ t(i)|H0) = 1 − P (χ2

max ≤ t(i)|H0). The maxT

adjusted p-values can be thus computed based on formula (5), using the results

described below.

2.3 Using the multivariate normal distribution

In Lausen et al. (2004), the distribution of maximally selected rank statistics over

the range of several predictors is approximated as multivariate normal. In the

present article, we also use the multivariate normal distribution, but in a di�erent

context. We denote the random vector (ZA1,B1 , . . . , ZAm,Bm)T as z, where ZAi,Bi

is de�ned as in Section 2.1 and derive its multivariate distribution under the null-

hypothesis of no association between X and Y , conditional on the marginal counts

Nk., for k = 1, . . . , K.

Let us consider the random vector p de�ned as p = (p̂1, . . . , p̂K)T . For all pairs



of non-empty complementary subsets A, B ⊂ {1, . . . , K}, the numerator of ZA,B

can be written as a linear transformation of p:

p̂A =
∑
k∈A

Nk.

NA.

p̂k =
∑
k∈A

ak∑
j∈A aj

p̂k, (6)

where ak is the proportion of observations in category k de�ned as ak = Nk.

N
.

Finally, for any sets (A1, B1), . . . , (Am, Bm), the m-vector z can be expressed as

z =

√
N√

p̂(1− p̂)
Ap, (7)

where A is the m × K matrix whose entries depend only on a1, . . . , aK . More

precisely, the element of A in the i-th line and j-th column is given as

Aij =


ajP

k∈Ai
ak

(
1P

k∈Ai
ak

+ 1P
k∈Bi

ak

)−1/2

if j ∈ Ai,

− ajP
k∈Bi

ak

(
1P

k∈Ai
ak

+ 1P
k∈Bi

ak

)−1/2

if j ∈ Bi,

0 else.

For large samples such as those usually considered in association studies, we may

use the approximation p̂(1 − p̂) ≈ p(1 − p), like in the classical chi-square test

outlined in Section 2.1. Up to this approximation, we have thus

z =

√
N√

p(1− p)
Ap.

Since the term
√

N√
p(1−p)

resulting from the approximation is constant, the covariance

matrix Σz of the random vector z is given as

Σz =
N

p(1− p)
AΣpA

T ,

where Σp denotes the covariance matrix of p.

The covariance matrix Σp can be derived as follows. Conditional on the

marginal counts Nk., the components p̂1, . . . , p̂K of the vector p are independent.

For large Nk.,
√

Nk.p̂k (k = 1, . . . , K) converges to a Gaussian distribution with



mean
√

Nk.pk and variance pk(1− pk). The asymptotic covariance matrix Σp of p

is thus given as

Σp = diag
(

p1(1−p1)
N1.

, . . . , pK(1−pK)
NK.

)
and the random vector p has an asymptotically multivariate normal distribution.

Hence, the random vector z also follows an asymptotically multivariate normal

distribution and, under the null-hypothesis p1 = · · · = pK , its asymptotical covari-

ance matrix is given as

Σz = N
p(1− p)

p(1− p)
A diag

(
1

N1.

, . . . ,
1

NK.

)
AT (8)

= A diag

(
1

a1

, . . . ,
1

aK

)
AT . (9)

In conclusion, under the null-hypothesis, we have the asymptotical result z ∼
Nm(0, Σz), with Σz depending only on N1., . . . , NK. which are considered as �xed.

Based on Eq. (5), the computation of PH0(χ
2
max ≤ t) given N1., . . . , NK., which

involves a multidimensional integral, is then straightforward. It is implemented in

our package 'SNPmaxsel', which is available from the Comprehensive R Archive

Network (CRAN). This package uses the package 'mvtnorm' (Genz et al., 2006)

to compute the multivariate normal distribution function.

3 Evaluating SNP-SNP (interaction) patterns

3.1 Patterns of order one and two

In the present section, we show how the methodology introduced in Section 2 can

be applied to the special case of SNP patterns, especially SNP-SNP interactions.

We consider the case of two exemplary SNPs X1 and X2 with, say, genotypes

AA, AC,CC and TT, TG, GG for simplicity, but the theory is essentially gener-

alizable to more SNPs. Let us consider logic expressions involving the ∧ or ∨
operators, for instance

L = ((X1 = AA) ∧ (X2 = TG)) ∨ (X1 = CC).



Let us de�ne the random variable X1,2 by

X1,2 = 1 if X1 = AA and X2 = TT

X1,2 = 2 if X1 = AC and X2 = TT

X1,2 = 3 if X1 = CC and X2 = TT

X1,2 = 4 if X1 = AA and X2 = TG

X1,2 = 5 if X1 = AC and X2 = TG

X1,2 = 6 if X1 = CC and X2 = TG

X1,2 = 7 if X1 = AA and X2 = GG

X1,2 = 8 if X1 = AC and X2 = GG

X1,2 = 9 if X1 = CC and X2 = GG

(10)

The logical expression L may then be reformulated as X1,2 ∈ AL, with AL =

{3, 4, 6, 9}.
Many articles in bioinformatics, statistics and genetics are devoted to the

search of logic expressions that are linked to the binary variable Y of inter-

est (e.g. disease status). In the context of the chi-square statistic, one would

look for a binary partition {AL, AL} maximizing the chi-square statistic ob-

tained for the test of pAL
= pAL

. There are 28 − 1 = 255 distinct binary

partitions of the set {1, 2, 3, 4, 5, 6, 7, 8, 9}. Each of them corresponds to sev-

eral equivalent logic expressions. Conversely, each logic partition leads to a

unique partition of {1, 2, 3, 4, 5, 6, 7, 8, 9}. Considering all the possible partitions

of {1, 2, 3, 4, 5, 6, 7, 8, 9} leads to a vector z of length 255.

However, not all partitions are equally interpretable. From a medical point of

view, it makes sense to restrict to logic expressions formed by two terms linked by

the ∧ operator, for instance

(X1 = AA) ∧ (X2 ∈ {TT, TG}).

If the heterozygous genotypes are considered as intermediates between the homozy-

gous genotypes, it makes sense to consider only the combination of one of the four

terms X1 ∈ {AA, AC}, X1 ∈ {AC, CC}, X1 = AA, X1 = CC with one of the four

terms X2 ∈ {TT, TG}, X2 ∈ {TG, GG}, X2 = TT , X2 = GG using the ∧ oper-

ator, yielding 4 × 4 = 16 candidate patterns. The sets (Ai, Bi) (i = 1, . . . , 16)



underlying the vector z may then be de�ned as A1 = {1}, B1 = {2, . . . , 9},
A2 = {1, 2}, B2 = {3, . . . , 9} and so on. Moreover, following the line of logistic re-

gression which incorporates both main and interaction e�ects, one can also consider

patterns of order one, i.e. involving only one term instead of two. This approach

yields four additional partitions corresponding to X1 = AA, X1 ∈ {AA, AC},
X2 = TT , X2 ∈ {TT, TG}. For example, X1 = AA corresponds to the partition

A = {1, 4, 7}, B = {2, 3, 5, 6, 8, 9}. Finally, one obtains m = 16+4 = 20 candidate

patterns.

Other variants are conceivable, for instance if one considers that the group

of heterozygous genotypes taken alone may be at decreased or increased risk.

Although there are some well-known examples of such e�ects, heterozygous

individuals most often have intermediate phenotypes or, as common in monogenic

diseases, the same phenotype as the homozygous variant individuals (dominant

model) or the homozygous wild-type individuals (recessive model), see Marchini

et al. (2005) for an extensive discussion of di�erent plausible genetic models.

Hence, restricting to the 4 × 4 + 4 = 20 patterns mentioned above often makes

sense in practice. However, the extension to other variants is straightfor-

ward: one just has to de�ne the desired additional partitions (Ai, Bi) of {1, . . . , 9}
or to remove the inadequate partitions. The whole procedure is summarized below.

Algorithm. Scoring a pair of SNPs.

1. Transform the two variablesX1 andX2 into a single variableX1,2 as described

in Eq. (10).

2. Compute the maximal chi-square statistic χ
2 (obs)
max obtained by partitioning

X1,2, using the desired partitions (Ai, Bi), i = 1, . . . ,m, for instance the

m = 20 partitions outlined above.

3. Compute the matrix A corresponding to the selected partitions of X1,2 and

the covariance matrix Σz.

4. Derive PH0(χ
2
max ≤ χ

2 (obs)
max ) from Eq. (5) using the multivariate normal

distribution with covariance matrix Σz.



A large value of PH0(χ
2
max ≤ χ

2 (obs)
max ) indicates a highly discriminating pair of SNPs

and 1− PH0(χ
2
max ≤ χ

2 (obs)
max ) can be seen as an adjusted p-value.

Note that possible associations between SNPs are taken into account through

conditioning the distribution on the marginal counts of the variable X1,2. In the

extreme case of two completely linked SNP loci, the variable X1,2 would only take

the three values 1, 5, 9, yielding only two distinct partitions {1, 5} vs {9}, {1} vs

{5, 9}. In intermediate cases where the categories other than 1, 5, 9 have smaller

counts, the dependence between the two SNPs is also taken into account since

the distribution of χ2
max is derived conditionally on the frequencies of the nine

categories.

For two SNPs, each coded as 1, 2, 3, representing, say, the three genotypes

AA, AC,CC, PH0(χ
2
max ≤ χ

2 (obs)
max ) is computed using the R package 'SNPmaxsel'

by

>library(SNPmaxsel)

>maxsel.asymp.test(x1=x1,x2=x2,y=y,type="inter.ord.main")

for the variant with m = 20 described above, where y, x1 and x2 denote the

n-vectors giving the value of the response Y , SNP1 and SNP2 for the n patients.

Note that, if one is interested in main e�ects only, better power can be achieved

by ignoring interactions and focusing on patterns of order one. We have then m = 2

or m = 3 comparisons for each SNP, depending whether heterozygotes are allowed

to be at lower or higher risk than homozygotes (m = 3) or not (m = 2). For

instance, the case m = 2 works as follows. Since we are interested in the main e�ect

of a single SNP, we have K = 3. If the three possible genotypes are coded as 1,2,3

(where 2 is the heterozygous genotype), the two candidate patterns correspond to

the partitions A1 = {1}, B1 = {2, 3} and A2 = {1, 2}, B2 = {3}, respectively. This
variant is included in the package 'SNPmaxsel', with type="ordinal", whereas

the case m = 3 is obtained by setting type="all.partitions". Conversely, if the

focus is on interactions only, it might also make sense to consider only the m = 16

partitions corresponding to interaction patterns with two involved SNPs. Using

'SNPmaxsel', this can be obtained by setting type="inter.ord".



3.2 Testing multiple patterns simultaneously

A critical issue that may be addressed in future research is the adjustment needed

when multiple pairs of SNPs are tested simultaneously. Since these pairs of SNPs

may be highly dependent in general, classical adjustment methods assuming in-

dependence of the test statistics (e.g., Benjamini and Hochberg, 1995) may be

inappropriate. A safe option is to adjust the obtained p-values using a correc-

tion procedure that explicitly allows the tested hypotheses to be dependent, for

instance the method for controlling the false discovery rate by Benjamini and

Yekutieli (2001).

Since such methods are usually too conservative, more research is needed in

order to make use of the particular structure of SNP-SNP interaction data. From

a theoretical point of view, our method can be extended to the adjustment over

several pairs of SNPs. A set of p SNPs can be transformed into a single nominal

variable with 3p categories (of which many will be empty in real data analysis,

especially if the considered SNPs are linked). For each of the p(p − 1)/2 pairs of

SNPs, the m hypotheses of interest can be formulated in terms of partitions of this

single variable, �nally yielding m′ = mp(p − 1)/2 partitions. This approach rises

two problems.

Firstly, many cells will have no or few observations. While empty cells are cor-

rectly handled by our approach (see Section 4.2), cells with very few observations

might alter the results. Hence, e�orts should be made to solve this problem, for

instance in form of continuity correction. Secondly, the current implementation

of the multivariate normal distribution becomes computationally prohibitive for,

say, m > 100. In further research, one may try to make the algorithm more e�-

cient by using the particular structure of the multiple hypotheses, in the vein of

the procedure suggested by Hothorn and Zeileis (2007) for the case of partitions

de�ned by cutpoints.

In the present article, we rely on the conservative method by Benjamini and

Yekutieli (2001) for controlling the false discovery rate under dependence of the

hypotheses. It is implemented, e.g., in the R package 'multtest'.



3.3 Higher-order interactions

From a theoretical point of view, our method is also generalizable to more complex

interaction patterns involving three or more variables. For interactions involving

three SNPs, SNP1, SNP2 and SNP3 have to be transformed into a variable X1,2,3

with 27 categories using the same scheme as in Eq. (10). Let us consider, as in

Section 3.1, the important case of patterns which i) consist of conditions linked by

the ∧ operator, ii) do not involve the heterozygous genotype taken alone. Under

these restrictions, there are 4 × 4 × 4 = 64 possible patterns of order three. This

is because, for each of the three SNPs, there are four possible ways to de�ne

the condition. Similarly, there are 16 patterns of order two for each of the three

SNP pairs (SNP1/SNP2, SNP1/SNP3, SNP2/SNP3) but only two possible main

e�ects for each of the three SNPs. Finally, it results into m = 64+16×3+2×3 =

118 possible patterns, i.e. 118 partitions (Ai, Bi).

Using the current implementation of the multivariate normal distribution, the

distribution of χ2
max in this setting can hardly be determined in reasonable time.

However, as discussed in Section 4.2, more e�cient algorithms making use of the

data structure could be developed in the near future in the vein of the procedure

suggested by Hothorn and Zeileis (2007). Alternatives are (likewise computation-

ally intensive) permutation procedures or simulations based on samples drawn

from the multivariate normal distribution. However, limited power is to expect,

considering the high number of tested hypotheses and the small size of many cells

of the three-dimensional contingency table. Note that this lack of power should

rather be seen a consequence of the data structure than as an inconvenience of our

method: all methods addressing the statistical signi�cance of higher-order patterns

face this problem.

4 Simulation study

4.1 Power study

The aim of this simulation is to demonstrate that our method performs adjustment

as expected (with control of the type I error) and to compare its power to the power



of competing approaches in various settings. For each setting, some 10000 data

sets of sample size N=1000 including a binary variable Y and two SNPs SNP1 and

SNP2 are simulated as follows. For both SNP1 and SNP2, the Hardy-Weinberg

equilibrium is assumed and di�erent allele frequencies are implemented by means

of the parameters π1 and π2 indicating the frequency of the more frequent allele

for SNP1 and SNP2, respectively. Therefore, for j = 1, 2, the three genotypes for

SNPj (AA, Aa and aa) are sampled with probabilities π2
j , 2πj(1 − πj) and (1 −

πj)
2, respectively. SNP1 and SNP2 are mutually independent. The parameters

(π1, π2) are set successively to (0.6, 0.6), (0.6, 0.8), (0.8, 0.8) and (0.6, 0.95). For

the distribution of the binary variable Y , we examine three di�erent cases.

a) The binary response Y is sampled independently of SNP1 and SNP2 with the

marginal class probability p = 0.5 (corresponding to balanced case-control

studies).

b) The probability p = P (Y = 1) is 0.7 for patients with (SNP1 = aa) ∧
(SNP2 = aa), 0.3 for the other. This case corresponds to an interaction

pattern of the form of those simulated in Schwender and Ickstadt (2007).

c) The probability P (Y = 1) is 0.55 for patients with (SNP1 = aa), 0.45 for

the other. This case corresponds to a main e�ect with threshold (recessive

model), which can be seen as a pattern of order one. Note that, when there

are only main e�ects, better power could be achieved by focusing on patterns

of order one (see end of Section 3). Through the case c), we solely aim to

show how the method behaves in the case where there is only a main e�ect.

Seven assessment approaches are compared:

1) naive: The maximally selected chi-square statistic is calculated. It is then

referred to the nominal chi-square distribution with one degree of freedom

to yield the p-value of the corresponding asymptotic chi-square test.

2) naive Bonf: The p-value derived in 1) is adjusted using Bonferroni's

method, i.e., by multiplying it through the number of chi-square tests (here,

m = 20). Other adjustment methods such as Sidak's adjustment could be

applied, but usually yield similar results (see Dudoit et al. (2003) for an

overview).



3) chisq8: the p-value of the chi-square test for independence with eight degrees

of freedom obtained after transforming the two SNPs into a single categorical

variable with nine classes.

4) new: The adjusted p-value is derived using our novel method with m = 20

corresponding to 16 interaction patterns and 4 main e�ects.

5) log raw: The standard approach to assess the association between a pair

of SNPs and a response variable in genetic association studies consists of

building various logistic regression models involving one or both SNP(s), with

and without interaction terms (Marchini et al., 2005; Park and Hastie, 2007).

Typically, dummy coding is carried out: each SNP variable SNPj (j = 1, 2)

is recoded as two binary variables SNPA
j and SNPB

j (corresponding, e.g., to

the recessive and dominant models, respectively), yielding a total of 2× 2 =

4 variables. For fair comparison with our approach which assesses both

interaction patterns and main e�ects, we build the following nested logistic

models: the four models obtained with either SNPA
1 , SNPB

1 , SNPA
2 or

SNPB
2 as single covariate, the four models including a coding from SNP1

and a coding from SNP2 without interaction, and the four models including

a coding from SNP1 and a coding from SNP2 with interaction term. The

model yielding the smallest p-value with the likelihood ratio test (against the

null model, for fair comparison) is selected, because the underlying genetic

model (recessive, dominant, etc) is in general unknown for new complex

diseases.

6) log Bonf: The p-value selected in 4) is Bonferroni adjusted (by multiplying

it through the number of tests m = 12).

7) log global: The p-value of the likelihood ratio (LR) test with eight degrees

of freedom in the model with two SNPs as qualitative predictors and their

interactions.

The percentage of p-values that go below the 5%-level is displayed in Table

1 for the seven methods and for all settings. In the null case, both the naive

approach and the logistic regression with minimally selected p-values misleadingly



allele probabilities (π1, π2)
Type (0.6,0.6) (0.6,0.8) (0.8,0.8) (0.6,0.95)
a) naive 0.427 0.418 0.395 0.312
null naive Bonf 0.033 0.029 0.029 0.018

chisq8 0.049 0.047 0.046 0.038
new 0.046 0.045 0.047 0.039

log raw 0.235 0.247 0.242 0.258
log Bonf 0.026 0.027 0.028 0.021
log global 0.054 0.056 0.061 0.055

b) naive Bonf 0.893 0.259 0.049 0.023
inter- chisq8 0.875 0.300 0.085 0.049
action new 0.911 0.309 0.078 0.047

log Bonf 0.774 0.159 0.038 0.024
log global 0.843 0.278 0.105 0.061

c) naive Bonf 0.345 0.333 0.087 0.302
main chisq8 0.326 0.323 0.099 0.337

new 0.400 0.393 0.121 0.398

log Bonf 0.343 0.341 0.089 0.326
log global 0.327 0.339 0.124 0.392

Table 1: Percentage of p-values that go below the 5%-level for the seven approaches
and the three cases: null case (a, top), interaction (b, middle) and main e�ect (c,
bottom). Di�erent allele probabilities (π1, π2) are considered.



produce p-values that go below the 5%-level for the type I error in up to 42 %

of the cases � a fact that would lead to severe misinterpretations of the results in

practice. Bonferroni adjusted p-values yield type I error rates below the 5%-level.

In contrast, our new approach, the chi-square test with eight degrees of freedom

and the global LR test roughly hold the 5%-level for the type I error in almost

all cases. In the case of the LR test, the type I error rate slightly exceeds the 5%

level, but the di�erence is not statistically signi�cant.

For cases b) and c), we consider only those methods which correctly control

the type I error. It turns out that our new adjustment approach improves the

power noticeably compared to the Bonferroni adjustment. In terms of power, our

approach is similar to both the chi-square test with eight degrees of freedom and

the global LR test in some cases (with (0.8, 0.8) and (0.6, 0.95)), but outperforms

them noticeably in other cases (with (0.6, 0.6), (0.6, 0.8)).

Unsurprisingly, the power increases considerably with the number of observa-

tions in the cell SNP1 = aa ∧ SNP2 = aa for all approaches. For smaller sample

sizes we again �nd comparable results for the allele probabilities π1 and π2 that

do not produce extremely sparse cell counts.

Another interesting feature of the approach based on multiple chi-square tests

is its ability to identify the right pattern (independently of the obtained p-value).

Note that this aspect is not related to our adjustment procedure and is ignored by

methods such as the chi-square test with eight degrees of freedom or logistic regres-

sion approaches. To address this question, we compute the proportion of iterations

in which the multiple chi-square tests identi�ed (SNP1 = aa) ∧ (SNP2 = aa) as

best pattern (i.e. as the pattern with the highest chi-square statistic). Unsur-

prisingly, this proportion is low for the allele frequencies (0.8, 0.8) and (0.6, 0.95)

yielding the smallest risk class (23% and 49%, respectively). The success rate is

higher (55%) for (0.6, 0.8) and almost maximal (94%) for (0.6, 0.6). In case of

failure, the identi�ed pattern is most often very similar to the right pattern, e.g.,

(SNP1 = aa) ∧ (SNP2 ∈ {Aa, aa}).



4.2 Small samples

For each of the four combinations of allele probabilities (π1, π2) (see section 4.1)

and di�erent sample sizes N (N = 100, 200, 300, 500, 800, 1000, 1500, 3000, 5000),

we generate 20 data sets consisting of two SNPs. That is, we draw randomly

two (mutually independent) SNP variables with three categories, where the prob-

abilities of the three categories are given by (π2
1, 2π1(1 − π1), (1 − π1)

2) and

(π2
2, 2π2(1 − π2), (1 − π2)

2), respectively. Each data set yields its own con�gu-

ration of marginal frequencies N1., . . . , N9. for the categorical variable X1,2 derived

from the two SNPs (see section 3.1).

For each of these 20 con�gurations of marginal frequencies N1., . . . , N9., we

simulate B = 500 independent binary variables Y with P (Y = 1) = 0.5. We

compare the theoretical conditional distribution of χ2
max yielded by our method

to the empirical distribution obtained via the B = 500 iterations based on the

Kolmogorov-Smirnov (K-S) statistic for one sample. The average K-S statistic

over the 20 con�gurations is displayed in Figure 1 against N for the four combi-

nations allele probabilities (π1, π2) considered in Section 4.1. Unsurprisingly, our

approximation is better for allele frequencies yielding large cell counts. An in-

teresting feature is the peak observed for (0.6, 0.95) at N = 800, which can be

explained as follows. Our method can deal with empty cells of the contingency ta-

bles by eliminating the corresponding partitions from the sets of partitions (Ai, Bi),

i = 1, . . . ,m. Hence, the quality of the approximation is not a�ected by empty

cells. In contrast, non-empty cells with few patients are more problematic. For

the allele frequencies (0.6, 0.95), empty cells are very likely for small sample sizes,

which explains the relatively good quality of the approximation. For increasing

N , cells with few observations replace empty cells, thus making the approximation

worse. The approximation then improves for very large values of N .



0 2000 4000

0.
04

5
0.

05
5

0.
06

5

π1=0.6, π2=0.6

D

0 2000 4000

0.
05

0.
07

0.
09

π1=0.8, π2=0.8

0 2000 4000

0.
04

5
0.

05
5

π1=0.6, π2=0.8

N

D

0 2000 4000

0.
06

5
0.

07
5

0.
08

5

π1=0.6, π2=0.95

N

Figure 1: Average K-S statistic against N for π1 = π2 = 0.6 (top left), π1 = π2 =
0.8 (top right), π1 = 0.6, π2 = 0.8 (bottom left), π1 = 0.6, π2 = 0.95 (bottom
right). Averaged over 20 data sets.
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Figure 2: Empirical distribution function F (p) of the p-values yielded by the seven
methods described in Section 4.1 for the 66× 65/2 = 2145 SNP-SNP interactions
with allergic rhinitis outcome (left) and asthma outcome (right).



5 KORA data example

5.1 The KORA study

KORA (Cooperative Health Research in the Region of Augsburg) is the framework

for large population-based surveys on adults in the city and region of Augsburg,

South Germany (Holle et al., 2005; Wichmann et al., 2005). The KORA C survey

is based on a random, cross-sectional sample strati�ed for age and sex studied

in the years 1994 and 1995. The sampling strategy and study design have been

described elsewhere (Weidinger et al. (2004, 2005a,b,c); Illig et al. (2003)). For 1537

individuals, 66 SNPs from �ve di�erent genes (among others CARD15, STAT6,

NOD1) are available. The binary outcomes of interest are 'allergic rhinitis' (388

diseased patients, the rest healthy) and 'asthma' (136 diseased patients, the rest

healthy). Considering only pairwise interactions, there are 66× 65/2 = 2145 pairs

of SNP-variables.

5.2 Results

We analyze these 2145 pairs of SNPs using all seven methods outlined in Section

4.1. For both examined binary outcomes ('allergic rhinitis' and 'asthma') and

both approaches (chi-square tests and logistic regression), it can be seen from the

concave curves displayed in Figure 2 that small raw p-values are noticeably more

represented than large raw p-values, indicating possible interactions. On the con-

trary, large p-values are more frequent than small p-values for both approaches

when Bonferroni adjustment is carried out. In particular, a large proportion of ad-

justed p-values equals one. In contrast, our method, the chi-square test with eight

degrees of freedom and the global LR test produce p-values that are approximately

uniformly distributed within [0, 1], with a slight in�ation near zero.

For the outcome 'allergic rhinitis', our new approach yields 62 p-values smaller

than 0.05, which are all greater than 0.001. For the outcome 'asthma', there are

30 signi�cant p-values at the level 0.001, and 175 at the level 0.05. However, these

p-values have to be adjusted for multiple testing, since 2145 tests are performed

simultaneously.



5.3 Adjustment for multiple testing

Adjustment for multiple testing is performed using the stepwise procedure by Ben-

jamini and Yekutieli (2001), which controls the false discovery rate (Benjamini and

Hochberg, 1995) under dependence of the tested hypotheses.

After adjustment of the p-values obtained with our new method, all p-values

are insigni�cant at the level 0.05 for the outcome 'allergic rhinitis'. In contrast, the

analysis of the outcome 'asthma' yields ten slightly signi�cant p-values (all larger

than 0.01). From these ten signi�cant p-values, �ve involve the SNP dhrs5250,

which shows a main e�ect corresponding to the pattern

dhrs5250 = aa,

yielding a raw p-value of 0.0029 with the chi-square test. Pairwise interactions pat-

terns are observed between dhrs5250 and the SNPs dhrs4396, dhrs2067, dhrs2064,

dhrs1159, dhrs2062, which all show no signi�cant main e�ect. The �ve remaining

patterns are formed only by SNPs showing no main e�ect. It should be noted

that the ten identi�ed interaction patterns are scarcely signi�cant and based on

relatively few diseased patients (136 for the outcome asthma) -as common in

population-based studies. Hence, validation will be crucial.

An important point regarding the outcome 'asthma' is that one would obtain

29 instead of 10 signi�cant interaction patterns if the p-values were not adjusted

using our new method, thus yielding far too optimistic results in terms of power.

Hence, this real data study con�rms drastically the results of the simulation study,

namely that omitting the p-value adjustment within a given pair of SNPs may lead

to over-optimistic conclusions.

6 Conclusion

We have proposed a method to score SNP-SNP (interaction) patterns in associa-

tion studies while correcting for optimal selection e�ects. Our approach is based on

the derivation of the asymptotic distribution of the maximally selected chi-square

statistic in a general context based on the multivariate normal distribution. The



simulation results have shown drastically that such an adjustment is necessary,

since raw p-values lead to far too high type I errors. In terms of power, our

method surpasses logistic regression combined with Bonferroni correction and also

often outperforms the chi-square test with eight degrees of freedom and the global

LR test for the logistic model, when the true data generating model involves inter-

action patterns. Our procedure is �exible and can be derived in several variants,

depending on the tested hypotheses. For example, the variant used here in the

applications considers patterns of order one (corresponding to main e�ects with

threshold) and two.

Furthermore, the obtained distribution is conditional on the marginal frequen-

cies of the genotypes, thus taking associations between SNPs into account. From

a theoretical point of view, our approach is related to the conditional inference

framework for permutation tests reviewed in Hothorn et al. (2006). In future re-

search, one could attempt to adapt our asymptotic method for scoring interactions

to this general framework.

Since based on asymptotic approximations, our procedure can be applied to

large samples only. Even if the sample is large, sparse cell counts may occur, for

instance for interactions involving the homozygous mutant. As a rule of thumb,

the method may be applied if the data approximately ful�ll the conditions required

by the usual chi-square test. In future research, continuous correction procedures

or exact methods based on the methodologies presented in Boulesteix (2006a,b);

Boulesteix and Strobl (2007) could potentially be developed in order to solve (at

least partly) the problem of sparse cell counts. Permutation-based procedures are

another option. However, even exact or permutation-based methods can not tell

us whether a pattern present in, say, only two of 1000 patients is signi�cantly

associated with a certain disease. From a statistical point of view, improving the

sample size is then the only option.

Our method addresses the problem of multiple tests implied by choosing the

logical expression optimally for a given pair of SNPs. To the best of our knowl-

edge, this issue is ignored by recent methods based on logical expressions and

inspired from machine learning. We think that the concept of logical expressions

has advantages over traditional approaches based on (generalized) linear models

and shows considerable promise. However, the assessment of statistical signi�cance



in this context should be given more attention than usually done. Our method,

which is �exible enough to adapt to di�erent statistical questions, may be seen as

a contribution to this arduous topic.
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