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Abstract

Main objectives of feature extraction in signal regression are the improve-
ment of accuracy of prediction on future data and identification of relevant parts
of the signal. A feature extraction procedure is proposed that uses boosting tech-
niques to select the relevant parts of the signal. The proposed blockwise boosting
procedure simultaneously selects intervals in the signal’s domain and estimates
the effect on the response. The blocks that are defined explicitly use the un-
derlying metric of the signal. It is demonstrated in simulation studies and for
real-world data that the proposed approach competes well with procedures like
PLS, P-spline signal regression and functional data regression.

Keywords: Signal Regression, Boosting techniques, Generalized Ridge Re-
gression, P-Splines, Partial Least Squares

1 Introduction
Signal regression has been extensively studied in the chemometrics community.
An excellent summary of tools has been given by Frank and Friedman (1993).
With the recent surge of interest in functional data, signal regression may be
embedded into the framework of functional data, nicely outlined by Ramsay and
Silverman (2005). If functional data like signals are used as regressors the main
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problem is the large number of predictors which makes common least-squares
techniques inapplicable. Each experimental unit usually generates a number of
regressors which far exceeds the number of units collected in the study. Figure 1
shows signal regressors from near infrared spectroscopy applied to a compositional
analysis of 32 marzipan samples (Christensen et al., 2004). Each "signal" consists
of 600 digitizations along the wavelength axis. The objective of the analysis
is to determine moisture and sugar content from these signals (for details see
subsection 4.2).
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Figure 1: NIR spectra of 32 marzipan samples; colors corresponding to sugar
content.

Objectives in functional regression are manifold, our specific concern is on
two aspects, accuracy of prediction on future data and feature extraction. When
the main concern is prediction, feature extraction is secondary but may serve the
purpose to obtain better prediction performance. In other cases feature extraction
is of interest from the viewpoint of interpretability. One wants to know which
predictors effect upon the response, for the spectroscopy data that means which
areas of wavelength are relevant. As a second example we will use the rainfall
data from Ramsay and Silverman (2005). Figure 2 shows the temperature profiles
(in degrees celcius) of Canadian weather stations across the year - averaged over
1960 to 1994. As Ramsay and Silverman we will consider the base 10 logarithm
of the total annual precipitation as response variable.

In this article, we propose a method of feature extraction which focuses on
groups of adjacent variables. By using boosting techniques we select subsets of
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Figure 2: Temperature profiles of 35 Canadian weather stations; colors corre-
sponding to (log) total annual precipitation.

predictors, whose coefficients are interpretable. Moreover, it is demonstrated that
the selection of groups of predictors improves the accuracy of prediction when
compared to alternative procedures.

There is a whole range of methods that applies to signal regression func-
tional data. Classical instruments are partial least squares (PLS) and principal-
component regression (PCR). More recently developed tools aim at constraining
the coefficient vector to be a smooth function; see Hastie and Mallows (1993),
Marx and Eilers (1999), Marx and Eilers (2005). But also the much older ridge
regression (Hoerl and Kennard, 1970), the new elastic net (Zou and Hastie, 2005)
and the fused lasso (Tibshirani et al., 2005) are able to handle highdimensional
predictor spaces. In addition to these parametric approaches we will also consider
random forests (Breiman, 2001), which on various occasions have turned out to
be highly efficient in terms of prediction.

A first illustration of the difference between methods is given in Figure 3,
where the coefficient function resulting from lasso, ridge regression, generalized
ridge regression with first-difference penalty, P-splines signal regression, func-
tional data approach (Ramsay and Silverman, 2005) and the proposed Block-
Boost is shown for the Canadian weather data which has become some sort of
benchmark data set. It is seen that lasso selects only few variables - theoretically
at most n variables as pointed out by Zou and Hastie (2005). In the considered
example selecting only few variables means selecting only few days, whose mean
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Figure 3: Regression coefficients estimated by various methods; column by col-
umn, top down: lasso, ridge, generalized ridge with first-difference penalty, P-
splines, functional data approach, BlockBoost; temperature profiles of 35 Cana-
dian weather stations as predictors, log total annual precipitation as response.

temperature is assumed to be relevant for the total annual precipitation. By
construction ridge regression takes into account all variables. Smoothing the co-
efficient function is possible by penalizing differences between adjacent coefficients
- or by using smooth basis functions - as proposed by Marx and Eilers (1999),
Ramsay and Silverman (2005). But still almost every day’s temperature is con-
sidered to be important. BlockBoost selects only some periods instead, e.g. some
weeks in late autumn / early winter. The smooth BlockBoost estimates basically
result from penalizing (first) differences between adjacent coefficients. Details of
the procedures are given in 2.2. Nevertheless we want to note that P-splines are
based on 35 B-spline basis functions with equally spaced knots and duplicated
boundary knots, for details see Hastie et al. (2001). To increase smoothness a
third difference penalty is imposed on the basis coefficients, see Marx and Eilers
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(1999). By contrast, in the functional data approach Fourier basis functions for
smoothing both the functional regressors and the coefficient function have been
used, for details see Ramsay and Silverman (2005).

2 Feature Extraction by Blockwise Boosting

2.1 Regularization in Signal Regression

Let the data be given by (yi, xi(t)), i = 1, . . . , n, where yi is the response variable
and x(t), t ∈ I denotes a function defined on an interval I ⊂ R, also called the
signal. A functional linear model for scalar responses has the form

yi = β0 +

∫
xi(t)β(t)dt + εi

where β(.) is a parameter function and εi with E(εi) = 0 represents a noise
variable, cf. Ramsay and Silverman (2005). The naive approach, fitting by least
squares frequently yields perfect fit of the data with poor predictive value. A more
promising approach is based on regularization with roughness penalties where

L(β) =
n∑

i=1

{
(yi − β0 −

∫
xi(s)β(s)ds)

}2

+ λ

∫
|β(m)(t)|qdt

is minimized, with β(m) denoting the mth derivative. For q → 0 one obtains
a variable selection procedure, if m = 1 zero-order variable fusion (Land and
Friedman, 1997) results. For q = 1 the choice m = 0 corresponds to the lasso
(Tibshirani, 1996), and m = 1 corresponds to first-order variable fusion (Land
and Friedman, 1997). The value q = 2 yields ridge regression type estimators
(m = 0) and generalized ridge regression (m ≥ 1), Ramsay and Silverman (2005)
use m = 2 as (one type of) roughness measure.

While ridge type estimators with m ≥ 1 yield smooth functions β(s), vari-
able selection methods and the lasso usually reduce the number of predictors.
One strength of the lasso is that it shrinks parameters and performs variable
selection simultaneously. However, there are strong limitations, since the lasso
selects at most n predictors. Variable selection strategies, including the lasso, are
"equivariant" methods referring to the fact that they are equivariant to permuta-
tions of the predictor indices (Land and Friedman, 1997). In contrast, "spatial"
methods regularize by utilizing the spatial nature of the predictor index. In this
sense generalized ridge regression and functional data analysis based on second
derivatives are spatial methods - but without reducing the predictor space. An
alternative spatial method is the more recently proposed fused lasso (Tibshirani
et al., 2005). It uses two penalty terms; the first is the usual lasso penalty and
the second corresponds to m = 1 and q = 1, i.e. variable fusion. Thus the second
term enforces sparsity that refers to first differences of parameters with the effect
that piecewise constant fits are obtained.
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2.2 Feature Extraction by Blockwise Boosting

The method proposed here reduces the predictor space by variable selection and
simultaneously regularizes the parameter function by utilizing a metric defined
on the signal space I. The discretized form of the functional linear model is given
by

yi = β0 +

p∑
j=1

xijβj + εi (1)

where xij = xi(tj), βj = β(tj) for values t1 < · · · < tp, tj ∈ I. For simplicity
we take the values t1, . . . , tp as equidistant, tj+1 − tj = ∆. For the (original)
marzipan data the digitization along the wavelength axis yields p = 600, where
∆ = 2 nm has been chosen (for details see Section 4.2).

Boosting

One building block of the proposed method is boosting. Boosting has been devel-
oped in the machine learning community with the focus on classification problems,
see Schapire (1990) or Freund and Schapire (1996). More recently, based on work
by Breiman (1998) or Breiman (1999), it has been extended to regression prob-
lems by Friedman et al. (2000), Bühlmann and Yu (2003), Bühlmann (2006). In
this article we restrict the consideration to a version of the L2Boost algorithm
which essentially is a repeated least squares fitting of residuals.

Let the data be given by (yi, xi), i = 1, . . . , n, xT
i = (xi1, . . . , xip) and the

underlying regression structure be given by E(y|x) = η(x). Boosting estimates
η(x) in an iterative way. Let η̂r(x) be the estimator of η(x) in the rth step. In
the next step of the algorithm one considers the data (ui, xi), i = 1, . . . , n, where

ui = yi − η̂r(xi)

is the current residual. When estimating the regression of ui on xi one employs
an estimator f̂(x, {ui, xi}) (a learner in machine learning terminology) which uses
data {ui, xi}. Fitting of the regression model for data (ui, xi) yields the improved
estimate. A short outline of the algorithm is given in the following.

L2Boost

Step 1 (Initialization)

An initial estimate η̂0(.) is obtained by fitting a simple model to data (yi, xi), for
example the intercept model.
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Step 2 (Residual fit)

For r = 0, 1, 2, . . . compute residuals ui = yi − η̂r(xi), i = 1, . . . , n, and use the
learner f̂(.; {ui, xi}) on the data {ui, xi}. The improved fit is obtained by

η̂r+1(.) = η̂r(.) + νf̂(., {ui, xi})

where ν ∈ (0, 1] is a shrinkage parameter.

An estimator or learner, in the sense of the preceding algorithm, is com-
posed from two components, the fitting procedure and the structure that is fit-
ted. Bühlmann and Yu (2003) focus on least squares fitting and linear learners
like regression splines. By using small ν a weak learner is obtained with superior
performance when compared to alternative smooth regression methods.
For the fitting of linear models an attractive tool which implies variable selection
is componentwise boosting. Let the learner be defined by least squares fitting of
single parameters and selection of the component that shows the best fit. That
means one uses

f̂(x; {ui, xi}) = β̂ŝxŝ

where β̂j =
∑n

i=1 uixij/
∑n

i=1 x2
ij is the least squares fit for the jth component

(centered data) and

ŝ = arg min
1≤j≤p

n∑
i=1

(ui − β̂jxij)
2

is the selection operator that selects the best fit. That means in each step of the
algorithm only one coefficient is refitted. Variables that are never selected are
not taken into the model. Componentwise boosting may be directly applied to
the signal regression model (1). One obtains variables selection but based on an
equivariant method.

Blockwise Boosting

The method proposed here differs from componentwise boosting in the way fea-
tures are selected. Rather than selecting single variables the approach selects
groups of variables where the grouping of variables is based on a metric. Since
a signal xi(.) may be seen as a mapping xi : I → R one utilizes that a metric is
available on I. A potentially relevant part of the signal xi(.) may be characterized
by {xi,U(t)|t ∈ U(t0)} where U(t0) is defined as a neighborhood of t0 ∈ I, i.e.
U(t0) = {t|‖t − t0‖ ≤ δ} for some metric ‖.‖ on I. For the digitized signal the
potentially relevant signal part turns into the group of variables {xij|tj ∈ U(t0)}.
When the Euclidean metric is used, U(t0) may be identified as a sub-interval from
I.

Blockwise boosting aims at updating groups of adjacent variables {xij|tj ∈ U}
for alternative sets U . For simplicity in the updating procedure we use subsets
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Us = Uk(ts) = [ts, ts + (k − 1)∆], k ∈ {1, 2, . . . }. Thus for k = 1 one obtains
the limiting case of single variables {xi(t1)}, {xi(t2)}, for k = 2 one gets pairs of
variables {xi(t1), xi(t2)}, {xi(t2), xi(t3)}, etc. In the following k is considered as
fixed and the index k is suppressed.

Let X(s) denote the design matrix of variables from Us, i.e. X(s) has rows
(xi(ts), . . . , xi(ts+k−1)) = (xis, . . . , xi,s+k−1). An update step of blockwise boost-
ing will be based on estimating the vector b(s) = (b(ts), . . . b(ts+k−1))

T from data
(u,X(s)) where u = (u1, . . . , un)T denotes the current residual. Least squares
fitting cannot be recommended, since variables in X(s) tend to be highly corre-
lated. Alternatives are smooth estimates of βs along the lines of Marx & Eilers
or a ridge type estimator. The simple ridge estimator has the form

b̂(s) = (X(s)T X(s) + λI)−1X(s)T u

where λ is chosen very large in order to obtain a weak learner. Due to the
shrinkage properties of the ridge estimator the (additional) shrinkage parameter
ν from the L2Boost algorithm is superfluous and can be set to 1. Indeed, in terms
of prediction accuracy, the performance of a blockwise simple ridge estimator
was very encouraging. The resulting coefficient function however tends to be
quite wiggly. Smoother coefficients can be obtained for example by penalizing
differences between adjacent coefficients. But since penalizing differences does
not necessarily shrink coefficients, we additionally penalize (the square of) the
first and the last coefficient in the considered block Us. Hence the parameter
estimate we use is the generalized ridge estimator

b̂(s) = (X(s)T X(s) + λΩ)−1X(s)T u

with the identity matrix from above being replaced by the penalty matrix

Ω = DT D, D =




1 0 · · · 0

−1
. . . . . . ...

0
. . . . . . 0

... . . . −1 1
0 · · · 0 1




.

Ω is tridiagonal, with 2s on the diagonal and -1s on the off-diagonals. In ad-
dition to overall shrinkage penalizing the coefficients at the boundaries of the
blocks yields smoother transitions when two or more blocks (selected in different
boosting iterations) are overlapping. In summary for fixed span k and tuning
parameter λ the proposed boosting algorithm is as follows.
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BlockBoost

Step 1 (Initialization)

For s = 1, . . . , p − k + 1 fit a linear model to data (y, X(s)) by using gener-
alized ridge regression as weak learner. From the resulting estimates b̂(s) =
(b

(s)
s , . . . , b

(s)
s+k−1)

T = (X(s)T X(s) + λΩ)−1X(s)T y select the best by minimizing
the residual sum of squares

ŝ0 = arg min
1≤s≤p−k−1

‖y −X(s)b̂(s)‖2.

Let β̂(0) = (β
(0)
1 , . . . , β

(0)
p )T be defined by components

β̂
(0)
j =

{
b̂
(ŝ0)
j tj ∈ Uŝ0

0 otherwise
.

Step 2 (Residual fit)

For r = 0, 1, 2, . . . compute residuals ui = yi − xT
i β̂(r), i = 1, . . . , n and fit for

s = 1, . . . , p − k + 1 a linear model to data (u,X(s)) where uT = (u1, . . . , un).
From the resulting ridge type estimates b̂(s) = (X(s)T X(s) + λΩ)−1X(s)T u choose
ŝr+1 such that the residual sum of squares is minimized

ŝr+1 = arg min
1≤s≤p−k+1

‖u−X(s)b̂(s)‖2.

Let β̂(r+1) be defined by components

β̂
(r+1)
j =

{
β̂

(r)
j + b̂

(ŝr+1)
j tj ∈ Uŝr+1

β̂
(r)
j otherwise

.

BlockBoost as a feature extraction method assumes that not the whole signal
is relevant for the explanation of the response. It aims at identifying important
areas of the signal. But note, though k is fixed and hence k adjacent β-coefficients
are updated in every iteration, the finally resulting ’relevant’ parts of the signal
may have different lengths, since subsets Usr and Usl

, selected in iteration r
and l may overlap. In contrast to smooth methods like P-splines based signal
regression, variable selection in the form of area selection is part of the strategy.
This has already been illustrated by Figure 3 (bottom right column).

As selection criterion for the next update the algorithm uses the residual sum
of squares (RSS). Of course this criterion may be replaced by a cross-validation
(CV) or generalized cross-validation (GCV) criterion.
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Stopping the boosting iterations and choice of the span k

In boosting procedures a stopping rule is needed to avoid overfitting. We employ
the corrected version of AIC (Hurvich et al., 1998) as proposed by Bühlmann
(2006). This criterion is based on the boosting hat matrix which maps the re-
sponse vector y into the space of fitted values. In the rth iteration the boosting
hat matrix Br is defined by (Bühlmann and Yu, 2003)

Br =
r∑

l=0

H(sl)

l∏
m=1

(I −H(sl−m)),

with ridge type hat matrix

H(s) = X(s)(X(s)T X(s) + λΩ)−1X(s)T

and sl denoting the variable block that has been selected in the lth boosting
iteration. It is easy to show that

Br = I −
r∏

m=0

(I −H(sr−m)) = I − (I −H(sr))(I −H(sr−1)) · · · (I −H(s0)).

The AIC in the rth iteration is defined by (Hurvich et al., 1998)

AICc(r) = log

(
1

n

n∑
i=1

(yi − (Bry)i)
2

)
+

1 + trace(Br)/n

1− (trace(Br) + 2)/n
.

Given an upper bound R∗ for the candidate number of boosting iterations the
optimum iteration number M can be estimated by (Bühlmann, 2006)

M̂ = argmin0≤r≤R∗AICc(r).

For selecting the span k we propose a quite simple strategy: select a rough grid
K of possible k-values, e.g. K = {20, 30, 40, 50}. For every k ∈ K run the
BlockBoost algorithm with the stopping rule presented above; choose the k with
minimum AIC at the stopping point.

3 Simulations

3.1 An Illustration

Before comparing the blockwise boosting approach with competing methods we
illustrate the performance in a small simulation study. Let the (digitized) signals
be generated by

xi(t) =
5∑

k=1

(bik sin(tπ(5− bik)/150)−mik) + 15, (2)
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Figure 4: Illustration of the simulation study; from left to right: A set of 40
generated signals, the plateau function β(t) = I(100,150)(t) and a normal-mixture
function.

i = 1, . . . , n, where t ∈ (0, 300), bik ∼ U(0, 5),mik ∼ U(0, 2π) with U(a, b) de-
noting the uniform distribution on interval [a, b]. The signals are observed at
equidistant points tj ∈ (0, 300), j = 1, . . . , 300.

The left panel of Figure 4 shows n = 40 generated signals. We consider two
parameter functions, the first is the simple plateau function

β(t) = I(100,150)(t),

which is constant on interval (100, 150) and should be hard to fit by smooth
updates (see Figure 4, middle). So in this special case for illustration we consider
the above mentioned simple ridge blockwise estimator. The second function is
given by

β(t) =
50√
2π

(
1

8
exp

(
−1

2

(
t− 80

8

)2
)
− 1

6
exp

(
−1

2

(
t− 250

6

)2
))

,

which is also shown in Figure 4 (right panel) and fitted using the proposed penalty
matrix Ω. The response is computed according to the functional linear model (1)
with εi ∼ N(0, 302). In addition, measurement error τij ∼ N(0, 0.252) is added
to the signals at the observation points.

Each simulation example is run 50 times. Figure 5 and 6 show the resulting
mean estimates for λ = 104 and λ = 106, resp. λ = 105 and λ = 107 when the
cross-validation selection criterion has been used. The rough λ-values have been
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Figure 5: The considered plateau function and mean estimate by (simple ridge)
BlockBoost for λ = 104 (left) and λ = 106 (right), +/- 2 (estimated) standard
deviation curves of β̂ (dashed lines).

chosen on the basis of a (generalized) ridge regression with penalty matrix I, resp.
Ω, but without boosting and taking into account all 300 predictors, i.e. k = 300
and R∗ = 0. In the actual simulation the span has been chosen by k = 50 in the
plateau function example and k = 30 for the normal-mixture example. In both
cases, and at least in the relevant regions, the mean functions do not change sub-
stantially when shrinkage, resp. penalty is increased. Not surprisingly however,
higher penalty causes lower variability, which can be seen from the dashed lines.
These variability bounds are created by adding and subtracting two times the
(estimated) standard deviation curves of β̂(t). In the plateau function example
variability is particularly high at the relevant region’s boundaries. Of course,
compared to (blockwise) simple ridge, in the proposed smooth setting higher
λ-values cause higher smoothing rather than higher shrinkage, but nevertheless
shrinkage is obviously done in every iteration. Since the mean curves in the right
panel of Figure 5 and 6 are not closer to zero than those in the left panel, it can
be assumed that higher shrinkage, resp. smoothing is compensated by a higher
number of boosting iterations. Moreover, compared to the true regression func-
tion in the normal mixture example, with both λ = 105 and λ = 107, the finally
estimated coefficient function is shrunken only a little bit towards zero.

Beside considering different λ-values, when the true regression function is
known, it is possible to estimate the resulting mean squared errors E(‖β̂(.) −
β(.)‖2) for every selection criterion. The distance between estimated and true
regression function is measured in terms of the metric ‖β̂(.)− β(.)‖2 =

∫
I
(β̂(t)−

β(t))2 dt. Table 1 shows the MSE (derived from 50 simulation runs) for both
simulation examples, fixed λ = 106, penalty matrix Ω in both cases and varying
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Figure 6: The considered normal mixture functions and mean estimate by (gen.
ridge) BlockBoost for λ = 105 (left) and λ = 107 (right), +/- 2 (estimated)
standard deviation curves of β̂ (dashed lines).

regression function
plateau function normal mixture

RSS 7.947 (0.128) 17.430 (1.229)
selection criterion CV 7.896 (0.124) 17.450 (1.301)

GCV 7.957 (0.125) 17.297 (1.223)

Table 1: MSE E(‖β̂(.)−β(.)‖2) for the considered regression functions and vary-
ing selection criteria; estimated standard errors in parentheses.

selection criteria. With the standard errors (given in parentheses) in mind there
do not really seem to be any differences between different criteria. Nevertheless
we decided to use CV as default in the following sections.

3.2 Comparison between methods

Let the signal again be generated by (2). The error terms in yi =
∑

j xi(tj)β(tj)+

εi are specified by εi ∼ N(0, 102), εi ∼ N(0, 302), εi ∼ N(0, 502). These settings
correspond to signal-to-noise ratios of about 30, 10 and 6. As before measure-
ment error τij is added on the signals at tj considering the cases τij = 0, τij ∼
N(0, 0.252), τij ∼ N(0, 1). The respective signal-to-noise ratio is ∞, ∈ [16, 24]
resp. ∈ [4, 6] (depending on tj). The considered parameter function is the normal-
mixture function. In order to evaluate the performance of blockwise boosting we
compare the proposed algorithm to several other procedures. All computations
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were carried out by the statistical program R, see R Development Core Team
(2007) for further information. In particular we compare the following proce-
dures:

• Principal Components Regression PCR (Massy, 1965) with the coefficients
being estimated using the R-package pls; the number of components is
determined by leaving one out cross-validation (CV).

• Partial Least Squares PLS (Wold, 1975); as above we use the R-package
pls, PLS is performed using the classical orthogonal scores algorithm, as
described in Martens and Naes (1989); CV serves to estimate the number
of latent factors.

• Lasso (Tibshirani, 1996); the computations are done based on to the algo-
rithm of Efron et al. (2004), which is implemented in the R-package lars.
The amount of shrinkage is determined by 5-fold cross-validation.

• Ridge Regression (Hoerl and Kennard, 1970) with the optimum amount of
shrinkage being estimated by CV.

• Generalized Ridge Regression with first-difference penalty; again we use CV
to determine the penalty parameter.

• Functional Data Approach (Ramsay and Silverman, 2005), from now on
denoted by FDA; there is an updated R-package fda available now. For
smoothing the signal and the coefficient vector we use 60 and 40 B-spline
basis functions respectively. According to Ramsay & Silverman roughness of
the regression function is to be penalized; so we chose to penalize curvature,
with a penalty parameter chosen by CV.

• P-Splines; here we use the same functions as before for FDA, but without
smoothing the signal, and imposing a third-difference penalty on the B-
spline coefficients as proposed by Marx and Eilers (1999); as before the
penalty parameter is determined by CV.

• Elastic Net (Zou and Hastie, 2005) estimated via the R-package elasticnet.
For fixing the shrinkage parameters we use the procedure proposed by Zou
& Hastie.

• Blockwise Boosting; we select k as described above, with K = {20, 30, 40, 50},
where the amount of shrinkage/smoothing has been fixed by λ = 106.

It is seen that all relevant tuning parameters are chosen in an adequate and
widely accepted way to ensure fairness when the different methods are compared.
We also investigated Random Forests (Breiman, 2001) and (weighted) k-Nearest
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Neighbors, whose performance however was not competitive in the considered
simulation setting.

For every combination of error term and measurement error specification we
create a test set of nt = 500 observations and 100 learning data sets, each consist-
ing of 40 observations. Selection of tuning parameters is based on the respective
learning data set only. In each case we investigate two measures of performance,
the accuracy of the parameter estimate

MSEβ =
∑

j

(β(tj)− β̂(tj))
2

and the prediction mean squared error

MSEy =
1

nt

nt∑
i=1

(yi − ŷi)
2.

The first quantity is an approximation of the (squared) distance
∫

I
(β(t)−β̂(t))2 dt.

Figure 7 shows a graphical summary of the observed MSEβ and MSEy values
when test set and training data sets are created according to the last combination
of error term and measurement error, i.e. εi ∼ N(0, 502), τij ∼ N(0, 1). It should
be noted that in the case of FDA and P-Splines some outliers of MSEβ and
MSEy are not shown because they were too extreme. It is seen from Fig. 7 that
BlockBoost has superior performance not only in terms of the mean or median.
Also variability is very low when compared to the other procedures. Due to the
occurrence of extreme outliers (mainly in case of FDA and P-Splines) the mean
does not seem to be the right measure to compare the different methods in a
summarized way for all simulation settings. So Table 2 and 3 show the results in
terms of the median over the 100 learning data sets.

τij = 0 ∼ N(0, 0.252) ∼ N(0, 1)
εi ∼ N (0,102) (0,302) (0,502) (0,102) (0,302) (0,502) (0,102) (0,302) (0,502)
PCR 59 67 87 93 206 94 84 97 114
PLS 60 67 83 71 80 90 83 106 140
Lasso 2254 2634 2664 792 1654 2144 350 636 840
Ridge 57 63 74 109 115 178 95 152 252
gen. Ridge 56 63 78 58 67 76 62 68 79
FDA 57 63 87 57 65 87 61 66 90
P-Splines 59 65 105 60 66 98 62 66 105
Elastic Net 2128 2982 4412 331 1535 2034 103 244 539
BlockBoost 13 15 18 13 13 16 15 16 18

Table 2: Median of MSEβ over the 100 learning data sets for PCR, PLS, lasso,
ridge and generalized ridge (first-difference penalty) regression, FDA, P-splines,
elastic net and BlockBoost.

After inspection of Figure 6 a good performance of BlockBoost could be ex-
pected. Indeed, the regression function estimated by BlockBoost is quite close to
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Figure 7: Detailed summary of MSEβ (left) and MSEy (right) for the considered
methods; test set and learning data sets were created using the specifications εi ∼
N(0, 502), εij ∼ N(0, 1).
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τij = 0 ∼ N(0, 0.252) ∼ N(0, 1)
εi ∼ N (0,102) (0,302) (0,502) (0,102) (0,302) (0,502) (0,102) (0,302) (0,502)
PCR 151 1250 3748 160 1257 3813 474 1560 3702
PLS 150 1252 3748 163 1283 3921 459 1675 3856
Lasso 132 1142 3262 218 1308 3664 793 2199 4443
Ridge 142 1201 3574 160 1215 3645 470 1630 3723
gen. Ridge 142 1209 3665 155 1277 3703 384 1527 3670
FDA 140 1207 3681 156 1259 3805 383 1562 3724
P-Splines 143 1211 3796 157 1256 3839 383 1529 3947
Elastic Net 153 1238 3661 184 1311 3593 494 1777 4095
BlockBoost 136 1080 3073 157 1065 3155 384 1419 3201

Table 3: Median of MSEy over the 100 learning data sets for PCR, PLS, lasso,
ridge and generalized ridge (first-difference penalty) regression, FDA, P-splines,
elastic net and BlockBoost.

the true function, at least if we accept the other methods’ performance as a kind
of standard. In general the chemometrics regression tools PCR, PLS and ridge
as well as the smoothing methods work relatively well. Since lasso and elastic net
only select single measurement points, their bad performance is not surprising.
Interestingly their performance increases with enlarging measurement error. Poor
estimation of the true regression function however does not necessarily cause bad
prediction. As Table 3 shows the prediction accuracy of lasso and elastic net is
similar to that achieved by other methods. Nevertheless the column minimum is
almost always found in the BlockBoost row.

4 Evaluation by Real World Data
Simulation scenarios have the advantage that the underlying structure is known
and the accuracy of estimates may be investigated. When dealing with real data
sets the true structure is unknown and the statistical model is usually only an
approximation. The strength of the approach is that one may investigate how
well this approximation works in practice.

4.1 Weather in Canada

The example data are taken from Ramsay and Silverman (2005), the well known
monograph about functional data analysis, and can be downloaded from the re-
lated website http://www.functionaldata.org. Here the average daily precipi-
tation and temperature at 35 Canadian weather stations is reported. As Ramsay
& Silverman we try to predict the logarithm of the total annual precipitation
from the pattern of temperature variation through the year. In terms of Section
2.2 the temperature profiles, the "signals", are digitized by p = 365 observation
points.
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Figure 8: Mean Squared Error of Prediction for the considered methods averaged
over all 200 random splits, +/− 2 (estimated) standard errors, minimum marked
by dashed line; temperature profiles of 35 Canadian weather stations as predictors,
log total annual precipitation as response.

We consider the same methods as in the simulation study with tuning pa-
rameters chosen as described above. In the case of FDA, however, we changed
the specifications according to Ramsay and Silverman (2005). Above all this
means that Fourier basis functions rather than B-splines are used to smooth sig-
nal and regression function - due to the periodicity of weather data. B-spline
basis functions serve to carry out the P-splines approach proposed by Marx and
Eilers (1999). In the BlockBoost algorithm shrinkage is fixed by λ = 105. For the
evaluation of the various methods we consider 200 random splits of the data into
a training data set of size 25 and a test set of size 10. Performance is measured
by the prediction accuracy in the test sample, i.e. a measure as MSEy in the
previous section. Figure 8 summarizes the results in terms of the squared error
of prediction averaged over all test observations and random splits. By adding
and subtraction 2 estimated standard errors approximate confidence intervals for
the performance measure are created.

The winner is BlockBoost; it clearly outperforms PCR, PLS, P-splines and
elastic net. It is even competitive to the functional data approach from Ram-
say and Silverman (2005), who used the same data to illustrate their method.
Concerning prediction accuracy we cannot state that smoothing methods gener-
ally outperform other procedures - or the other way round. The neighborhood
selection mechanism of BlockBoost however seems to work quite well.
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Figure 9: Canadian weather data: Coefficient function estimated by BlockBoost
(solid line) together with pointwise 90% bootstrap (percentile) confidence bands
(dotted lines).

Evaluating the Variability of BlockBoost

Prediction accuracy of BlockBoost turned out to be competitive on the Canadian
weather data set. When real data is investigated, however, the analyst usually
needs some measure of variability of the estimated parameters for the data at
hand. Since for Boosting procedures in general reliable estimators of variances
have not been derived yet, we decided to give pointwise bootstrap confidence
bands. For actual computation the R package boot was used. Figure 9 shows
the result when the percentile method is chosen. The dotted lines are based on
2000 bootstrap samples of size 35, drawn with replacement from the given weather
data. Apparently only the "hump" on the right should be taken seriously, whereas
the small negative effect of high temperatures around day 160 may be dismissed.

4.2 Near-Infrared Spectroscopy

Near-infrared (NIR) spectroscopy is based on the absorbtion of electromagnetic
radiation at wavelengths in the near infrared region. In food analysis theoret-
ically the concentrations of constituents such as water or carbohydrate can be
determined using absorbtion spectroscopy. However, since the chemical informa-
tion is mostly obscured by changes in the spectra caused by physical properties,
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NIR spectroscopy requires so-called calibration against a reference method for
the constituent of interest. This calibration is usually done by linear regression
of the reference data on the spectral data, cf. Osborne (2000). Due to the func-
tional shape of the spectra (see Figure 1), deriving the calibration equation in
food analysis is a typical application of the regression problem investigated in
this article. Also Marx and Eilers (1999) use such a chemometric example to
illustrate their P-splines. We use data from Christensen et al. (2004), who ap-
plied spectroscopy to measure marzipan composition and compared a number of
infrared and near infrared set-ups and sampling techniques; data download from
http://www.models.kvl.dk/research/data/Marzipan. We look at the wave-
lengths region between 850 and 2050 nm and use NIR spectra measured with
fibre probe on NIRSystems 6500 in steps of 2 nm, for details see Christensen
et al. (2004). Absorbance is measured via the transformation log(1/R), with R
denoting the reflectance. Since traditional analytical procedures for determining
moisture and sugar content in marzipan are time-consuming and destructive to
the sample, cf. Christensen et al. (2004), it is quite attractive to alternatively
perform very simple and fast NIR spectroscopy, which in addition allows several
constituents to be measured concurrently. Unfortunately the NIR reflectance
spectrum is influenced by the particle size of the sample. Thus shifts are gen-
erated which are not related to the constituent of interest. Hence many spec-
troscopists prefer to use derivatives instead of raw spectra. The first derivative
for example, the slope of the spectrum, is calculated as the difference between
log(1/R) at two adjacent wavelengths, see Osborne (2000). Consequently for each
response (sugar / moisture content) we study two representations of the spectra:
the raw and the first-difference spectra, digitized by p measurement points with
p = 600 and p = 599 respectively.

As in the previous example we consider 200 random splits of the sample data
into two independent data sets, in the current case consisting of 22 training and
10 test observations respectively. We investigate the same methods as before
with tuning parameters chosen as described in subsection 3.2. Since in the cur-
rent chemometric example we cannot expect periodicity, in the case of FDA the
Fourier basis functions are replaced by B-splines. Smoothing the signals and the
regression function is done via 100 and 22 basis functions respectively. The latter
applies to P-splines, too. Our rationale is to use the number of basis functions
corresponding to the number of observations in the training data set, as without
penalty this would cause a perfect fit. Generalized ridge regression shows that
now much lower shrinkage is needed than in the previous example - especially in
case of the difference spectra. So in the BlockBoost algorithm we choose λ = 10−1

(sugar) / λ = 10−2 (moisture) and λ = 10−3 (sugar) / λ = 10−4 (moisture) for
raw and difference spectra respectively.

Again the measure of performance is the prediction in the test sample. Figure
10 and 11 show the performance for the original signal and the difference spectra.
For sugar as well as moisture the prediction accuracy of BlockBoost is quite
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Figure 10: Mean Squared Error of Prediction for the considered methods averaged
over all 200 random splits, +/− 2 (estimated) standard errors, minima marked
by dashed lines; raw and first-difference NIR spectra as predictors, sugar content
as response.

high - when compared to other methods. In three of four considered situations
BlockBoost is among the best performing procedures.

5 Concluding Remarks
We proposed a boosting technique for implicit feature extraction in signal regres-
sion. This procedure is mainly based on repeated (generalized) ridge regression
on groups - or blocks - of adjacent variables. So it is called blockwise boosting.
It turned out to be highly competitive in both simulation studies and real world
data evaluation. However, before running BlockBoost several tuning parameters
have to be fixed. Simulation studies showed that the value of the penalty pa-
rameter λ does not have to be chosen as accurate as possible. The procedure
is comparatively resistent to a modified amount of shrinkage. Stronger shrink-
age, resp. smoothing should be compensated by a higher number of boosting
iterations. But nevertheless it is necessary to have a rough idea about the right
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Figure 11: Mean Squared Error of Prediction for the considered methods averaged
over all 200 random splits, +/− 2 (estimated) standard errors, minima marked by
dashed lines; raw and first-difference NIR spectra as predictors, moisture content
as response.

amount of shrinkage. This information can e.g. be gathered by cross validation
of a generalized ridge regression without boosting and taking into account all
predictors at hand. Further work is to be done concerning the choice of k in the
BlockBoost algorithm. We proposed a simple strategy that worked quite well,
a desirable procedure however automatically determines the adequate k-value in
every boosting iteration. One possibility is comparing every k ∈ {1, 2, . . . , K}
with respect to a kind of AIC. But the computational effort is very high.

The procedure proposed here aims at finding relevant areas of the signal and
producing smooth parameter estimates on the found intervals. The smooth pa-
rameter estimates make the approach attractive for interpretation. We did not
dwell on methods like variable fusion (Land and Friedman, 1997) or the fused
lasso (Tibshirani et al., 2005), whose focus is on the estimation of piecewise con-
stant functions, which may be interesting in applications with some few peaks
and some constant parameters otherwise. Moreover, concerning the predictors,
for practical application of the fused lasso Tibshirani et al. use quite rough data
from mass spectroscopy and gene expression profiles - with good reason. As
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Land and Friedman - the inventors of fusion methodology - sum up, in situations
"where the predictor curves are (...) fairly smooth, simulations bear out that
variable fusion is (...) not superior to ridge regression and PLS". But rather
smooth curves are the type of predictor mainly investigated in the article.

Alternatively to the proposed BlockBoost interval selection may be realized
via expanding the coefficient function in basis functions with local support along
the lines of Ramsay and Silverman (2005) or Marx and Eilers (1999). After doing
so any variable selection technique can be employed on the basis coefficients,
maybe the lasso or boosting. The latter has been used for example by Krämer
(2006). But choosing the adequate number and placing of basis functions is a
complex task, see for example Eilers and Marx (1996). In the given situation the
placing of basis functions predetermines to some extent which intervals can be
selected at all. So the proposed BlockBoost offers higher flexibility with respect
to the areas that can be selected. Furthermore, when for example the coefficient
curve is represented by B-Splines (of degree 2 or 3) and the lasso is used for
basis coefficient selection, the estimated function often has a camel or dromedary
like shape, resulting from the shape of the B-Splines. Also here the proposed
technique is more flexible.

Although the presented BlockBoost algorithm is constructed for regression
problems, the principal procedure can be used for classification as well. One
possibility for handling a two class response (usually 0/1 coded) is adapting the
LogitBoost algorithm presented by Friedman et al. (2000) and for example used
by Dettling and Bühlmann (2003) in the context of gene expression data. In
every boosting iteration LogitBoost creates a real valued working response, which
is to be fitted by an (arbitrary) regression function. When using the proposed
ridge type estimation based on variable blocks one obtains a version of blockwise
boosting for generalized problems.
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