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Abstract

Ordered categorial predictors are a common case in regression modeling. In
contrast to the case of ordinal response variables, ordinal predictors have been
largely neglected in the literature. In this article penalized regression techniques
are proposed. Based on dummy coding two types of penalization are explicitly
developed; the first imposes a difference penalty, the second is a ridge type refit-
ting procedure. A Bayesian motivation as well as alternative ways of derivation
are provided. Simulation studies and real world data serve for illustration and to
compare the approach to methods often seen in practice, namely linear regression
on the group labels and pure dummy coding. The proposed regression techniques
turn out to be highly competitive. On the basis of GLMs the concept is gener-
alized to the case of non-normal outcomes by performing penalized likelihood
estimation.

Keywords: Bayesian Methodology, Classical Linear Model, Dummy Coding,
Generalized Linear Models, Generalized Ridge Regression, Ordinal Predictors,
Penalized Likelihood Estimation

1 Introduction
Categorial variables that have more than two categories are often measured on
ordinal scale level, so that the events described by the category numbers or class
labels 1, . . . , K can be considered as ordered but not as equally-spaced. Follow-
ing Anderson (1984) one may distinguish between two major types of ordinal
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categorial variables, "grouped continuous variables" and "assessed ordered cate-
gorial variables". The first type is a mere categorized version of an underlying
continuous variable, which in principle may be observed itself, e.g. if age or in-
come are only given in categories. A variable of the second type arises when an
assessor processes an indeterminate amount of information before providing his
judgement on the grade of the ordered categorial variable, cf. Anderson (1984).
In both cases, however, it should be kept in mind that only the ordering is mean-
ingful.

The case of ordinal response variables has been well investigated. Starting
with McCullagh’s (1980) seminal paper various modeling approaches have been
suggested, see for example Armstrong and Sloan (1989), Peterson and Harrell
(1990), Cox (1995) for frequentistic approaches, or Albert and Chib (2001) for
a Bayesian modeling approach. A more recent overview on ordered categorical
response models has been given by Liu and Agresti (2005). Less work has been
done concerning ordinal predictors, although ordinal predictors are often found in
regression modeling. In social sciences where attitudes are measured in categories
as well as in biostatistics, for example in dose-responses analyses, independent
variables with discrete ordered categories are quite common. Especially for the
latter case Walter et al. (1987) developed a coding scheme for ordinal predictors.
For the K (ordered) levels of the independent variable K − 1 dummy variables
which describe the "between-strata differences" are defined. As Walter et al.
point out in the case where all dummies are used it is always possible to "convert"
from one coding scheme to another, for example to the well known dummy coding
with reference category. So both coding schemes share the feature that they do
not explicitly use the predictor’s ordinal structure in the estimation procedure.
Of course the Walter et al. scheme may offer better parameter interpretation, if
e.g. "the objective is to identify contrasts in the dependent (...) variable between
successive levels of the independent variable". Nevertheless by using the ordinal
scale level only for coefficient interpretation the method still faces the problem of
overfitting and non-existence of estimates, in particular if the predictor has many
categories and all dummy variables are taken into account.

In order to avoid the problems linked to dummy coding many researches pre-
fer treating ordinal variables as metric ones. Applying methods for continuous
variables to ordinal ones is particularly seen in social sciences, cf. Winship and
Mare (1984). Consequently, the discussion if methods for interval-level variables
in general can be used for ordinal variables as well has a long tradition. For ex-
ample Labowitz (1970) supports doing so, whereas Mayer (1970, 1971) disagrees.

The problem with using continuous regressor methods is that scores have to be
assigned to the categories of the predictor. If the categories represent subjective
judgements like ’strong agreement’, ’slight agreement’, . . . ’strong disagreement‘’
the assigned scores are typically artificial. Interpretation depends on the assigned
scores which are to a certain extent arbitrary and different sets of scores usually
yield different effect strengths. One may advocate the use of scores if the ordinal
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scale of the factor is due to an underlying continuous variable. When the intervals
on which the categories are built are known, one might build mid-point scores.
But even that approach has its difficulties when the upper bound is not known.
If for example income is given in intervals it is hard to know what values hide
in the highest (unlimited) interval. Then mid-point scales are a mere guess. In
addition, the score of the highest category is at the boundary of the predictor
space and therefore tends to be highly influential.

In the present paper we suggest a simple procedure to incorporate the or-
dinal scale level and obtain stable estimates without using assigned scores. It
is proposed to use penalized estimates where the penalty explicitly uses the or-
dering of categories. The procedure can be described as a penalized regression
technique, but we give a Bayesian motivation as well. Similar procedures have
presented before. For the case of ordered predictors (as for example in signal
regression) Land and Friedman (1997) introduced a lasso type penalty on differ-
ences of adjacent regression coefficients. The penalty typically yields a piecewise
constant coefficient curve. When this so-called "variable fusion" is applied to
dummy coded ordinal predictors the result is variable fusion, i.e. grouping of
some classes. The use of the fused lasso (Tibshirani et al., 2005) would have a
similar effect. Our goal is different, we want to conserve the given class structure.
The objective of the paper is to demonstrate the usefulness of simple (quadratic)
penalization techniques for ordered categorial covariates. We will start with the
classical regression problem with a metric normally distributed response (Section
2) and consider the extension to generalized linear models in Section 6.

2 Penalized Regression for Ordinal Predictors

2.1 Coefficient Smoothing

Let the one-dimensional predictor x be ordinal with ordered categories 1, . . . , K.
For the relationship between x and a normal response y we assume the classical
linear model

y = α + β1x1 + . . . + βKxK + ε, (1)

with ε ∼ N(0, σ2) and x1, . . . , xK denoting dummy variables for the categories of
x. The (0/1) dummy variables are given by

xk =

{
1 x = k
0 otherwise .

For means of identifiability, parameters have to be constrained, for example by
specifying a reference category. Let k = 1 be chosen as the reference category, so
that β1 = 0. For simplicity in we preliminary assume α = 0, i.e. the mean in the
reference category is assumed to be zero. But an intercept or an α that specifies
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the effect of some other (metric) covariates z, in terms of α = α(z) = zT α, can
be easily incorporated into the proposed concept.

Rather than estimating the parameters by simple maximum likelihood meth-
ods we propose to penalize differences between coefficients of adjacent categories
in the estimation procedure. The rationale behind is as follows: the response y
is assumed to change slowly between two adjacent categories of the independent
variable. In other words, we try to avoid high jumps and prefer a smoother co-
efficient vector. To be more concise, let the linear regression model be given in
matrix notation by

y = Xβ + ε, (2)

where X denotes the N × (K − 1) design matrix with full rank K − 1, yT =
(y1, . . . , yN) is the response vector and εT = (ε1, . . . , εN) is the noise vector with
independent normally distributed components εi ∼ N(0, σ2), i = 1, . . . , N . The
penalized log-likelihood that is proposed is given by

lp(β) = − 1

2σ2
(y −Xβ)T (y −Xβ)− ψ

2
J(β), (3)

with the penalty term given by J(β) =
∑K

j=2(βj − βj−1)
2. In matrix notation it

has the form
J(β) = βT UT Uβ = βT Ωβ,

with

U =




1 0 · · · · · · 0

−1 1
. . . ...

0 −1 1
. . . ...

... . . . . . . . . . 0
0 · · · 0 −1 1




(4)

and Ω = UT U . Maximization of (3) yields the generalized ridge estimator

β̂∗ = (XT X + λΩ)−1XT y, (5)

with penalty matrix Ω and tuning parameter λ = ψσ2.
Since dummy coding is used, the vector XT y just contains the class-wise

sums of the response values, i.e. XT y = (n2ȳ2, . . . , nK ȳK)T , with ȳj denoting the
(observed) mean of y in class j and nj the number of observations in class j.
Consequently every coefficient β̂j is a shrunken weighted average of ȳ2, . . . , ȳK .
For illustration let us consider a simple example with K = 4 and a balanced
design, i.e. nj = n ∀j. Then one has

(XT X + λΩ) =




n + 2λ −λ 0
−λ n + 2λ −λ
0 −λ n + λ


 ,
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with inverse

(XT X+λΩ)−1 = c−1




(n + 2λ)(n + λ)− λ2 λ(n + λ) λ2

λ(n + λ) (n + 2λ)(n + λ) λ(n + 2λ)
λ2 λ(n + 2λ) (n + 2λ)2 − λ2




and constant c = n3 + 5n2λ2 + 6nλ2 + λ3. Shrinkage means that every row-sum
of (XT X +λΩ)−1 is less than c/n for all λ > 0. In the given example the explicit
forms of the parameter estimates β̂j, j = 2, 3, 4, are derived as

cβ̂2 = nλ2(ȳ2 + ȳ3 + ȳ4) + n2(n + 3λ)ȳ2 + n2λ(ȳ3 + 0),

cβ̂3 = nλ2(ȳ2 + 2ȳ3 + 2ȳ4) + n2(n + 3λ)ȳ3 + n2λ(ȳ2 + ȳ4),

cβ̂4 = nλ2(ȳ2 + 2ȳ3 + 3ȳ4) + n2(n + 3λ)ȳ4 + n2λ(ȳ3 + ȳ4).

The first term is a (weighted) average of the observed class-wise means with lower
weight for already passed classes, the second term is the observed mean in the
corresponding class and the last term is the mean of the neighboring classes’
means. Since the mean in the reference category is assumed to be zero, this value
is inserted in the first line. A fifth class does not exist, so ȳ5 is replaced by ȳ4. But
since explicit forms as shown above become unmanageable when K is increased,
matrix notation is preferred in the following.

2.2 Bayesian Motivation

To derive a prior distribution for the vector β = (β2, . . . , βK)T we assume that
the coefficients β1, . . . , βK are generated by a short and very simple random walk
with properties as follows:

• The differences δk = βk+1 − βk are stationary and normal: δk ∼ N(0, τ 2)
for all k ∈ N and k ≤ K − 1.

• The differences βk2 − βk1 , . . . , βkn − βkn−1 are independent for all 1 ≤ k1 <
k2 < . . . < kn ≤ K, n ≥ 3, kr ∈ N.

• β1 = 0.

The parameter vector β = (β2, . . . , βK)T is multivariate normally distributed, i.e.
β ∼ N(0, τ 2Γ) with

Γ =




1 1 1 · · · 1
1 2 2 · · · 2
1 2 3 · · · 3
...

...
...

...
1 2 3 · · · K − 1




. (6)

5



Let us now consider the classical linear normal model (2) from a Bayesian
perspective. Assuming that N(ν, τ 2Γ) is the prior π(β) one obtains the posterior
density

π(β|y) = c(y)f(y|β)π(β) = c̃(y)h(β|y),

with c(y) and c̃(y) denoting normalizing constants and the (not normalized) pos-
terior density given by

h(β|y) = exp

(
−1

2
(σ−2(y −Xβ)T (y −Xβ) + τ−2(β − ν)T Γ−1(β − ν))

)
.

The pure Bayes point estimate β̂B of β is given by the posterior mode, i.e. β̂B =
argmaxβ{π(β|y)} = argmaxβ{h(β|y)}, which can be found by minimizing the
function

g(β) = (y −Xβ)T (y −Xβ) +
σ2

τ 2
(β − ν)T Γ−1(β − ν). (7)

Simple derivation yields

β̂B =

(
XT X +

σ2

τ 2
Γ−1

)−1 (
XT y +

σ2

τ 2
Γ−1ν

)
. (8)

If ν = 0 the Bayes estimate equals the generalized ridge estimator β̂ = (XT X +
λΛ)−1XT y with penalty matrix Λ = Γ−1 and smoothing parameter λ = σ2/τ 2.
Alternatively Λ = τ−2Γ−1 and λ = σ2 may be set. Therefore every generalized
ridge regression with regular penalty matrix Λ can be interpreted as Bayesian
approach with normal sample and prior distribution and (up to a constant) prior
covariance matrix Λ−1. In the special case of N(0, τ 2) iid coefficients the ordinary
ridge estimator is obtained with λ equal to the ratio σ2/τ 2 of sample and prior
variance, see e.g. Hastie et al. (2001). As equation (7) shows, in general β̂B

can be seen as penalized least squares estimation with the penalty given by the
Mahalanobis distance to the prior mean ν.

It is easily derived that Bayes estimators are strongly linked to coefficient
smoothing as considered in the previous subsection. The inverse of Γ from (6) is

Γ−1 =




2 −1 0 · · · 0

−1 2 −1
. . . ...

0
. . . . . . . . . 0

... . . . −1 2 −1
0 · · · 0 −1 1




. (9)

Simple matrix multiplication shows Γ−1 = UT U , with U from (4). When the
prior mean is set to zero, the Bayes estimate is equivalent to the generalized
ridge estimate β̂∗ = (XT X + λΩ)−1XT y, with Ω = Γ−1 = UT U .
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2.3 Ridge Reroughing

Rather than focusing on the penalty matrix Ω (or Γ−1) we consider the general
Bayes estimate (8) again and alternatively concentrate on the prior mean ν.
By focusing on ν we derive an alternative estimate that is linked to scoring
approaches. Especially when the ordinal predictor has many categories, it is
often seen that analysts prefer treating the categorial variable as a metric one
and perform simple linear regression, e.g. on the class labels. Strictly speaking
this procedure is not correct, since it ignores the lower scale level of an ordinal
variable, but it can be seen as a first step - when the resulting estimate is seen
as a kind of prior mean ν. Therefor the class labels are tentatively treated as
scores, i.e. realizations of an interval scaled predictor. With slope θ̂ from the
corresponding linear model we can set

ν̂ = (1, 2, . . . , K − 1)T θ̂ = Rθ̂.

For estimating β one may use the general Bayes estimate (8). For simplicity we
assume independence concerning the different βj and set Ω = Γ−1 = I, with I
denoting the identity matrix, and λ = σ2/τ 2. With G denoting the design matrix
for estimating θ and replacing ν by ν̂ one obtains the estimate

β̂∗∗ = (XT X + λI)−1(XT + λR(GT G)−1GT )y. (10)

To derive a prior for ν the Bayes estimate β̂∗∗ uses the simplest scoring scheme
imaginable, namely the class labels. If α = 0 is assumed, G is just a vector of
length N with Gi = k − 1, if the ith observation is from class k.

It should be noted that the estimate β̂∗∗ can also be derived without any
knowledge of the Bayesian approach. Suppose we have obtained ν̂ via linear
modeling with the class labels representing the independent variable, i.e. ν̂ = Rθ̂.
When the response is predicted only using the rigorous linear model the observed
errors are y−Xν̂. Now we can try to improve our model by fitting these residuals.
Of course this approach would fail if we still assumed the same linear model as
before. So one gives up the severe linear restrictions, e.g. by using dummy
coding. Since overfitting should be avoided, ridge regression may be chosen. The
resulting new coefficient vector is

γ̂ = (XT X + λI)−1XT (y −Xν̂).

Since we have just fitted residuals we can create an "updated" coefficient vector
for the original model by adding ν̂ and γ̂ obtaining

ν̂ + γ̂ = ν̂ + (XT X + λI)−1XT (y −Xν̂)

= ν̂ + (XT X + λI)−1XT y − (XT X + λI)−1XT Xν̂

− (XT X + λI)−1λIν̂ + (XT X + λI)−1λIν̂

= (XT X + λI)−1(XT y + λIν̂)

= β̂∗∗.
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Thus the Bayes estimate β̂∗∗ is equivalent to a two-step estimate that uses spe-
cific assumptions. Fitting of residuals has already been proposed by Tukey (1977)
under the name "reroughing", or "twicing" as a special case of reroughing. There-
fore we we refer to β̂∗∗ as "ridge reroughing". Today Tukey’s reroughing, resp.
twicing is often seen as a predecessor of boosting approaches, see for example
Schapire (1990), Freund (1995), Freund and Schapire (1996), or Bühlmann and
Yu (2003).

2.4 Selection of Smoothing Parameter λ

One way to chose an appropriate penalty parameter λ is to employ a corrected
version of the Akaike information criterion (AIC) as proposed by Hurvich et al.
(1998). The corrected AIC is given by

AICc = log(σ̂2) +
1 + tr(H)/N

1− (tr(H) + 2)/N
= log(σ̂2) + 1 +

2(tr(H) + 1)

N − tr(H)− 2
, (11)

with H denoting the hat matrix which maps the response vector y into the space
of fitted values, i.e. ŷ = Xβ̂ = Hy. The discrepancy between data y and fit ŷ is
measured by

σ̂2 =
1

N

N∑
i=1

(yi − ŷi)
2 = yT (I −H)T (I −H)y.

The trace of H can be interpreted as the effective number of parameters used in
the smoothing fit, cf. Hurvich et al. (1998) or Hastie et al. (2001). From (5) and
(10) we obtain the hat matrix corresponding to β̂∗ and β̂∗∗ respectively. For the
coefficient smoothing approach one has

H∗ = X(XT X + λΩ)−1XT ,

with Ω = UT U , and for ridge reroughing

H∗∗ = X(XT X + λI)−1(XT + λR(GT G)−1GT )

is obtained. For the latter hat matrix an alternative form is given by

H∗∗ = H1 + H2(I −H1),

with
H1 = G(GT G)−1GT , H2 = X(XT X + λI)−1XT .

This results from the procedure’s interpretation as "fitting of the residuals".
Smoothing parameters may be obtained by minimizing the AICc on a grid of
possible λ-values.
It should be noted that from a Bayesian perspective the estimate λ̂ is an estimate
of the ratio σ2/τ 2. Therefore when λ̂ is plugged in, the coefficient vectors β̂∗ and
β̂∗∗ become empirical Bayes estimators.
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Figure 1: Squared Error for 100 simulations with σ2 = 4.

3 Simulation Studies

3.1 Imitating the Bayesian Perspective

For our first simulation scenario we assume one ordinal independent variable with
K categories and a balanced design with N = 10K observations, so that in each
category one has 10 observations. Let the coefficient vector β be created by a
random walk as described in Section 2.2; more precisely we set

β1 = 0; βj = βj−1 + bj, bj ∼ N(0, 1) (iid), j = 2, . . . , K.

Note that in this setting the coefficient vector changes from one simulation to
another, whereas the design matrix remains fixed. For the design vectors xi we
use dummy coding and create the corresponding response yi = xT

i β + εi, εi ∼
N(0, σ2), i = 1, . . . , N. The penalty parameters are determined by minimizing
the corrected AIC. Figure 1 shows the results in terms of the squared error

SE =
K∑

j=2

(β̂j − βj)
2 (12)

for K = 11, σ2 = 4 and 100 simulation runs; in case of the linear model 2
outliers are not shown. The distinct winner are the smooth dummy coefficients β̂∗,
followed by ridge reroughing. The first finding is not surprising, since the Bayes
estimator β̂∗ is the theoretically best estimate in the present situation. However,
λ has to be chosen, which seems to be done quite well by minimizing the corrected
AIC. The good results for ridge reroughing are somewhat unexpected. Although
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Figure 2: True coefficient vectors (left) and Squared Error for the considered
methods after 100 simulation runs with σ2 = 2.

the performance of the linear model is very bad, penalizing the distance to the
corresponding coefficients apparently improves the quality of dummy coding.

3.2 Fixed Coefficient Vectors

In the following we return to the frequentistic point of view and fix the true
coefficient vector β as shown in Figure 2 (left), but randomly generate a new
design matrix with N = 110 observations in every simulation run, that means for
every observation the class label is chosen at random. But data generation is not
completely at random, since we only use data sets with at least one observation
in each class. So the expected number of observations is 10 for each class. Figure
2 (right) shows the Squared Error for the methods on 100 simulation runs with
σ2 = 2. We chose a slightly curved coefficient vector (top) and one that is
obviously nonlinear (bottom). As before the smooth dummy coefficients perform
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best; ridge reroughing is worse but still distinctly better than pure dummy coding.
It is seen that even when the curve is approximately linear, the performance of
the linear model is rather bad. Only simple dummy coding performs worse on
average. Although it represents the true model, due to the high variability the
number of free parameters to be estimated is too large for the estimates to be
competitive.

4 Some Bias-Variance Calculations

4.1 Biased Estimation by Coefficient Smoothing

In this section we focus on the frequentistic approach and (theoretically) examine
the covariance matrix V (β̂∗) and the expectation E(β̂∗), resp. the bias of the
proposed estimator β̂∗. From definition (5) for smoothed dummy coefficients it
follows directly

E(β̂∗) = (XT X + λΩ)−1XT Xβ = β − λ(XT X + λΩ)−1Ωβ, (13)
V (β̂∗) = σ2(XT X + λΩ)−1XT X(XT X + λΩ)−1. (14)

So smoothed dummy coefficients are biased with

Bias(β̂∗) = λ(XT X + λΩ)−1Ωβ. (15)

As for the original, or standard ridge estimator from Hoerl and Kennard (1970)
the bias depends on the design, the true β-vector and the amount of shrinkage,
resp. smoothing. The covariance matrix additionally depends on the variance σ2

of course, but not on the true coefficients vector. The expected squared distance
E((β̂∗−β)T (β̂∗−β)) from the estimated to the true coefficient vector is the trace
of the MSE-matrix

M(β̂∗) = V (β̂∗) + Bias(β̂∗)Bias(β̂∗)T

= (XT X + λΩ)−1(σ2XT X + λ2ΩββT Ω)(XT X + λΩ)−1. (16)

This trace is sometimes also called (scalar) MSE. It can be computed by

MSE(β̂∗) = tr(V (β̂∗)) + Bias(β̂∗)T Bias(β̂∗).

Balanced Designs

For illustration we explicitly treat the case of a balanced design with n observa-
tions in each of K = 11 classes, but with restriction α = 0. Since now XT X = nI,
we have

MSE(β̂∗) = (σ2/n)tr((I + (λ/n)Ω)−2) + (λ/n)2βT Ω(I + (λ/n)Ω)−2Ωβ.
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Figure 3: Scalar MSE, variance and squared bias of smoothed dummy coefficients
as a function of λ/n for balanced designs with σ2/n = 0.2 and true β-vectors
from Figure 2 (the left panel corresponds to the first curve, the right panel to the
second curve); additionally the MSEs of standard ridge and a pure dummy model
are shown.

For σ2/n we choose 0.2. This value is equal to the ratio of variance and mean class
size in the second simulation setting in Section 3. The true coefficient vectors
considered there (see Figure 2) are used here as well. Figure 3 shows the resulting
MSE, the squared bias Bias(β̂∗)T Bias(β̂∗) and tr(V (β̂∗)) (denoted as variance)
as a function of λ/n. For comparison we also marked the MSE of the original
ridge estimator and the MSE of the unbiased pure dummy model. It is seen
again that the latter can be dramatically improved by the biased estimator β̂∗.
In contrast standard ridge regression is not very helpful, since it was developed for
non-orthogonal problems, i.e. for regression problems where the columns of the
design matrix are far away from being orthogonal. In the present case of dummy
coded categorial predictors, however, these columns are perfectly orthogonal.

4.2 Correction of the Standard Ridge Bias

From (10) it is seen that also the ridge reroughing estimator β̂∗∗ = Zλy is a linear
estimator, with Zλ = (XT X + λI)−1(XT + λR(GT G)−1GT ). So we have

E(β̂∗∗) = ZλXβ

= β − λAλβ + λAλR(GT G)−1GT Xβ, (17)
V (β̂∗∗) = σ2ZλZ

T
λ = σ2AλQλA

T
λ , (18)

with Aλ = (XT X+λI)−1 and Qλ = (XT +λR(GT G)−1GT )(XT +λR(GT G)−1GT )T .
It is seen that the bias −λAλβ of the standard ridge estimator is additively cor-
rected by the term λAλR(GT G)−1GT Xβ.
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Figure 4: Scalar MSE, variance and squared bias of ridge reroughing as a function
of λ/n for balanced designs with σ2/n = 0.2 and true β-vectors from Figure 2
(the left panel corresponds to the first curve, the right panel to the second curve);
additionally the MSEs of standard ridge and a pure dummy model are shown.

Balanced Designs

In case of a balanced design with n observations in each of K classes, and re-
striction α = 0, one has XT G = nR, GT G = nκ, with κ =

∑K−1
k=1 k2, and

consequently

Qλ = (XT + (λ/n)κ−1RGT )(XT + (λ/n)κ−1RGT )T

= nI + n(λ/n)2κ−1RRT + 2n(λ/n)κ−1RRT

= n(I + (λ/n)κ−1(λ/n + 2)RRT ).

With Aλ = n−1(I + (λ/n)I)−1:

Bias(β̂∗∗) = ((λ/n)−1 + 1)−1(κ−1RRT − I)β

So the (scalar) MSE(β̂∗∗) = tr(V (β̂∗∗))+Bias(β̂∗∗)T Bias(β̂∗∗) again only depends
on the true β and σ2/n, and can be plotted as a function of λ/n. This is done
in Figure 4 (with the same settings as in the previous subsection). As we see,
ridge reroughing improves the pure dummy model, but not to the same extent
as the smoothed coefficients. Especially if the true β is only slightly curved,
ridge reroughing works quite well. The limit for λ → ∞ is MSE(ν̂), the mean
squared error of the linear model. For a balanced design one has MSE(ν̂) =
(σ2/n)κ−1tr(RRT ) + ‖(κ−1RRT − I)β‖2

2. With the slightly curved β, and the
chosen σ2/n, MSE(ν̂) is only 1.622. So in this special case ridge reroughing can
be expected to outperform the pure dummy model for all λ > 0.
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Figure 5: Kernel density estimates for estimated λ-values for smooth dummy
coefficients (solid line) and ridge reroughing (dashed line), dotted grey lines mark
the respective theoretically optimal λ from Figure 3 and 4; curve 1 corresponds to
the first coefficient curve in Figure 2, curve 2 to the second one.

For very large values of λ/n the performance of penalized estimates is (often)
worse than for simple dummy coding (see Figure 3 and 4). So it should be in-
vestigated what λ-values are actually chosen in applications. When the theoretic
results from this and the previous subsection are compared to the simulations
with fixed coefficient vector and approximatively balanced design in Section 3, the
good performance of the AIC based tuning parameter determination procedure
is confirmed. The averaged squared errors are quite close to the corresponding
optimum MSEs in Figure 3 and 4. Only the narrow minimum in the right panel
of Figure 4 is a little bit harder to detect when a rough grid of λ-values is used.
For a specific investigation of the AIC based procedure we run a simulation that
is very similar to the second one in Section 3. We explicitly have a balanced de-
sign with n = 10 observations in each class now and a rather fine grid is used for
λ candidates. All other specifications are kept unchanged. The choice σ2 = 2 for
example means that the ratio σ2/n = 0.2 takes the same value as in the theoretic
illustration above (Figure 3 and 4). The simulation is run 200 times for each of
the two coefficient curves from Figure 2. The estimated λ-values are summarized
in Figure 5. It is seen from the kernel density estimate, that selected λ-values
tend to be close to the optimum marked by the dotted lines and are far away from
regions where bias becomes a problem (see Figure 3 and 4). The only exception
is reroughing when used for curve 1. In this case some large λ-values occur (not
shown). But as it is seen from the left panel of Figure 4 in this special case even
with λ → ∞ ridge reroughing is still distinctly superior to pure dummy coding.
So in this special situation even estimates of λ which are much higher than the
optimum are not really a problem.
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5 Applications to Real World Data
In general a constant should be included when real world data is investigated.
This can be done very easy by centering the data or by expanding the design
matrix by a (first) column consisting of ones and the penalty matrix by a (first)
column and (first) row consisting of zeros. Thus the constant is not penalized.
If one wants to penalize the constant, the penalty matrix has to be modified
accordingly. But we prefer not to penalize the constant. In Bayesian words, for
the constant we employ an improper constant prior.

5.1 The Relationship between Age and Income

It is often fonud that there is a dependence between age and income, often as-
sumed in terms of ’the older you are the more you earn’, and modeled by a simple
linear model. But before doing so you have to answer two questions. First, is the
relationship monotone at all? And if it is, secondly, is it really linear?
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Figure 6: Curves of the corrected AIC for smooth dummy coefficients (◦) and
ridge reroughing (+); age/income data.

If age is only available in the form of age groups, the independent variable
’age’ becomes ordinal. To answer the two questions mentioned above it may help
to treat categorized variables as they are - categorial. The data set investigated
here consists of n = 190 female scientists who are between 20 and 60 years old
and living in Germany. The grouping of age a is given by: (1) 20 < a ≤ 25, (2)
25 < a ≤ 30, (3) 30 < a ≤ 35, (4) 35 < a ≤ 40, (5) 40 < a ≤ 45, (6) 45 < a ≤ 50,
(7) 50 < a ≤ 55, (8) 55 < a ≤ 60. The data is taken from the Socio-Economic
Panel Study (SOEP), a representative longitudinal study of private households in
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Figure 7: Estimated mean income for all age groups employing a linear model
with group labels as predictors (solid line), penalized regression yielding smooth
dummy coefficients (◦ and solid lines), ridge reroughing (+ and dashed lines)
and a pure dummy model (∗); dotted lines with ◦ or + mark smooth, resp. ridge
reroughing coefficients when λ = 103 is chosen.

Germany. In Figure 6 curves of the corrected AIC are shown for a wide logarith-
mic grid of λ-values. For both smooth dummy coefficients and ridge reroughing
the criterion is minimized by λ = 10. In Figure 7 the corresponding estimated
mean income for all age groups is given. For comparison we also give estimates
for a linear model on the group labels, a pure dummy model, as well as estimates
when the extreme value λ = 103 is set and differences are penalized, respectively
ridge reroughing is applied. If differences between coefficients of adjacent groups
are penalized, the estimates are shrunken away from the stars and towards a
constant. With increasing penalty parameter λ estimates of adjacent groups are
more and more alike, as seen from the dotted ◦ curve. Ridge reroughing instead
shrinks estimates towards the estimates obtained by simple linear regression on
the group labels (see the + curves). Since the age groups’ midpoints are equally
spaced, treating the group labels as independent variable is equivalent to a re-
gression on the one-dimensional predictor ’age’ composed of the midpoints of
corresponding age groups. Procedures like that are often seen when the ordinal
predictor may be characterized as grouped continuous variable.

Comparisons between methods with respect to prediction accuracy

When we look at the learning data only, of course pure dummy coding generally
shows better fit than linear regression on the group labels, since the latter method
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Figure 8: MSEP for the age/income data after 200 random splits into train-
ing (m = 90) and test (n = 100) data for the linear model, smoothed dummy
coefficients and ridge reroughing; errors are relative to pure dummy coding.

just means imposing some severe linear restrictions on the dummies’ coefficients.
With an adequately chosen penalty parameter - concerning prediction accuracy
- the proposed penalized regression approach should be somewhere between the
other two methods.

But just looking at the learning data when comparing different methods means
ignoring the problem of overfitting. So we create a training data set consisting of
m = 90 randomly chosen observations, the remaining n = 100 samples serve as
test set. To make sure that the pure dummy model can be fitted we restrict the
analysis to training samples which contain observations from every group. The
training data is used for simple linear regression with the group labels (wrongly)
treated as a metric predictor, the proposed penalized regression techniques (in-
cluding tuning parameter estimation by minimizing the corrected AIC) and a
linear model based on pure dummy coding of the categorial predictor, i.e. ignor-
ing its ordinal structure. Now each of these models can be used to predict the
response in the test set. By comparing these predictions ŷi to the true values yi,
i = 1, . . . , n, one gets an idea of the considered method’s true prediction accuracy.
The results can be summarized in terms of the Mean Squared Error of Prediction

MSEP =
1

n

n∑
i=1

(yi − ŷi)
2.

The procedure is repeated 200 times. Since pure dummy coding gives unbiased
estimates, we take this method as reference and examine relative errors. Figure 8
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Figure 9: Summary of angina data (left) and MSEP (relative to pure dummy
coding) after 200 random splits into training (m = 20) and test (n = 30) data
(right).

shows a graphical summary of the observed MSEP-values (relative to pure dummy
coding) for the linear model, smoothed dummy coefficients and ridge reroughing,
accumulated over all random splits. It is seen that smoothed dummy coefficients
and ridge reroughing yield lower MSEP-values than pure dummy coding in more
that 75% of all cases. T-tests would be highly significant with p-values less than
2.2× 10−16.

5.2 Dose Response Analysis

The second example considered here is a dose response study of an angina drug.
The data is taken fromWestfall et al. (1999), respectively the R packages multcomp
or mratios, see R Development Core Team (2007) for further information. The
independent variable is treatment, ordinally scaled with levels 0 to 4. The re-
sponse is metric: change from pretreatment as measured in minutes of pain-free
walking. The left panel of Figure 9 gives a graphical summary of the data at
hand. Except the last group the relationship seems to be almost linear. So the
linear model can be expected to perform best. Indeed, after splitting the data
into training (m = 20) and test set (n = 30), computing the MSEP and repeating
this procedure as described before, the linear model can be called a winner - but
together with ridge reroughing. This is shown in the right panel of Figure 9.
As before we consider MSEP-values relative to those obtained with pure dummy
coding. Apparently the linear model and ridge reroughing mostly outperformed
simple dummy coding. Obviously penalizing the distance to the linear model
worked quite well. Moreover our selection procedure to find the right penalty
parameter seems to be reliable. Finally the performance of a dummy model is
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even improved by smoothing coefficients via a difference penalty. Of course, great
differences between methods cannot be seen but small differences do exist.

6 Handling Non-Normal Responses

6.1 Estimation by Penalized Likelihood

In many applications the response y is not normally distributed, e.g. if y is
dichotomous. Le Cessie and van Houwelingen (1992) considered the special case
of ridge estimators in logistic regression. Such a logit model can be embedded in
the context of generalized linear models (McCullagh and Nelder, 1989). Here the
fundamental assumptions are as follows. Given the predictors xj, the response y
belongs to a simple exponential family. The mean µ of this distribution is linked
to the linear predictor η = α + β1x1 + . . . + βKxK by µ = h(η), respectively
η = g(µ), where h is a known one-to-one, sufficiently smooth response function,
and g is the link function, i.e. the inverse of h.

The concept of generalized linear models (GLMs) serves for a generalization
of the proposed penalized regression approach. The restriction β1 = 0 still holds
and for simplicity we assume at first α = 0; in the logit model, for example, this
means P (y = 1) = 0.5 for the reference category. But a not penalized constant
can be included in analogy to the previous section, i.e. just the upper left element
of the penalty matrix has to be set to zero.

The prior for β = (β2, . . . , βK)T is the (multivariate) normal distribution with
mean ν and variance/covariance matrix τ 2Ω−1. As before we have to maximize
the posterior density

π(β|y) = c(y)f(y|β)π(β),

or alternatively

log(π(β|y)) = log(c(y)) + log(f(y|β)) + log(π(β))

= c̃(y) + l(y; β)− 1

2
τ−2(β − ν)T Ω(β − ν),

with l(y; β) = log(f(y|β)) denoting the log-likelihood. That means, with λ = τ−2,
we have to maximize the penalized likelihood

lp(β) = l(y; β)− λ

2
(β − ν)T Ω(β − ν).

Derivatives yield

∂lp(β)

∂β
= s(β)− (λΩβ − λΩν) = s(β)− λΩβ + λΩν,

with s(β) = ∂l(y; β)/∂β denoting the score function. Now we use Fisher-Scoring,
i.e. the scoring step from the current estimate β̂(k) to β̂(k+1), k = 0, 1, 2, . . . , is
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given by

β̂(k+1) = β̂(k) + (F (β̂(k)) + λΩ)−1(s(β̂(k))− λΩβ + λΩν),

with F (β) = E(−∂s(β)/∂β) denoting the expected Fisher information matrix.
Score function and Fisher matrix are explicitly given (for example in Fahrmeir
and Tutz, 2001):

s(β) = XT D(β)Σ−1(β)[y − µ(β)], F (β) = XT W (β)X,

with y = (y1, . . . , yN)T , µ(β) = (µ1(β), . . . , µN(β))T , Σ(β) = diag(σ2
1, . . . , σ

2
N),

D(β) = diag(D1(β), . . . , DN(β)), W (β) = diag(w1(β), . . . , wN(β)), with Di(β) =
∂h(xT

i β)/∂η and wi(β) = D2
i (β)σ−2

i (β); σ−2
i (β) denotes the (fitted) variance of

observation i.

Choice of Penalty Parameter λ

In the case of non-normal outcomes a corrected version of the AIC is not available.
Hence we employ the traditional AIC given by

AIC = D + 2 · tr(H), (19)

where D is the deviance of model µ̂ = h(η̂). Another possibility would be using a
cross-validation criterion as done e.g. by Le Cessie and van Houwelingen (1992).
The deviance is defined by (see e.g. Fahrmeir and Tutz, 2001)

D = −2φ
N∑

i=1

(li(µ̂i)− li(yi)),

with l(yi) denoting the individual log-likelihood where µi is replaced by yi (the
maximum likelihood achievable). Moreover, one has to use the generalized hat
matrix. In case of smoothed dummy coefficients at convergence the estimate has
the form

β̂ = (XT W (β̂)X + λΩ)−1XT W (β̂)ỹ(β̂),

with "working observations"

ỹ(β) = Xβ + D−1(β)(y − µ(β)).

The estimate β̂ is a weighted generalized Ridge estimator of the linear problem

ỹ(β̂) = Xβ + ε,

The hat matrix corresponding to this model has the form

H = X(F (β̂) + λΩ)−1XT W (β̂).
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If ridge reroughing is performed we can only give an approximative version of
the generalized hat matrix. As in the normal response case we have the prior
mean ν̂ = Rθ̂, with θ̂ estimated by Fisher scoring when the class label is taken
as metric predictor; the corresponding design matrix is denoted by G. Now at
convergence one has

β̂ = (XT W (β̂)X + λI)−1XT W (β̂)ỹ(β̂) + (XT W (β̂)X + λI)−1λIν̂

= (XT W (β̂)X + λI)−1XT W (β̂)ỹ(β̂) + (XT W (β̂)X + λI)−1λIν̂

+ (XT W (β̂)X + λI)−1XT W (β̂)Xν̂ − (XT W (β̂)X + λI)−1XT W (β̂)Xν̂

= (XT W (β̂)X + λI)−1XT W (β̂)(ỹ(β̂)−Xν̂) + ν̂,

with the already introduced "working observations" ỹ(β) = Xβ + D−1(β)(y −
µ(β)). The estimated linear predictor is

Xβ̂ = X(XT W (β̂)X + λI)−1XT W (β̂)(ỹ(β̂)−Xν̂) + Xν̂.

The working observations ỹ(β̂) and ỹ(ν̂) = ỹ(θ̂) are just first-order Taylor ap-
proximations of g(y), i.e.

g(y) ≈ g(µ(β)) +
∂g(µ(β))

∂µ
(y − µ(β)) = Xβ + D−1(β)(y − µ(β)) = ỹ(β̂)

and

g(y) ≈ g(µ(ν)) +
∂g(µ(ν))

∂µ
(y − µ(ν)) = Xν + D−1(ν)(y − µ(ν)) = ỹ(ν̂).

Since Xν̂ = Gθ̂, we have

Xβ̂ ≈ H2(I −H1)ỹ(θ̂) + H1ỹ(θ̂),

with H1 = G(GT W (θ̂)G)−1GT W (θ̂) and H2 = X(XT W (β̂)X + λI)−1XT W (β̂).
Consequently the approximate generalized hat matrix is defined in analogy to
the normal response case by

H = H1 + H2(I −H1).

6.2 Simulations

In analogy to the normal response case we compare the proposed penalized re-
gression approaches to a (generalized) linear model that takes the group labels
as (metric) independent variable, and to a GLM based on pure dummy coding.
Probably the most famous GLM is the logit model, i.e. we assume

P (y = 1) =
exp(xT β)

1 + exp(xT β)
.
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Figure 10: Squared Error for the considered methods over 100 simulation runs.

As in the simulation study above the first scenario is as follows: The design is
balanced, whereas the coefficient vector β is generated by a random walk with
N(0, 0.52) distributed steps (see also Section 3). With the true probabilities
πi = exp(xT

i β)/(1 + exp(xT
i β)) the dichotomous response y is generated by the

corresponding binomial distribution, i.e. yi ∼ B(1, πi). Sometimes complete
data separation may happen. In these cases the pure dummy model and in a
very unlikely case even the linear model cannot be estimated. Here we set β̂ = 0,
ν̂ = 0 respectively. Figure 10 shows the squared error SE (as defined in (12)) for
the considered methods over 100 simulation runs; in case of pure dummy coding 4
outlier are not shown. Pure dummy coding is clearly outperformed by the other
three methods. Penalized regression for smoother coefficients as well as ridge
reroughing are better than the linear regression on the group labels.

As a second scenario we fix the true β as shown in Figure 2 (top) but shrink
by factor 0.5 and randomly generate the design matrix with N = 330 observa-
tions. The 0/1-coded response is generated as before. In case of complete data
separation we proceed as described above. Figure 11 (left) shows the results in
terms of the Squared Error. As in the normal response case we finally assume
an obviously nonlinear coefficient vector (see Figure 2, bottom). The results are
visualized in Figure 11 (right). Smoothed dummy coefficients distinctly outper-
form the other methods in both situations. Also ridge reroughing is clearly better
than dummy coding. Not surprisingly the linear model performs very bad in case
of a highly curved coefficient vector.

22



linear model smooth dummies ridge reroughing pure dummy

0
2

4
6

8

S
qu

ar
ed

 E
rr

or

linear model smooth dummies ridge reroughing pure dummy

0
1

2
3

4
5

S
qu

ar
ed

 E
rr

or
Figure 11: Squared Error for the considered methods over 100 simulation runs;
left: true coefficient vector as shown in Figure 2 (top) but shrunken by 0.5, right:
true coefficient vector as shown in Figure 2 (bottom).

6.3 Application to Real World Data

The data investigated here is a subsample from a study about coffee drinkers. The
(dichotomous) response is coffee brand, which is only separated into cheap coffee
from a German discounter and real branded products. The (ordinal) predictors
are monthly income (in a categorized version), social class and age group. A more
precise description can be found in the table below.

variable group description
age group 1 0 to 24 years

2 25 to 39 years
3 40 to 49 years
4 50 to 59 years
5 60 years or older

social class 1 lower class
2 lower middle class
3 medium middle class
4 upper middle class
5 upper class

monthly income 1 0 to 749 Euro
2 750 to 1249 Euro
3 1250 to 1749 Euro
4 1750 Euro or more

Figure 12 shows the marginal distributions of the independent variables in
the data set. The light-colored parts correspond to consumers of the considered
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Figure 12: Marginal distributions of the independent variables: (a) age group,
(b) social class and (c) monthly income in the data set; the light-colored parts
correspond to drinkers of cheap coffee.

cheap coffee brand. A kind of structure can be seen for example with respect to
the social class. As expected, consumers from the upper class rather buy brand
products - compared with middle and lower class. Further data analysis however
is done employing the proposed penalized regression approaches.

So far we assumed a single independent variable, but models with several
predictors are an obvious extension. Only the penalty matrix has to be modi-
fied. For smoothed coefficients now a block diagonal structure is given, because
differences between coefficients belonging to different predictors should not be
penalized. If ridge reroughing is performed, the penalty matrix stays the same
as before, but the prior mean results from a GLM (a logit model in the case
investigated here) with more than one independent variable. Since all categorial
predictors are measured on the same scale (because of dummy coding), a single
penalty parameter λ may be sufficient for a initial modeling approach.

Table 1 shows the estimated coefficients of corresponding dummy variables,
when logit modeling with group labels as predictors, the two proposed penalized
regression approaches, as well as logit modeling based on pure dummy coding is
performed. With λ = 10 the methods’ characteristics can be nicely illustrated. It
is seen that coefficients from ridge reroughing (column 3) are shrunken towards
the coefficients in the first column. The latter have a strict linear structure, i.e.
coefficients of dummy variables belonging to the same predictor specify a linear
function. This results from our choice to use the class labels (as independent
variables) to build this first reference model. Midpoints cannot be taken to create
a pseudo interval scaled predictor. Either there are no midpoints, because the
variable (social class in that case) is not a categorized version of a metric variable,
or some classes do not have sharp limits, e.g. age group number 5.
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linear model smooth dummies ridge RR pure dummy
intercept −0.36 −0.81 −0.35 −0.38
age group 2 −0.10 0.06 0.03 0.79

3 −0.20 −0.09 −0.40 −0.29
4 −0.30 0.05 −0.03 0.84
5 −0.40 −0.18 −0.50 −0.04

social class 2 −0.28 −0.14 −0.31 −0.92
3 −0.56 −0.31 −0.66 −1.39
4 −0.84 −0.39 −0.75 −1.28
5 −1.12 −0.56 −1.17 −1.96

income 2 0.02 −0.05 −0.07 −0.13
3 0.03 −0.02 0.08 0.29
4 0.05 −0.04 0.03 0.17

Table 1: Coefficients of corresponding dummy variables, estimated by the use of
a (generalized) linear model, i.e. logit model, with group labels as predictors, pe-
nalized regression (λ = 10) yielding smooth dummy coefficients, ridge reroughing
(λ = 10) and a logit model based on pure dummy coding.

Coefficient smoothing is done by penalizing differences between coefficients
of adjacent groups. That is why in column 2 coefficients between the horizontal
lines are quite similar - especially compared to the pure dummy model in the last
column.

To investigate the methods’ performance in terms of prediction accuracy, as
before, the data is randomly split into training (m = 100) and test (n = 100)
data. The training data is for penalty parameter determination and model fitting,
the test set for evaluation only. As a measure of prediction accuracy we take the
Sum of Squared Deviance Residuals (SSDR) on the test set. In the special case
of a logit model we have (with convention 0 · log(0) = 0)

SSDR =
n∑

i=1

(
yi log

(
yi

π̂i

)
+ (1− yi) log

(
1− yi

1− π̂i

))

=
∑

i:yi=1

log

(
1

π̂i

)
+

∑
i:yi=0

log

(
1

1− π̂i

)
.

Le Cessie and van Houwelingen (1992) call the summands, i.e. the squared de-
viance residuals, "minus log-likelihood errors".

Figure 13 (left) summarizes the results in terms of SSDR after 200 random
splits. Quite often the pure dummy model could not be fitted due to complete
data separation. (In the reported study this happened exactly in 64 of 200 re-
alizations.) Therefore the boxplot for the pure dummy model is only based on
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Figure 13: Performance (in terms of SSDR) of a (generalized) linear regression
on the group labels, penalized regression for smoother dummy coefficients, ridge
reroughing and a pure dummy model (for the latter only the 68% successful es-
timates have been used); left: observed values for all considered methods, right:
SSDR-values relative to linear model.

the cases when the corresponding maximum likelihood estimates did exist. The
results for ridge reroughing and the linear model are almost equal, but smooth-
ing dummy coefficients tends to yield smaller values of SSDR. The pure dummy
model instead performs clearly worst. So SSDR-values relative to pure dummy
coding would not provide more insight, with disregarding 32% of the results.
Hence the linear model is rather taken as reference (see Figure 13, right). The
equal performance of ridge reroughing and the linear model as well as the superior
performance of smooth dummies is confirmed.

7 Summary and Discussion
We propose a penalized regression technique to handle ordinal predictors. We
started from a classical linear model for normal outcomes and dummy coded one-
dimensional predictors. A Bayesian motivation was given but it was also illus-
trated how the estimation procedure can be derived without any use of Bayesian
methodology. Two major types of penalized regression were developed. The first
means penalizing the differences between coefficients of adjacent groups, the sec-
ond can be described as a kind of refitting or reroughing (Tukey, 1977) procedure.
Since hat matrices are given, both approaches can be seen as linear smoothers of
a normal response variable. Hence the penalty parameter could be determined
via a corrected version of the AIC as proposed by Hurvich et al. (1998). In a
second step the approach was generalized to non-normal outcomes by employ-
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ing the concept of generalized linear models (McCullagh and Nelder, 1989) and
penalized likelihood estimation.

Our approach was compared to ’standard procedures’, namely linear regres-
sion on the group labels and pure dummy coding. In both simulation studies
and real world data evaluation the proposed regression approaches turned out
to be competitive with respect to prediction accuracy. Except for the angina
data coefficient smoothing performed best in all settings. Ridge reroughing was
mostly worse than the penalized differences approach but always better than (or
at least as good as) the considered reference methods. So - compared to the
latter - performing ridge reroughing would have never been a mistake. An expla-
nation could be as follows: Due to its construction ridge reroughing is a (data
driven) tradeoff between the two generally seen extremes, a rigorous linear model
that (wrongly) assumes interval scaled data and the flexible dummy coding that
faces the problem of overfitting and ignores the labels’ ordering. By an auto-
matic penalty determination procedure, to a certain extend, the linear model is
corrected away from linearity, but dependent on the data at hand. Neverthe-
less in the vast majority of applications the model may be further improved by
coefficient smoothing.

Nonparametric regression on the group labels should have similar results as
the proposed technique, particularly in the simulation settings with fixed coef-
ficient curves. The procedure proposed in this article, however, can been inter-
preted as a nonparametric method. Nonparametric regression is usually done via
basis expansion of e.g. regression splines. But choosing the adequate number and
placing of basis functions, resp. knots is a complex task. A common procedure is
to use a relative large number of equally spaced knots and a penalty on the basis
coefficients, see for example Eilers and Marx (1996). Since an ordinal categorial
predictor can only take some discrete values, the (estimated) regression function
only needs to be defined on these values and dummy coding can be seen as a spe-
cial, but somewhat natural and most flexible basis expansion of the underlying
regression function.
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