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Introduction 

The l i g h t - h a r v e s t i n g complexes of blue-green and red algae, 

c a l l e d phycobilisomes, are highly organized assemblies of the 

b i l i p r o t e i n s allophycocyanin (APC) and phycocyanin (PC), 

often containing a l s o phycoerythrin (PE) or phycoerythro-

cyanin (PEC) [ 1 , 2 ] . These b i l i p r o t e i n s c a r ry one or s e v e r a l 

t e t r a p y r r o l chromophores bound covalently to polypeptides. 

In case of PC, which i s discussed here, the monomeric unit 

c o n s i s t s of the α-polypeptide chain with one chromophore 

(A84) and the ß-chain with two phycoyanobilin chromophores 

attached to i t (B84 and B155) [ 3 , 4 ] . 

From X-ray work [5,6] on PC from two d i f f e r e n t organisms, 

the c r y s t a l s t r u c t u r e of the chromoprotein, the conforma­

t i o n s , d istances and the approximate r e l a t i v e o r i e n t a t i o n s 

of the chromophores have become known r e c e n t l y . Very s i m i l a r 

r e s u l t s have been obtained for a trimer (αβ)3 from Masti­

gocladus laminosus and a hexamer (aß)e from Agmenellum 

quadruplicatum, which i s composed of two t r i m e r i c u n i t s 

aggregated f a c e - t o - f a c e . For the understanding of the energy 

t r a n s f e r process within these u n i t s and i n the whole phyco-

Photosynthetic Light-Harvesting Systems 
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bilisome, three features deduced from t h i s a n a l y s i s are 

important. 

( i ) The chromophore arrangement e x h i b i t s a 3-fold symmetry 

around the c e n t r a l a x i s orthogonal to the plane of the 

t r i m e r i c u n i t . 

( i i ) The s h o r t e s t distance i s found between the 1A84 chromo­

phore of one monomeric unit and the 2B84 chromophore 

of the neighbouring monomer; i t i s only about 21 A 

center to center. 

( i i i ) A l l three chromophores adopt an extended geometry; they 

e x h i b i t hydrogen bonds to a conserved aspartate residue 

(A87, B87, B39, resp.) and are s u b j e c t to strong coulomb-

i c i n t e r a c t i o n with the net charges l o c a l i z e d on the 

surrounding amino a c i d s . 

I f the threefold symmetry e s t a b l i s h e d i n the c r y s t a l s t r u c t u r e 

i s a l s o present i n the native t r i m e r i c u n i t ( i . e . , there are 

only three types of non-equivalent chromophores), then theory 

p r e d i c t s that any measurement, which monitors the time course 

of the excited s t a t e population, should be f i t t a b l e by a sum 

of three exponentials provided that the evolution of the 

system can be described by a set of l i n e a r d i f f e r e n t i a l 

equations ( r a d i a t i v e and intramolecular r a d i a t i o n l e s s decay, 

energy t r a n s f e r by dipole-dipole i n t e r a c t i o n (Förster t r a n s ­

fe r ) ) . 

Because of the short distance between p a i r s of chromophores, 

l i k e 1A84 and 2B84, i t was concluded that the energy t r a n s f e r 

r a t e between these chromophores should be very high and/or the 

coupling so strong that Förster theory may not be a p p l i c a b l e 

anymore [ 7 ] . A l t e r n a t i v e l y the model of l o c a l i z e d e x c i t o n i c 

s t a t e s should then be used for the d e s c r i p t i o n of the energy 

t r a n s f e r k i n e t i c s (see f i g . 1 ) . Besides of the very f a s t 
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(and eventually unresolvable) i n t e r n a l conversion process, 

only two decay times should then be observed i n a picosecond 

time-resolved experiment: one r e l a t e d to the t r a n s f e r between 

the s-chromophore and the e x c i t o n i c a l l y coupled s t a t e of 

chromophores A84/B84 (devoted C
+

 or C~ i n f i g . l ) and 

intramolecular decay of the corresponding s t a t e ( C
+

) . Since 

the important f a c t o r s i n ex c i t o n i c coupling are the energy 

d i f f e r e n c e of the unperturbed s t a t e s and t h e i r i n t e r a c t i o n 

energy, a modification of one of the chromophores by a d i s t i n c t 

perturbation could r e s u l t i n an intermediate s i t u a t i o n between 

the two above described l i m i t i n g cases and therefore help to 

e l u c i d a t e the s i t u a t i o n i n PC-trimers. 

In a previous p u b l i c a t i o n [8] i t was shown that t i t r a t i o n of 

s o l u t i o n s of b i l i p r o t e i n s i n various s t a t e s of aggregation 

with the mercury s a l t p-chloromercurybenzenesulfonate (PCMS) 

incoherent coherent 

excitation transfer 

M F S C*\C" 

'SM MF 

C= α Ή * - ϋ ^ * 

C+= aM*+bF* 

Vc sp 

F i g . 1: L e f t : Förster type energy t r a n s f e r 
Right: E x c i t o n i c i n t e r a c t i o n between Μ and F 

chromophores 
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leads to a binding of t h i s compound to the free c y s t e i n B i l l , 

and concomitantly to a s e l e c t i v e change i n the absorption 

and c i r c u l a r dicroism spectra of the close-by chromophore 

B84. Resonance-enhanced CARS spectra (Coherent Anti-Stokes 

Raman Scattering) of such modified PC-trimers confirm the 

evidence for a change i n geometry of B84, which was deduced 

from the X-ray data [ 9 ] . I n t h i s c o n t r i b u t i o n the e f f e c t s of 

PCMS-binding on CARS spectra ( s t r u c t u r a l information) and 

excited s t a t e k i n e t i c s are compared. I t i s concluded that i n 

smaller aggregates (up to trimers) a microheterogeneity of 

the chromophore-protein arrangement e x i s t s , which produces a 

rather complex fluorescence decay p a t t e r n . 

Materials and Methods 

PC-trimers without l i n k e r peptides were prepared according to 

published procedures [ 1 0 ] . ß-subunits were i s o l a t e d by a 

modified f l a t - b e d gel e l e c t r o f o c u s i n g technique [ 1 1 ] . I n 

p a r t i c u l a r , care was taken to avoid oxidative bleaching of 

the chromophores by gassing with Argon and work under subdued 

l i g h t . The pigment i s present as a dimer ( ß 2 ) . 
Both types of samples were t i t r a t e d with PCMS i n approxi­

mately 1.1 f o l d excess with respect to the number of free 

c y s t e i n s to assure complete mo d i f i c a t i o n . 

The fluorescence decay curves were recorded by means of a 

Hamamatsu synchroscan streak camera using i n t e r f e r e n c e f i l t e r s 

for s p e c t r a l narrowing of the monitored emission. E x c i t a t i o n 

was performed under magic angle conditions at low average 

i n t e n s i t y ( *10 mW or 10
1 3

 photons pulse"
1

 cm
- 2

) by the output 

of a synchronously pumped mode-locked dye l a s e r (pulse 

r e p e t i t i o n rate 84 MHz). The decay curves were analysed by 

applying a least-squares f i t routine and assuming a 3-expo-
n e n t i a l decay law (More d e t a i l s are given i n references 12-

14) . 
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Resonance-enhanced Coherent Anti-Stokes Raman S c a t t e r i n g 

(CARS) was measured with an apparatus described i n d e t a i l i n 

re f e r e n c e s 15 and 16. Two eximer laser-pumped dye l a s e r s 

generate the s o - c a l l e d pump- and Stokes-beams, with wavelengths 

Xp ( f i x e d ) and ( v a r i a b l e ) , which are focused i n the sample 

under a small angle. Recording the i n t e n s i t y of the generated 

anti-Stokes r a d i a t i o n as a function of the wavenumber d i f f e -

rence ν ρ - V s y i e l d s a v i b r a t i o n a l spectrum. Since Λ
Ρ 

c o i n c i d e s with an e l e c t r o n i c t r a n s i t i o n (absorption band) of 

the chromophore, only the chromophore's v i b r a t i o n s are 

resonance-enhanced and, therefore, dominate the spectrum. 

0(K 

500 600 
λ (nm) 

500 600 
λ (nm) 

F i g . 2: L e f t : Absorption spectra of PC trimers before (a) and 
a f t e r t i t r a t i o n with PCMS ( b ) . Difference 
spectra recorded 30 ( c ) , 60 (d) and 100 min. 
(e, f i n a l absorption) a f t e r PCMS ad d i t i o n . 

Right: Absorption spectrum of ß-subunit (a) and f i n a l 
d i f f e r e n c e spectrum a f t e r PCMS t i t r a t i o n ( b ) . 
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Results and Disc u s s i o n 

In f i g u r e 2, the e f f e c t of PCMS t i t r a t i o n (binding) on the 

absorption spectra of ß-subunits (present as dimers ß 2 ) and 

t r i m e r i c PC are shown . I n both cases the absorbance at the 

long-wavelength s i d e of the absorption maximum (λ m a χ = 
604 nm and 616 nm, resp.) i s reduced by about 10 % and there 

i s a concomitant i n c r e a s e i n the long wavelength slope of t h i s 

band (wavelength of maximum absorbance inc r e a s e i s * 655 nm). 

Figure 3 d i s p l a y s the CARS spectra recorded for the four 

samples i n the f i n g e r p r i n t region. At f i r s t glance i t i s 

already apparent that the band centered at 1247 cm
-1

 i n 

native PC-trimers disappears upon addition of PCMS, whereas 

the other bands remain e s s e n t i a l l y unchanged. The spectrum 

of β 2 , on the other hand, e x h i b i t s no change which i s beyond 

experimental u n c e r t a i n t y . Furthermore i t i s i n t e r e s t i n g to 

Vevenumbers Vovenumbers 

F i g . 3: Resonance-enhanced CARS spectra of 
PC trimers ( l e f t , t o p ) , PC ß-subunits ( l e f t , bottom), 
PC trimers t i t r a t e d with PCMS ( r i g h t , t o p ) , 
PC ß-subunits t i t r a t e d with PCMS ( r i g h t , bottom). 
Pumpwavelength 640 nm. 
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note that PC t r i m e r s , which have only one a d d i t i o n a l type of 

non-equivalent chromophore, show at l e a s t 3 more bands, namely 

at 1221, 1235 and 1259 cm-
1

 . The band which appears i n both 

s p e c t r a (1245 - 1252 cm-
1

) disappears upon PCMS binding i n the 

trimer spectrum. This f a c t can be taken as ad d i t i o n a l evidence 

th a t i t i s the chromophore B84, whose geometry i s changed pre­

dominantly upon PCMS binding. I n the double bond s t r e t c h i n g 

region {1550 - 1700 cm*
1

) no changes upon PCMS t i t r a t i o n have 

been observed for ß 2 and only s m a l l , but s i g n i f i c a n t ones are 

observed for PC trimers [16] . 

In order to demonstrate the large change induced i n the 

fluorescence decay of PC trimers upon PCMS binding, the 

decay curves recorded with 600 nm e x c i t a t i o n , but d i f f e r e n t 

observation wavelengths are shown i n f i g . 4 . Even without 

a n a l y s i s i t i s obvious that the wavelength, above which a 

delayed onset of the fluorescence i s observed, i s increased 

from about 620 nm to 670 nm. Furthermore, i t i s apparent 

that the contribution of the long-lived component i s much 

l a r g e r i n the native system and t h i s e f f e c t i s i n c r e a s i n g l y 

pronounced at shorter wavelengths. I n contr a s t to the pro­

nounced e f f e c t found i n PC-trimers, however, only a minor 

e f f e c t i s observed for ß 2 (small reduction i n the l i f e t i m e 

of the terminal emmitter). I n fig u r e s 5 to 8, the r e s u l t s 

( l i f e t i m e s deduced from a 3-exp. f i t ) are summarized for 

e a s i e r comparison. The following conclusions can be drawn: 

In case of dimers of the ß-subunit the l i f e t i m e of the long-

l i v e d component shows a s l i g h t reduction upon PCMS binding. 

I t s apparent value v a r i e s with observation wavelength, but 

appears to be f a i r l y independent of the e x c i t a t i o n wavelength. 

A s i m i l a r statement holds for the intermediate component. 

For the s h o r t - l i v e d component, the s i t u a t i o n i s quite d i f f e ­

r e n t . With in c r e a s i n g observation wavelength, the apparent 

decay time of the f a s t fluorescence i n c r e a s e s by more than a 

fa c t o r of 2 up to 60 ps. I n the red part of the emission, 
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the derived r i s e times are g e n e r a l l y speaking below 20 ps. 

I n the measurements cl o s e to the "turning" wavelength, an 

e x c i t a t i o n wavelength dependence i s apparent. 

Ö 4 0 0 8 0 0 1 2 0 0 1 6 0 0 
TIME [ps] 

I—I 

TIME [ps] 

Fig;. 4: Fluorescence decay of PC trimers and PC trimers 
t i t r a t e d with PCMS. 
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As one might already expect from the behaviour of the CARS 

sp e c t r a , the e f f e c t s of PCMS binding are s u b s t a n t i a l l y d i f ­

ferent i n case of t r i m e r s . I n the "native" system, e x c i t a t i o n 

around 600 nm seems to p r e f e r e n t i a l l y s e l e c t a chromophore-

protein moiety, which i s c h a r a c t e r i s e d by a very long f l u o r e s ­

cence decay time (1.8 n s ) . By PCMS-binding the formation of 

t h i s species must be prevented, because no such long time 

constant i s observed for any of the e x c i t a t i o n wavelengths 

(600, 580 or 620 nm). 

The apparent l i f e t i m e of the predominant terminal emitter i s 

reduced upon PCMS binding from about 0.9 to about 0.7 ns. 

S i m i l a r l y , the decay time of the intermediate component i s 

reduced from approx. 200 ps to approx. 100 ps. 

The l i f e t i m e of the s h o r t e s t - l i v e d component experiences an 

i n t e r e s t i n g PCMS-effect. I n the "native" system the decay times 

derived from the emission on the short-wavelength side of the 

fluorescence spectrum (20-30 ps) agree f a i r l y w e l l with the 

r i s e times found i n the emission on the long-wavelength 

s i d e . However, a s i t u a t i o n s i m i l a r to that described for $2 
i s found i n the PCMS treated t r i m e r s . There i s an inc r e a s e 

of the decay time with observation wavelength and a dependence 

of the r i s e time on e x c i t a t i o n wavelength. 

Because of the change i n sign of i t s amplitude with i n c r e a s i n g 

observation wavelength and the appearance of s i m i l a r values 

i n the decay of the ß-subunit ( i n monomeric ß-subunits prepared 

by a p p l i c a t i o n of detergent, a very s i m i l a r decay pattern as 

i n ß 2 i s observed) the 20 - 30 ps l i f e t i m e i s assigned to 

the decay of the exc i t e d s t a t e population of B155 ( i n agreement 

with other authors [18, 1 9 ] ) . 

The observed decrease i n the l i f e t i m e of the terminal emitters 

upon PCMS binding could a l s o be due to changes i n r a d i a t i o n l e s s 

decay r a t e s , caused by the reduced energy gap Δ Ε (Si -* S o ) . 

I t can not be taken as unambigous i n d i c a t i o n for strong 

coupling between 1A84 and 2B84 chromophores. 
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The intermediate l i f e t i m e has been r e l a t e d i n the past [20, 

21, 22] to the energy t r a n s f e r between 1A84 and 2B84 chromo-

phores. Our present r e s u l t s do not support t h i s i n t e r p r e t a t i o n 

f o r s e v e r a l reasons: 

( i ) A component e x h i b i t i n g a l i f e t i m e of around 200 ps was 

found not only i n the t r i m e r s , but also i n monomers and 

both oc-and ß-subunits. 

( i i ) This component was always detected as a decaying com­

ponent. Representing a t r a n s f e r time, i t s amplitude 

should change sign for long wavelength detection s i m i l a r 

to the one of the f a s t component or at l e a s t decrease 

i n amplitude at long wavelength d e t e c t i o n . 

( i i i ) The amplitude was always above 10%. I f i t were r e l a t e d 

to a t r a n s f e r between two chromophores with s i m i l a r 

absorption and emission c h a r a c t e r i s t i c s , the amplitude 

should be very small ( i t i s expected to be propor­

t i o n a l to the d i f f e r e n c e of the s p e c t r a l p r o p e r t i e s , 

i . e . emission or absorption i n case of pump-probe 

experiments). 

We therefore believe that the intermediate component i s con­

nected with a modified chromophore-protein arrangement. E.g., 

we have found a l i f e t i m e i n the 200 - 300 ps time domain i n 

chromopeptides, where i t i s suspected that the chromophore 

adopts a ZZE configuration. 

Before entering the d i s c u s s i o n about the coupling of the 

1A84 - 2B84 p a i r , i t should be mentioned th a t , when pump-probe 

experiments were performed on PC trimers [ 1 4 ] , a l l absorption 

recovery curves could be f i t very well by assuming a biexpo-

n e n t i a l decay law. The derived long l i f e t i m e v a r i e d around 

950 ps, the shorter one between 20 and 100 ps, depending on 

wavelength of pump and probe beam. 
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Combining the r e s u l t s of t r a n s i e n t absorption and fluorescence 

experiments we conclude that the energy t r a n s f e r time between 

the 1A84 - 2B84 p a i r i s on the order of or f a s t e r than the 

measured f a s t component. Then, the f a s t component i s a c t u a l l y 

a superposition d e s c r i b i n g two processes ( i . e . a s-to-f 

t r a n s f e r from B155 and a f - t o - f t r a n s f e r A84/B84 ) . Since 

the coupling strength between the A84 - B84 p a i r i s s e n s i t i v e 

to v a r i a t i o n s i n the e l e c t r o n i c p r o p e r t i e s of the chromophores, 

the pronounced wavelength dependence could be understood. 

That i s to say we r e l a t e the observed dependence of the 

short l i f e t i m e on e x c i t a t i o n and detection wavelength to the 

existence of a microheterogeneity i n chromophore-protein 

arrangement which e f f e c t s mainly the coupling between A84 

and B84 of neighbouring monomers. Model c a l c u l a t i o n s [23] 

have shown that small changes i n the p r o t e i n environment 

(e.g. formation of tautomeric forms of amino a c i d r e s i d u e s ) 

are s u f f i c i e n t to s h i f t the e x c i t a t i o n energy of one chromo­

phore by 10 nm. 

Preliminary experiments using the CARS technique suggest that 

the microheterogeneity postulated here for the smaller aggre­

gates i s reduced when l i n k e r peptides are present as i n phyco-

bilisomes [ 2 4 ] . Deviations from exact th r e e f o l d symmetry seem 

nevertheless to occur even i n the l a r g e r systems. Because of 

the o v e r a l l arrangement of the chromophores i n the l i g h t -

harvesting complexes a few "defects" should not reduce s i g n i ­

f i c a n t l y the e f f i c i e n c y of energy t r a n s f e r to the r e a c t i o n 

center. 
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