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Technischen Universitat Minchen, D-8046 Garching

M. Duerring, T. Schirmer, W. Bode
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Introduction

C-Phycocyanin (C-PC), one of the light-harvesting pigments of
cyanobacteria, is composed of two subunits, a and B. The
former contains one, the latter two open—-chain tetrayrrole
chromophores (phycocyanobilin), covalently bound to the
apoprotein via thioether linkages (see e.g. (1)).

The geometries and individual environments of the three
chromophores in the phycocyanin of Mastigocladus laminosus

have recently been determined by peptide sequencing (2) and
high resolution X-ray crystallography (3a.b.c). The crystal
structure displays a strong similiarity of geometries, so
that different spectroscopic, biochemical and functional
properties must be mainly attributed to the different protein
surroundings. Lately 1t has been possible to assign the
absorption bands (maxima) to the different phycocyanin
chromophores unambiguously in the following manner (4,5):

AB84: ﬁmax(abs)= 616 — 618 nm (4) ; 618 nm (5)
B84 : 622 — 624 nm (4) ; 624 — 632 nm (5)
B155: 598 — 600 nm (4) ; 594 - 598 nm (5)

582 - 598 nm (5,CD)

Photosynthetic Light-Harvesting Systems
© 1988 Walter de Gruyter & Co., Berlin - New York
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CD-spectroscopy 1is an important source of information to
elucidate the conformation of bilin chromophores and a sensi-
tive probe to noncovalent interactions. Therefore we studied
the effect of protein-chromophore and chromophore-chromophore
interactions on the chiroptic properties by means of quantum
mechanical model calculations, in order to improve our
knowledge about the contribution of these interactions to the
spectral and functional properties of the phycobilinproteins
and to get an estimate of the significance of these inter-—
actions.

Methods

Our calculations are based on the high-resolution X-ray data
for chromophore and protein (3c). Approximative wavefunctions
result from a w-electron model calculation (PPP) with
standard parametrisation and configuration interaction (CI)
of singly excited states (CI-basis: 6 occupied, 6 virtual
molecular orbitals; a larger Cl-basis leads to a 10 to 15 nm
redshift and small variations in the other calculated
properties). The rotatory strengths and f-values are calcu-
lated without further approximations (6a,6b,7).

The chromophores and their surroundings are treated as one
"supermolecule". Therefore, all interactions between perma-—
nent and transition charge distributions are included. Polar
and aromatic amino acid residues lying in a sphere with 10 A
radius around Cl0 were taken into account.

Hydrogen bonds are simulated by varvying the effective ioniza-
tion potential (IP') of the heteroatom since a withdrawal of
the hydrogen from a pyrrole nitrogen causes the 7-electrons
of this center to delocalize more easily. The parameter IP'
was changed accordingly from 19.6 eV (no bonding) to 16.5 eV
(strong bonding, IP' midway between the values for pyrrole
and pyridine nitrogen). The wvalues of all other parameters
are given elsewhere (6,7).
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Results and Discussion

Single Chromophores

Figures 1 and 2 show the variations of the absorption
wavelength and rotatory strength R of the red band of B84 and
B155, respectively, due to chromophore-protein interactions.
We restrict our discussion to this band because it is well
separated from other transitions and therefore easier to
analyse — theoretically as well as experimentally.

Case I: isolated chromophore. neglecting all side chains

Case II: I + propionic acid side chains attached to C8 + Cl12

Case III: II + aspartate residue near pyrrole rings B and C
(B87 and B39, respectively)

Case 1IV: III + residues of polar amino acids near the
propionic side chains

Case V: IV + all polar and aromatic residues in a sphere of
10 A around C10

Case VI: V + amide groups of the protein backbone within the

same sphere (in brackets)

The calculated transition energies for the isolated chromo-
phores (I) are around or below 550 nm. The origin for this
hypsochromic shift, when compared to prior calculations
(6a,6b,7), is the significant deviation from a planar
geometry. Coulombic interaction (static coupling in terms of
first order perturbation theory) effects the transition
energies (bathochromic shift) mainly because of the different
stabilization of the various molecular orbitals. The rotatory
strength is altered because of changed <coefficients in the
Cl-wavefunctions and the concomitant modified mixing of
electric and magnetic transition moments.

Inclusion of the carboxylate groups of the propionic acid
side chains (II) exhibits only small effects (the proton
tautomerism is fixed by the interaction with adjacent amino
acids (3c¢)).

Both chromophores (as well as the third, not displaved, at
A84) show a common principle of interaction with the protein.
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Figure 1: Calculated rotatory strength R of the longwave-
length absorption band of the B84 chromophore
(1 DBM=0.93 10"*® cgs; case I to VI: see text).
The shaded regions show the spectral variations
with the tautomerism of the arginine groups:
a) B80 as shown b) tautomeric form
1) B79 and B86 as shown 2) tautomeric form
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Figure 2: Calculated rotatory strength R of the longwave-
length absorption band of the B155 chromophore.
The shaded area reflects the bathochromic shift
calculated for an increasing of the hydrogen bond
strength to the B39 aspartate residue.
a) N23-H-tautomer b) N22-H-tautomer
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They arch around an aspartate residue (B87 and B39, resp.),
the nitrogens of pyrrole rings B and C (N22 and N23) being
within hydrogen bonding distance of one of the carboxylate
oxygens. This interaction dominates the wavelength adjustment
(I11).

For B84 (and A84) the assumption of a proton transfer to the
chromophore, leaving a negative aspartate counterion, is
necessary to shift the calculated electronic excitation
energy into the experimentally established region.

B155 deviates from this behaviour; a proton transfer would
result in a transition near 700 nm. Therefore we postulate
that B155 and aspartate B39 are coupled via a hydrogen bond.
Only a positive partial charge near N22 and N23 (OD2 treated
as —0O-H) yields a redshift. Depending on the methen tauto-
merism (N22-H or N23-H) and the hydrogen bond strength, the
visual absorption band varies in a wavelength region of about
50 nm width (shaded areas in figure 2).

Inclusion of the charged and aromatic residues around B84
(case IV: Arg B80; «case V: Arg B79, Arg B86, Ser B72, Tyr
B119, Thr B124, Thr B118) leads to further shifts. There is a
strong indication, that the arginine residues play a vital
role 1in tuning the transition energy. Small variations in
geometry (e.g. a rotation of the -C(NH,) (NH)-groups by 180°,
equivalent to an exchange of positive and negative partial
charges) result in a drastic variation of the transition
wavelength. Therefore, these residues may be responsible for
the heterogeneity observed in the fluorescence kinetics of
smaller aggregates (8).

Inclusion of the charges in the surrounding of B155 (case IV:
Thr B151, Asn B35; case V: VLys B36, Glu B33) induces also
additional redshifts of the first electronic transition. Only
for the N23-H-tautomer is the theoretical result, however, in
agreement with observation.

The interaction with the amide groups of the protein backbone
(case VI) produces only small corrections to the excited
state properties and can therefore be ignored in first
approximation studies.
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B—subunit

The results described so far predict that the CD-spectrum of
two, non-interacting chromophores in the B-subunit should
exhibit a large rotatory strength around 620 nm. This is,
however, in contradiction to the experimental finding (4)
(inactive longwavelength absorption band, attributed to B84).
Therefore, we extended our model calculations to take into
account both chromophores and their environments together.
The selected status of chromophore—protein interaction
according to approximation VI 1is marked in figures 1 and 2
for both chromophores. It vyields transition energies in the
correct wavelength region and also the required energy
spacing for B84 and B155. Figure 3 shows the thereby obtained
theoretical CD-spectrum of the B-subunit.

1DBM

ees 00000 cscscce

— o axn ¢ ame

(. | ]
|

[ T 1 T l | 1
580 590 600 610 X\/nm

Figure 3: Calculated visible CD-spectrum of individual
chromophores (B84 ssssesss | B155 —0 -t —a—u )

and the B-subunit with excitonic coupling
included (—m — ).

Due to excitonic coupling, the shorter wavelength transition
(y*=0.9 y"(B155) + 0.1 y (BB4)) gains rotatory strength,
which is lost in the corresponding longwavelength transition.
This final result fits the experimentally found CD-bandshape
very well and 1s a clear indication, that the interaction
with charged residues controls also the chromophore-chromo-—
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phore coupling within the phycobiliproteins. It is further-
more a warning that the properties of isolated chromophores
may not be extracted from measurements on biological systems
with interacting chromophores.
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