BBABIO 43493

Modified bacterial reaction centers. 4. The borohydride treatment reinvestigated: comparison with selective exchange experiments at binding sites $B_{A,B}$ and $H_{A,B}$

A. Struck, A. Müller and H. Scheer

Botanisches Institut der Universität, München (Germany)

(Received 27 December 1990) (Revised manuscript received 6 June 1991)

Key words: Photosynthesis; Reaction center; Pigment exchange; Pigment-protein interaction; Borohydride modification; Bacteriochlorophyll; Bacteriopheophytin

Pigments of borohydride-treated reaction centers of *Rhodobacter sphaeroides* R 26 and *Rhodopseudomonas viridis* were analyzed by HPLC with polychromatic detection. In both species, pigment composition and contents were unchanged. Reaction centers from *Rhodobacter sphaeroides* R26 were prepared in which bacteriochlorophylls ($B_{A,B}$) and bacteriopheophytins ($H_{A,B}$) were exchanged with their potential borohydride products reduced at C-3¹. [3-Hydroxyethyl]-BChl *a* exchanges selectively into the $B_{A,B}$ pockets, and 3¹-OH-BPh *a* to the $H_{A,B}$ pockets. Stable reaction centers are obtained in both cases. A comparison of the absorption and circular dichroism spectra of reaction centers after exchange with 3¹-OH pigments, and of borohydride-modified reaction centers, reveal distinct differences. It is concluded that during borohydride reduction none of the pigments is chemically modified or extracted from the reaction centers.

Introduction

Reaction centers (RC) from the purple photosynthetic bacteria *Rhodobacter* (*Rb.*) sphaeroides and *Rhodopseudomonas* (*Rp.*) viridis contain six bacteriochlorin molecules, viz. four bacteriochlorophylls (BChl) a or b, and two bacteriopheophytins (BPhe) a or b, respectively. The RC of *Rb. sphaeroides* consists of three polypeptides, designated subunits H, M, L according to their electrophoretic mobilities; and contains an additional cytochrome c in *Rp. viridis*. The crystal structure is known for both RCs [1–4]. The 'primary' charge separation process involves electron transfer in less than 4 ps from the excited singlet state of the primary donor, a complex of two of the bacteriochlorophylls, to BPhe (H_A) [5]. Recently, evidence was obtained for the direct involvement of BChl (B_A) as an intermediate electron carrier (Ref. 6, but see Ref. 7 for a controversial discussion). The functions of the BChl and BPhe not implicated in charge separation (BChl B_B and BPhe H_B) are unknown; an involvement of BChl B_B in triplet energy transfer is discussed [8,9].

In view of the tight packing of the pigments and the highly optimized charge separation, modified reaction centers are of considerable interest both for experimentalist and theoretician. Today there are several possibilities available to modify either the amino-acid [10–16] and/or the pigment composition [17–20]. Historically, however, treatment with borohydride was the first method by which reaction centers from Rb. sphaeroides R26 with modified spectral properties were accessible [21]. It was generally accepted (but see [22]). that treatment with borohydride removed about 50% of the monomeric bacteriochlorophylls absorbing at 802 nm. From kinetic and spectroscopic evidence it had been suggested that the 'inactive' BChl a (B_B), is reduced at the 3-acetyl group by this treatment, and then subsequently lost from the remaining complex [9, 21, 23–25]. As a side reaction, partial cleavage of the M-subunit has been observed in the case of Rb. sphaeroides R 26 reaction centers [23].

Abbreviations: *Rb.*, *Rhodobacter*; *Rp.*, *Rhodopseudomonas*; RC, reaction center; BChl, bacteriochlorohyll; BPhe, bacteriopheophytin; $B_{A,B}$, BChl and $H_{A,B}$, BPhe binding sites, the subscripts refer to the location on the active (A) and inactive (B) branches, respectively; LDAO, dodecyldimethylamine oxide.

Correspondence: H. Scheer, Botanisches Institut, Menzinger Str. 67, D-8000 München 19, Germany.

Pigment	Compound				
	R ₁	R ₂		R ₃	М
BChl a	-COCH3	-COOCH3		-Н	Mg
BChl a'	-COCH ₃	-Н		-COOCH3	Mg
BPhe a	-COCH ₃	-COOCH ₃		-H	H_2
3 ¹ -OH-BChl a	-СНОНСН3	-	-СООСН3′-Н		Mg
3 ¹ -OH-BPhe a	-СНОНСН3		-COOCH _{3'} -H		H_2
3-Vinyl-BChl a	-C ₂ H ₃		-COOCH _{3'} -H		Mg
132-OH-BChl a	-COCH ₃		-COOCH3-OH		Mg
13 ² -OH-BPhe a	-COCH ₃		-COOCH _{3'} -OH		H ₂

Recently, exchange of monomeric BChl at the BA,B binding sites of RC from Rb. sphaeroides and of monomeric BPhe at the H_{A,B} binding sites of RC from Rb. sphaeroides and Rp. viridis with pigments modified at the 3-acetyl group was achieved [19,20]. In particular 3¹-OH-BChl *a* can be introduced into $B_{A,B}$ and 3¹-OH-BPhe *a* into $H_{A,B}$, which are the pigments discussed as reduction products obtained with borohydride. Contrary to what was expected from the postulated reaction mechanism of borohydride treatment, this exchange yielded stable RC, which do not lose the modified pigments during common work-up procedures. This conflicting results led us to re-investigate the pigment compostion, absorption and circular-dichroism (CD) spectra of RC after borohydride treatment. The data show that the major spectral changes induced by it are not caused by a partial loss of pigments.

Material and Methods

Reaction centers. Rb. sphaeroides R26 RC were prepared by repeated solubilization of chromatophores and subsequent chromatography on DEAE-cellulose as described previously [23]. Rp. viridis RC were isolated by dissociation of the chromatophores with LDAO (5%) [26], and subsequent chromatography on DEAEcellulose. The final purification was achieved in both cases by density-gradient centrifugation (0.2 to 0.8 M sucrose in 10 mM Tris-HCl buffer (pH 7.6), containing 0.08% LDAO, 20 h, 240000 $\times g$). RC were enriched in the 0.6 M region. They were withdrawn, dialyzed against Tris-HCl buffer (10 mM, pH 7.6, containing

0.08% LDAO) and stored at -20°C. Borohydride treatment. Borohydride treatment of Rb. sphaeroides R26 RC was done as described in Ref. 24, that of Rp. viridis ones as described in Ref. 22. The treated RC were purified on DEAE-cellulose followed by density-gradient centrifugation, as above.

Exchange experiments. Exchange experiments for the $B_{A,B}$ binding sites were performed as published [19,20] by incubating the RC at 42.5 °C for 90 min in Trisbuffer (20 mM, 0.08% LDAO, 10% MeOH) containing the 3¹-OH modified pigments in a 20-fold excess. Afterwards, excess pigments were removed from the incubation mixture by repeated chromatography on DEAE-cellulose. The yield of recovered RC was \leq 30%. For the exchange of the 3¹-OH-BPhe *a* into the H_{A,B} binding sites, the pigments were dissolved in a minor amount of diethyl ether, diluted with MeOH, and then added to the RC as in the case of $B_{A,B}$ exchange.

Pigments. BChl a was extracted from Rb. sphaeroides and reduced to [3-hydroxyethyl]-BChl a (3¹-OH-BChl) with NaBH₄ as published before [19]. Demetalation to the respective pheophytin, 3¹-OH-BPhe a was done with dilute HCl. The structures of the products, had the expected absorption, fluorescence, ¹H-NMR and mass spectra. No attempts were made to separate the $3^1,13^2$ diastereomers. A full account of the chemistry will be given separately.

Pigment analysis. Extraction of pigments from RC for HPLC analysis was done with MeOH under Ar on DEAE-cellulose as described in Ref. 19. The HPLC analysis was done on silica or C-18 reversed phase with a diode array detector (HP 8451) as reported [19]. Absorption spectra were measured on a Lambda 2 spectrophotometer (Perkin Elmer), CD spectra with a dichograph V (Jobin-Yvon).

Results

Rb. sphaeroides R26

Absorption after BH₄ treatment

The spectrum shows the typical changes reported previously [21] (Fig. 1). As compared to untreated RC, there is a decrease of the absorption at 802 nm and a concomitant small, broad increase at 765 nm. There are also some small shoulders in the Q_x region of the monomeric BPhe *a* at 542 nm and of the BChl *a* at 598 nm. There is no distinct increase in the 720nm region, if well purified RC are used for the reaction.

Absorption after exchange of $B_{A,B}$ with 3¹-OH-BChl a 3¹-OH-BChl a was obtained by borohydride reduction of BChl a in MeOH. Due to the removal of the conjugated carbonyl substituent at C-3, the absorption of this pigment is blue-shifted. In the Q_{y} and Q_{x} region, this shift amounts to 43 nm (766 cm⁻¹) and 18 nm (566 cm⁻¹), respectively. No reduction of the 13¹-C = O group [27–29] was observed, even after prolonged standing and repeated addition of the reagent. Partial exchange with 3^1 -OH-BChl *a* of monomeric BChl *a* at the B_{A,B} binding sites [18,19] yields RC with the absorption spectrum shown in Fig. 1d [19]. There is a decreased absorption (compared to untreated reaction centers) at 802 nm which correlates to an increase at 756 nm. This shift of 46 nm (759 cm^{-1}) compares with the one observed in solution upon reduction (see above), but it should be kept in mind that this band also contains contributions from the BPhe Qy band and the maximum may not be exactly that of the 3^{I} -OH-BChl *a* introduced. The short-wavelength shift is more distinct in the Q_x region. There are no spectral changes at 865 nm and 756 nm. From this, it is concluded that the BChl a dimer (P870) and the BPhe in the H-binding sites are not exchanged under these conditions. The intactness of P870 was also demonstrated qualitatively and quantitatively by ENDOR spectroscopy (with W. Lubitz et al., not shown). The modified RC were stable during repeated chromatography on DEAE-cellulose and ultracentrifugation.

The spectral changes in the long-wavelength region are partially similar to those of borohydride-treated reaction centers. An interpretation in the Q_Y region is

Fig. 1. Absorption spectra of modified reaction centers of Rb. sphaeroides R26 (absorption at 865 nm normalized to 1) of: (a) untreated RC; (b) RC after treatment with borohydride, and subsequent purification on DEAE-cellulose and density-gradient centrifugation; (c) RC with 3^1 -OH-BPhe *a* in the H_B-binding site; (d) RC with a partial exchange of 3^1 -OH-BChl *a* into the B_{A,B} binding sites. The features at the long-wavelength side of the 870 nm band in traces a and d are an instrument artefact.

difficult, because there is an overlap of the BPhe a bands, and the one(s) of the newly introduced 31-OH-BChl, which are shifted to shorter wavelengths. However, there is a significant difference in the Q_x region of the bacteriochlorophylls. The '31-OH-BChl a reaction centers' show a new absorption at 562 nm, whereas the borohydride-treated reaction centers show only a short-wavelength shoulder (≈ 568 nm). The stability and the spectra are evidence, that the main effect of borohydride treatment can not readily be explained by the presence of 3^1 -OH-BChl a. A stereoselective reduction, coupled with a pronounced dependence of native absorption on the configuration at the two asymmentric centers, can presently not be ruled out, however, by the chromatographic data.

Absorption after exchange of $H_{A,B}$ with 3¹-OH-BPhe a

Borohydride-reduction of BPhe a in organic solvents yields 3¹-OH-BPhe a [19,21]. Treatment under exchange conditions with 3^1 -OH-BPhe *a* yields RC which are stable during repeated chromatography on DEAE-cellulose. The purified RC have an absorption spectrum as shown in Fig. 1c. The absorption decrease at 756 nm (compared to untreated reaction centers) correlates with an increase at 723 nm. A short-wavelength shift is also obvious in the BPhe Q_x region. There are no spectral changes in the BChl a Q_{y} region at 865 nm and at 802 nm, indicating that only BPhe, but neither the dimer P870, nor the monomeric BChl a at BAB is exchanged under these conditions. A spectral comparison of these 3^1 -OH-BPhe *a* reaction centers with the borohydride-treated reaction centers shows that in the latter the poorly resolved short-wavelength shoulder in the Q_x region of BPhe *a* (535 nm) could not be explained by presence of 3^1 -OH-BPh *a* at the $H_{A,B}$ site(s), because this pigment absorbs in the exchanged RC at 515 nm.

CD spectra

A concomitant analysis of the CD spectra of modified reaction centers support the results of the absorption spectra analysis (see also [23]). Fig. 2 shows the CD spectra of untreated and modified reaction centers of Rb. sphaeroides R26. The anisotropy of the lower band of the primary donor around 870 nm is the same within the spectral noise for all reaction centers shown $(\Delta A/A = 23 \pm 1 \cdot 10^{-4})$. The spectra are therefore normalized at this position. The reaction centers after treatment with borohydride and purification (Fig. 1b) show a decrease and broadening of the band around 800 nm. So the absorption change upon borohydride treatment is accompanied by a change in CD activity, which is in conflict with the exchange results. Reaction centers after exchange of the monomeric BChl a at $B_{A,B}$ show a charactersitic decrease of the upper positive band around 800 nm (which is commonly assigned

Fig. 2. Circular dichroism spectra of reaction centers of *Rb.* sphaeroides R26. The anisotropy of the lower band of the primary donor around 870 nm is the same within the spectral noise for all reaction centers shown $(\Delta A/A = 23 \pm 1 \cdot 10^{-4})$. The spectra are therefore normalized at this position. Samples a-d as in Fig. 1.

to the monomeric bacteriochlorophylls), and a concomitant increase around 780 nm. Similar results with [3-vinyl]-BChl *a* are discussed elsewhere [19]. After the exchange of BPhe at $H_{A,B}$ with 3¹-OH-BPhe *a*, there is an increase of the broad negative band around 760 nm. This change is also typical for exchanges of several modified bacteriopheophytins, e.g., [3-vinyl]-BPhe *a* into the $H_{A,B}$ binding site (data not shown, see Ref. 20 for a preliminary discussion), but does not correspond to the CD of borohydride-treated RC.

Taken together, the exchange experiments show that 3¹-OH-BChl a can replace selectively BChl a in the $B_{A,B}$ binding sites and 3¹-OH-BPhe *a* can replace selectively BPhe *a* in the $H_{A,B}$ binding sites. Also, the latter can replace BPhe *b* in $H_{A,B}$ of *Rp. viridis* (see below). All exchanges yield RC which are stable towards the common purification procedures, and in particular to the ones used to purify borohydridetreated RC [22-24]. The selection of the binding sites obviously depends mainly on the presence or absence of the central Mg. This corroborates results obtained with [3-vinyl]-analogues of BChl a and BPhe a [19,20] which also exchange selectively into the B_{AB} and H_{AB} binding sites, respectively [20]. It is also corroborated by mutagenetic studies [10-16] and by the unusual pigment composition of Chloroflexus aurantiacus RC [30–32]. The stability and the spectroscopic properties of the complexes into which the 3¹-hydroxy analogues are introduced are in contradiction to the common interpretation that borohydride treatment leads to chemical reduction of BChl a bound to B_B at C-3¹, and its subsequent loss from the reaction center. A loss may be expected, however, if BChl a at B_{B} were reduced and demetallated simultaneously, because 3¹-OH-BPhe a does not exchange into the B_{A,B} binding

Fig. 3. Multiwavelength-detected HPLC-chromatogram of the pigments extracted from untreated reaction centers of *Rb. sphaeroides* R26 (extract from the preparation shown in Fig 1a). Peak assignments as in Fig. 4.

Fig. 4. Multiwavelength-detected HPLC-chromatogram of the pigments extracted from borohydride-treated reaction centers of *Rb. sphaeroides* R26 (extract from the preparation shown in Fig. 1b). (A) BPhe *a*; (B) BChl *a'* (C,D) 3^1 -OH(*R*,*S*)-BPhe *a*; (E) BChl *a*; (F) $13^2(R,S)$ -OH-BChl *a*; (G,H) 3^1 -OH(*R*,*S*)-BChl *a*.

site as shown above *. Indeed, from borohydridetreated reaction centers only 3^{1} -OH-BPhe *a* was isolated [24]. Although it is difficult to understand how demetallation may occur under the alkaline reaction conditions, it was tacitly assumed that this is the final product of the treatment. To test this possibility, a quantitative analysis of the tetrapyrroles in reaction centers was done.

HPLC analysis

Fig. 3 shows the chromatogram of a pigment extract of untreated reaction centers from *Rb. sphaeroides* R26. Two peaks corresponding to BPhe *a* (peak A) and BChl *a* (peak E) occur in a characteristic intensity ratio, that translates after correction for absorptivities into the 2:1 molar ratio typical for untreated reaction centers. The chromatogram in Fig. 4 shows a pigment extract of borohydride modified RC from the same organism. There is no significant change in the BPhe a/ BChl *a* ratio (compared to untreated reaction centers). If the integrated peak areas are normalized to the 870 nm absorption, the same amounts of both BChl *a* and BPhe *a* are present in untreated and in borohydride-treated reaction centers. The unchanged BPhe a/BChl a; BChl a/P870 and BPhe a/P870 ratios in the pigment extract of borohydride-treated RC contradict the common interpretation, that a decrease in the 802 nm absorption is due to a loss of BChl *a*. The identical quantitative amounts of BChl *a* and BPhe *a* in treated and untreated reaction centers also exclude the possibility of a simultaneous loss of BChl *a* and BPhe *a* in a $2/1 \pm 0.15$ ratio. The pronounced changes in the absorption spectrum can therefore not be explained by a bulk loss of monomeric BChl *a*.

There are several additional minor bands visible in the choromatograms of borohydride-treated RC, which represent minor amounts of 3¹-OH-BPhe *a* (peak C, D) and 3¹-OH-BChl *a* (peak G, H). The presence of traces of these 3¹-OH compounds in the pigment extract can be most readily explained by the presence of traces of free (or unspecifically bound) BChl *a* or BPhe *a*, respectively, in the original RC. Variable purity of RC used for the borohydride treatment, would then also explain the puzzling variations of the intensity of the 720 nm band seen in crude reaction mixtures, but never in RC purified thereafter [23]. As mentioned in the previous section, this band is absent if carefully

^{*} Strictly speaking, the exchange experiments only give an 'exchange capacity'. In the case of BPhe vs. BChl, the exchange selectivity matches the selectivity observed after site directed mutagenesis of ligating histidine residues, but the relationship still has to be explored for more extensively modified pigments.

Fig. 5. Absorption spectra of modified reaction centers of *Rp. viridis* (absorption normalized at 965 nm to 1) of: (a) untreated RC; (b) RC after treatment with borohydride, and subsequent purification on DEAE-cellulose and density-gradient centrifugation.

purified RC are treated. Small amounts of BChl a' (peak B) in the pigment extract of borohydride-treated reaction centers are as observed in other treatments [18] and cannot explain the changes in the absorption spectrum, either.

Rp. viridis

Absorption after borohydride treatment

The absorption changes upon treatment of *Rp. viridis* RC with borohydride are less spectacular than in *Rb. sphaeroides*. After purification, they show a characteristic change of the shoulder at \approx 790 nm and of the 830 nm band (Fig. 5). A decrease in absorption at 834 and 820 nm correlates to an increased absorption at 775 nm, as can be seen in the difference spectrum (data not shown). These changes correspond to the ones reported by Shuvalov et al. [33]. There are also small changes in the 650–750 nm region, which we consider insignificant, however. The band \approx 680 nm corresponds to oxidation products of BChl *b* [34]. An absorption increase at 720–750 nm appears after borohydride treatment and indicates free pigments that can be removed by repeated chromatography.

HPLC analysis

The HPLC-chromatograms of untreated RC of Rp. viridis after careful extraction show two peaks corresponding to BPhe b (peak a) and to BChl b (peak c) (Fig. 6). There are also oxidation products [34] which absorb all around 680 nm, and which appear in peaks d and e in variable and minor amounts under the conditions used. Pigment extracts of borohydride-modified reaction centers (Fig. 7) turned out to have the same BPhe b/BChl b ratio as untreated ones. The quantitation with respect to P960 is less precise in this case, due to the aforementioned ready oxidation of BChl band BPhe b to products of the chlorin spectral type, which amount to $\leq 15\%$ of the total pigment. However, unless there is a transformation and release of BChl b and BPhe b in a 2:1 ratio in borohydride-treated RC of Rp. viridis, the data are only compatible with the

Fig. 6. Multiwavelength-detected HPLC-chromatogram of the pigments extracted from untreated reaction centers of *Rp. viridis* (extract from the preparation shown in Fig. 5a). (a) BPhe b; (b) BChl b'; (c) BChl b; (d,e) oxidation products of BChl b.

Fig. 7. Multiwavelength-detected HPLC-chromatogram of the pigments extracted from borohydride-treated reaction centers of *Rp. viridis* (extract from the preparation shown in Fig. 5b). Peak assignments as in Fig. 6.

fact that there is no change in the pigment content in this species, either.

Discussion

The notion that BChl at the B_M site is reduced and then removed from RC by borohydride treatment rested on several lines of evidence: (1) The 802 nm absorption is decreased by approx. 40%. If this band contains contributions of the Qy-band of both monomeric BChl, and of the upper excitonic band of the special pair, this corresponds to a substantial loss of the former [21]. In Rp. viridis RC, the spectral differences are less distinct, but it was assumed that the increase of the shoulder at 790 nm (Fig. 5b) might be caused by the loss of a pigment absorbing around 820 nm, probably B_B , too [22]. (2) 3¹-OH-BPhe was identified by ¹H-NMR and chemical correlation in the supernatant of borohydride-treated RC from Rb. sphaeroides [24]. (3) Electron transport is unimpaired in borohydride-treated RC [35-39]. (4) Borohydride modification is inhibited in wild-type RC, which contain one carotenoid per RC, bound in close proximity to and apparently protecting the BChl in B_M [2,4]. If the conclusion presented above is correct that there is no change in pigment composition, it should be able to explain the referenced results on this basis, too.

The following explanations are suggested: (1) The decrease of the 802 nm band is due to an environmental effect. A precedent is the apparent loss of BChl *a*-B800 in the B800-850 antenna from *Rb.* sphaeroides, which is induced by the detergent SDS, and reverted after addition of LDAO [40,41]. The

 Q_{y} -bands in this complex show strong red-shift and hyperchromism. If both are reduced by some environmental effect, one would expect an overall decrease in absorption in the Q_{y} -range, and a blue-shift. This is indeed observed in B800-850 upon SDS treatment. Similar, albeit irreversible, changes are seen in RC upon borohydride treatment. The broad increase in the 750 nm region is not as pronounced as the decrease around 802 nm, and it has hardly been discussed, but it is obvious in Fig.1b, and also noticeable in previous reports on the subject [21-25]. A considerable change in about 1/3 of the RC population, e.g., proteolysis of the M-subunit, has been found by Beese et al. [23]. Although this can hardly explain the homogeneous spectral features, it indicates at least that there is (are) specific reaction(s) of NaBH₄ with the protein. (2) The finding of 3¹-OH-BPhe instead of 3¹-OH-BChl has been puzzling from the beginning. Under the alkaline reaction conditions reaching pH 10, a demetallation of any Mg-bacteriochlorin is not a likely process, yet a Mg-free pigment was unambigously identified [24]. An explanation in the framework of the findings presented rests on the fact that the 3^1 -OH-BPhe *a* in the reaction mixture of RC with borohydride had never been quantitated carefully. It could thus be a product not of an integral RC-bound pigment, but rather of a BPhe impurity in the RC. This could also explain previous observations that the intensity of the 725 nm band arising in the reaction mixture and assigned to a pigment reduced at C-3¹ shows considerable and previously unaccountable variations [23,25]. The pigment could also arise (together with 3^1 -OH-BChl a) if some of the RC were irreversibly destroyed by the BH₄ treatment. (3) As long as the environmental effect acts only on the B_M site, this result is conceivable with the previous as well as the new interpretation. (4) The same is true for the protective effect of carotenoids.

In conclusion, the notion that there is no change in pigment composition, but rather a changed interaction of the protein with BChl in the B_M binding site by some as yet unaccounted mechanism, does not conflict with known facts. We are aware of unpublished X-ray results (Allen, J., personal communication), which also indicate that the B_M binding site of BH₄-treated RC from Rb. sphaeroides is still occupied by a tetrapyrrole. There are furthermore items of evidence which indicate that the pigment is even still bound rather tightly to a distinct site. These are (a) that the pigment composition is highly reproducible, (b) that it is the same after different purification procedures (here DEAEcellulose and/or gradient centrifugation) and (c) that there is a characteristic CD activity in treated RC which implicates a strong interaction. It may be useful to reinvestigate the LD-spectra of BH₄-treated RC [42] with regard to this aspect.

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (SFB 143, projekt A9). A.S. acknowledges a stipend from the Hanns-Seidel-Stiftung, München. Mass culture of bacteria was done by G. Reng and G. Ro β at the Gesellschaft für biotechnologische Forschung, Stöckheim, and by E. Gabelmann in our group. We acknowledge the skillful technical assistance of C. Bubenzer in reaction center preparation, and of I. Katheder in pigment synthesis and analysis. ¹H-NMR and mass spectroscopy to characterize pigments were performed by E. Cmiel and W. Schäfer, respectively.

References

- 1 Michel, H. and Deisenhofer, J. (1988) Pure Appl. Chem., 60, 953-958.
- 2 Allen, J.P., Feher, G., Yeates, T.O., Komiya, H. and Rees, D.C. (1987) Proc. Natl. Acad. Sci. USA 84, 6162–6166.
- 3 El-Kabbani, O., Chang, C.-H., Tiede, D., Norris, J.R. and Schiffer, M. (1991) Biochemistry 30, 5361-5369.
- 4 Arnoux, B., Ducruix, A., Reiss-Housson, F., Lutz, M., Norris, J., Schiffer, M. and Chang C.H. (1989) FEBS Lett. 258, 47-50.
- 5 Martin, J.-L., Breton, J., Hoff, A.J., Migus, A. and Antonetti, A. (1986) Proc. Natl. Acad. Sci. USA 83, 957-961.
- 6 Holzapfel, W., Finkele, U., Kaiser, W., Oesterhelt, D., Scheer, H., Stilz, H.U. and Zinth, W. (1989) Chem. Phys. Lett. 160, 1-7.
- 7 Kirmaier, C. and Holten, D. (1991) Biochemistry 30, 609-613. 8 Takiff, L. and Boxer, S.G. (1988) J. Am. Chem. Soc. 110, 4425-
- 4426.
- 9 Frank, H.A. and Violette, C.A. (1989) Biochim. Biophys. Acta 976, 222-232.
- 10 Coleman, W.J. and Youvan, D.C. (1988) Annu. Rev. Biophys. Biophys. Chem. 19, 333-367

- 11 Boxer, S.G., Lockart, D.G., Hammes, S., Mazolla, L., Kirmaier, C., Holten, D., Gaul, D. and Schenk, C.C. (1990) in Current Research in Photosynthesis, Vol. 1 (Baltschefsky, M., ed.), pp. 113-116, Kluwer, Dordrecht.
- 12 Huber, M., Lous, E.J., Isaacson, R.A., Feher, G., Gaul, D. and Schenck, C.C. (1990) in Reaction Centers of Photosynthetic Bacteria (Michel-Beyerle, M.E., ed.), Series in Biophysics, Vol. 6, pp. 219–228, Springer, Berlin.
- 13 Schenck, C.C., Gaul, D., Steffen, M., Boxer, S.G., McDowell, L., Kirmaier, C. and Holten, D. (1990) in Reaction Centers of Photosynthetic Bacteria (Michel-Beyerle, M.E., ed.), Series in Biophysics, Vol. 6, pp. 229–238, Springer, Berlin.
- 14 Woodbury, N.W., Taguchi, A.K., Stocker, J.W. and Boxer S.G. (1990) in Reaction Centers of Photosynthetic Bacteria (Michel-Beyerle, M.E., ed.), Series in Biophysics, Vol. 6, pp. 303–312, Springer, Berlin.
- 15 Robles, S.J., Breton, J. and Youvan, D.C. (1990) in Reaction Centers of Photosynthetic Bacteria (Michel-Beyerle, M.E., ed.), Series in Biophysics, Vol. 6, pp. 283–292, Springer, Berlin.
- 16 Gray, K.A., Farchaus, J.W., Wachtveitl, J., Breton, J., Finkele, U., Lauterwasser, C., Zinth, W. and Oesterhelt, D. (1990) in Reaction Centers of Photosynthetic Bacteria (Michel-Beyerle, M.E., ed.), Series in Biophysics, Vol. 6, pp. 251–264, Springer, Berlin.
- 17 Scheer, H., Beese, D., Steiner, R. and Angerhofer, A. (1988) in Structure of Bacterial Reaction Centers: X-ray Crystallography and Optical Spectroscopy with Polarized Light (Breton, J. and Vermeglio, A., eds.), pp. 101–112, Plenum, New York.
- 18 Struck, A. and Scheer, H. (1990) FEBS Lett. 261, 385-388.
- 19 Struck, A., Cmiel, E., Katheder, I. and Scheer H. (1990) FEBS Lett. 268, 180-184.
- 20 Struck, A., Beese, D., Cmiel, E., Fischer, M., Müller, A., Schäfer, W. and Scheer, H. (1990) in Reaction Centers of Photosynthetic Bacteria (Michel-Beyerle, M.E., ed.), Series in Biophysics, Vol. 6, pp. 313–326, Springer, Berlin.
- 21 Ditson, S.L., Davis, R.C. and Pearlstein, R.M. (1984) Biochim. Biophys. Acta 766, 623-629.
- 22 Shuvalov, V.A., Shkuropatov, A.Y., Kulakova, S.M. Ismailov, M.A. and Shkuropatova, V.A. (1986) Biochim. Biophys. Acta 849, 337–346.
- 23 Beese, D., Steiner, R., Scheer, H., Angerhofer, A., Robert, B. and Lutz, M. (1987) Photochem. Photobiol. 46, 293-304.
- 24 Maroti, P., Kirmaier, C., Wraight, C., Holten, D. and Pearlstein, R.M. (1985) Biochim. Biophys. Acta 810, 132–139.
- 25 Beese, D.(1989) Dissertation, Universität München.
- 26 Clayton, R.K. and Clayton, B.J. (1978) Biochim. Biophys. Acta 501, 478.
- 27 Holt, A.S. (1959) Plant Physiol. 34, 310-314.
- 28 Wolf, H. and Scheer, H. (1971) Liebigs Ann. Chem. 745, 87-98.
- 29 Hynninen, P.H. (1979) J. Chromatogr. 175, 89-104.
- 30 Ovchinnikov, Y.A., Abdulaev, N.G., Shmuckler, B.E., Zargarov, A.A., Kutuzov, M.A., Telezhinskaya, I.N., Levina, N.B. and Zolotarev A.S. (1988) FEBS. Lett. 232, 364–368.
- 31 Ovchinnikov, Y.A., Abdulaev, N.G., Zolotarev, A.S., Shmukler, B.E., Zargarov, A.A., Kutuzov, M.A., Telezhinskaya, I.N. and Levina, N.B. (1988) FEBS Lett. 231, 237–242.
- 32 Shiozawa, J.A., Lottspeich, F., Oesterhelt, D. and Feick, R. (1989) Eur. J. Biochem. 180, 75-84.
- 33 Shuvalov, V.A., Shkuropatov, A.Y. and Ismailov, M.A. (1986) in Progress in Photosynthesis Research (Biggins, J., ed.), pp. 161– 168, Martinus Nijhoff, Dordrecht.
- 34 , Steiner, R., Cmiel, E. and Scheer, H. (1983) Z. Naturforsch. C 38, 748-752.
- 35 Chekalin, S.V., Matveetz, Y.A., Shkuropatov, A.Y., Shuvalov, V.A., Yartzev, A.P. (1987) FEBS Lett. 216, 245-248.
- 36 Shuvalov, V.A. and Duysens, L.N.M. (1986) Proc. Natl. Acad. Sci. USA 83, 1690–1694.

270

- 37 Holten, D., Kirmaier, C. and Levine, L. (1987) in Progress in Photosynthesis Research: Proceedings of the VIIth International Conference on Photosynthesis (Biggins, J., ed.), Vol. 1, pp. 169– 176, Martinus Nijhoff, Dordrecht
- 38 Breton, J., Martin, J.L., Petrich, J., Migus, A. and Antonetti, A. (1986) FEBS Lett. 209, 37–43.
- 39 Martin, J.L., Breton, J., Lambry, J.C. and Fleming, G. (1988) in The Photosynthetic Bacterial Reaction Center – Structure and Dynamics (Breton, J. and Verméglio, A., eds.), NATO ASI Series. Ser. A.: Life Sciences, pp. 197–206, Plenum, New York.
- 40 Clayton, R.K. and Clayton, B.J. (1981) Proc. Natl. Acad. Sci. USA 78, 5583-5587.
- 41 Chadwick, B.W., Zhang, C., Cogdell, R.J. and Frank, H.A. (1987) Biochem. Biophys. Acta 893, 444-451.
- 42 Breton, J. (1988) in The Photosynthetic Bacterial Reaction Center -Structure and Dynamics (Breton, J. and Verméglio, A., eds.), NATO ASI Series. Ser. A.: Life Sciences, pp. 61–72, Plenum, New York.