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Picosecond Lifetimes and Efficient Decay Channels
of Vibrational Models of Polyatomic Molecules in Liquids

C. Kolmeder, W. Zinth, and W. Kaiser

Physik Department der Technischen Universitdt Miinchen,
D-8000 Miinchen, Fed. Rep. of Germany

Convincing evidence is presented that anharmonic coupling between
fundamental vibrational modes and overtones or combination modes
is of major importance for the lifetime of vibrational states.
The selection rules known to hold for Fermi resonance determine
the decay channels. In a number of examples the decay pathways

of vibrational energy were observed experimentally by measuring
the population and depopulation of subsequent vibrations. Drastic
variations of vibrational lifetimes were found for different
vibrations of the same molecule.

Molecules are first excited by an ultrashort resonant infrared
pulse and the instantaneous degree of excitation is monitored by
observing the anti-Stokes Raman signal of a delayed probe pulse.
Different vibrational modes are distinguished by their character-
istic anti-Stokes frequency.

We have investigated numerous molecules and found widely vary-
ing values of the population life-times between 1 ps and 240 ps
in polyatomic molecules at room temperature /1,2/. Special
attention was paid to the CH-stretching modes in the fregquency
range of 3000+100 cm~!

Vibrational energy is transferred from the CH-stretching modes
(~3000 cm~1) via overtones and combination modes to lower energy
states. Intramolecular anharmonic coupling, the Fermi resonance,
manifests itself in the infrared and Raman spectra. Overtones
and higher order combination modes borrow intensity from CH-
stretching modes. We define as a measure of Fermi-resonance
mixing the intensity ratio, R, between the final and initial
state taken from the infrared or Raman spectrum. In a recent
publication a formula was derived which allows to estimate the
life time T4 of vibrational states:

T, = N(1-R) R 2/3
N corresponds to the number of states initially excited, R is a
measure of the Fermi resonance, and T,(f) stands for the de-
phasing time of the final state. T,(f) may be estimated from the
Raman line-width A% as T,(f) = (2ncav) T (To(f) is equal to
T,/2 measured in coherent Raman experiments ) . The frequency w
represents the energy difference between the initial and final
state. @ has a value close to 100 cm~'.

exp(w/Q) T, (£f) ()

As an example for the importance of Fermi resonance we present
data of the two molecules 1,1-dichloroethene and trans 1,2~
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dichloroethene which are made up of the same atoms; only two
atoms have exchanged their positions. The infrared and Raman
spectra between 2950 cm~1 and 3250 cm~' of both molecules are
depicted in Fig.1. There are drastic differences in the anhar-
monic coupling of the CH-stretching modes. In Fig.la we see strong
Fermi resonance of CH,=CCl, between the fundamental v4 and vy+v3,
both of A, symmetry and between the fundamental vy and vy+vg+viq,
both of B; symmetry /3/. This observation suggests that we have
to consider at least two decay channels for the CHy-stretching
modes. For the decay Vi1 - vo+v3 we estimate the intensity ratio

R = 0.2:0.05 and calculate T,(f) = 0.3 ps from the Raman line-
width of A% = 17 cm~ 1. With N=1 and w = 45 cm~! we calculate from
(1) a value of Ty = 4#2 ps. For the second decay channel

v7 > v2+vg+vqq we have to take a short dephasing time T, (f) of
the combination mode. We estimate T,(vy+vg+vqq) = 0.2 ps from the
observed line width. With R = 0.6:0.1, N=1 and w = 45 cm~1 we
calculate Tq = 1.5 ps.

According to Figs.la and 1b the symmetric (vq) and asymmetric
(v7) CH,-stretching vibrations are separated by 100 em~ 1. we
estimate an energy-transfer time between the CH,-stretching modes
of Tq(vq > vg) _= 3.3 ps using the formula T, (wq » w7) =
T2(w1)exp(w/n)2/3, where T,(wq) was taken from the Raman spectrum.

The estimates given here indicate that vibrational energy
flows faster out of the v7 mode than it is supplied by the trans-
fer vq4 » v5. For the excited and interrogated mode v4 we simply
add the two decay rates for the two decay channels v, » v, and

vq = votvy and arrive at a lifetime Tq(vq) = 2 ps.
- H cl cl

T Na_ A N~

E W% =

g 2950 3050 3150 3250 2950 3050 3150 3250
v T T T vg T

3 v O] ®

5 = v 4 40
s

2 2 v#Ve*vn | | 20
2 VZ‘V3 2\/2

4

I Il

T T T 1

10 ) @ —~ - M @—1.0

Raman Signal
o
w
T
1
1

V7

I L
2950 3050 3150 3250 2950 3050 3150 3250
Frequency ¥ Ccm" Frequency vlcmi'l

Fig.1 Infrared absorption (a) and Raman (b) spectra of CH,CCl,
between 2950 and 3250 cm~'. Two combination tones are in strong
Ferni resonance with the two CH-stretching modes vq and v7y.
Infrared absorption (c) and Raman (d) spectra of trans CHC1CHCl.
There is less Fermi-resonance mixing than in CHZCClz.
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Fig.2 Anti-Stokes scattering signal versus delay time of the

probing pulsé. (a) CHpCCl, in CCly (c = 0.35 m.f.). The decay
of the CH,-stretching mode at 3036 cm~! is shown. (b) trans
CHCICHCl in CCly (c = 0.35 m.f.). The CH-stretching mode at

3084 cm~ ! is excited and the mode at 3073 cm~! is monitored. The
broken curves are the cross-correlation functions of the IR ex-
citing and green probing pulses.

In Fig.2a we present experimental data of the direct deter-
mination of the T4 value. The scattered Raman signal of the vj
mode rises to a slightly delayed maximum during the excitation
process and decays with a relaxation time of T4 discussed in the
preceding paragraph. The broken curves in Fig.2 are cross-
correlation curves of the excitation and probing pulse; they
determine the zero point on the time axis and give a good indi-
cation of the time resolution of the experiment.

In Fig.lc we see the infrared active CH-stretching mode vg
and in Fig.1d the Raman active symmetric vq mode of trans CHC1CHCl
Here we find a considerably smaller Fermi resonance. The Raman
spectrum of Fig.1d suggests some anharmonic coupling between v,
and 2v,, both of A, symmetry /3/. With the values R = 0.15:0.02,
T, = 0.3 ps, N=2 and v = 80 cm™! we calculate Tq = 13 ps. It
should be noted that there might be additional weak Fermi
resonance between the Vg mode and higher combination modes (e.g.
vptvgtvyg) burried under the high frequency tail of the vg funda-
mental. These additional decay channels may reduce somewhat the
estimated Tq value.

The time dependence of the CH-stretching modes of trans CHCLCHC
is depicted in Fiqg.2b. The molecule is excited via the vg mode at
3084 cm~! and the population of the v, mode at 3073 cm~' is
monitored by anti-Stokes Raman scattering. The rapid rise of the
Raman signal, i.e. the fast population of the v; mode, gives
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clear evidence of the gquick energy exchange between the two CH
fundamentals vq and v The decay of the signal curve suggests
a long llfetlme of tge two CH-stretching modes of T4 = 10+2 ps.

This number is in good agreement with the value estimated above.

The small intramolecular coupling gives rise to the longer vibra-
tional life time.

The vibrational states of acetylene are well documented in the
literature /4/. Inspection of the energy-level system (see Fig.3)
suggests the following interesting situations: (i) Energy in the
high 1lying CH-stretching modes around 3200 cm™' readily flows
into several combination modes, all of which comprise the symme-
tric C=C-stretching mode at vy = 1968 cm~ 1. (ii) The energy trans-
fer from the v, mode to neighboring combination modes is forbidden

by symmetry selection rules. Thus we expect a long population
life-time of the v, mode.

Experimentally we investigated a solution of CjyHp in CCly-
Acetylene molecules first are vibrationally exc1ted via the infra-
red active CH-stretching mode v3 = 3287 cm~ 1 and the population
and depopulation of the vy mode at 1968 cm~! is monitored. In
Fig.4 we indeed see a rapid population of the vy mode within
< 3 ps and a very slow depopulation with a time constant of 240 ps.
The v, mode in acetylene represents a bottle-neck state. It ex-
hibits the longest relaxation time observed so far in a polyatomic
molecule in the liquid state at room temperature.
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Fig. 4 Anti-Stokes scattering signal of CyHp in CCly versus de-
Tay time. Excitation frequency is 3265 cm~1. The decay of the
C=C mode at 1968 cm~! is monitored.
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