PHOTOCHEMISTRY AND PHOTOBIOLOGY

Proceedings of the International Conference held at the University of Alexandria, Egypt, January 5-10, 1983

Volume 2

Edited by Ahmed H. Zewail California Institute of Technology

p<u>h</u>rwt m imw

Changes with rays of light

ap

harwood academic publishers chur • london • paris utrecht • new york

Volume 2 Contents

Dedication	v
Acknowledgments	vii
Volume 1 Contents	xvii
Foreword	XXV
Preface	xxvii
Chairman's Introductory Remarks	xxix
Director's Opening Address	xxxi
Closing Remarks	xli
Organizing Committee	xliii
Session Chairpersons	xlv

CHAPTER 7 ENERGY STORAGE, COLLECTION AND CONVERSION

G. PORTER	
The Photolysis of Water and	
Photochemical Energy Storage (Acknowledgement)	742
TERRY COLE and AHMED H. ZEWAIL	
Luminescent Solar Concentrators (LSC): Their Physics	
and Chemistry	743
RAFIK O. LOUTFY and AH-MEE HOR	
Sensitization of <i>n</i> -Type Semiconductors by	
Phthalocyanines	759
JOHN O. WILLIAMS	
Photo-Electrochemical Characterization of n-ZnSe	
Epitaxial Layers Grown on <i>n</i> -GaAs Substrates	775

VOLUME 2 CONTENTS

CHAPTER 8 PHOTOBIOLOGY—OPTICAL TECHNIQUES

ERIC R. HENRY, JAMES HOFRICHTER, JOSEPH H. SOMMER and WILLIAM A. EATON Photolysis of Carbonmonoxyhemoglobin and the Cooperativity Problem	791
L. LINDQVIST, M. P. FONTAINE, E. BREHERET, B. ALPERT and J. C. ANDRÉ Photodissociation of Oxyhemoglobin by Nanosecond Laser Excitation: Study of the Geminate Recombination Kinetics	811
THOMAS G. SPIRO and JAMES TERNER Structure and Dynamics in the Photolysis of CO- and O ₂ -Hemoglobin, Monitored by Time-Resolved Resonance Raman Spectroscopy	817
M. OTTOLENGHI, V. ROSENBACH, M. SHEVES, T. BAASOV and N. FRIEDMAN On the Molecular Mechanism of the Photocycle of Bacteriorhodopsin	829
ROBERT R. BIRGE and BRIAN M. PIERCE The Nature of the Primary Photochemical Events in Bacteriorhodopsin and Rhodopsin	841
V. MALATESTA, V. SOLAN and P. A. HACKETT Efficient Photochemical Synthesis of Vitamin D Metabolites: 250 H-26 ² H ₂ -Cholecalciferol	857
B. R. WARE and FREDERICK LANNI Polymerization and Crosslinking of Actin <i>in Vitro</i> and <i>in Vivo</i> Studied by Fluorescence Photobleaching Recovery	863
J. FÜNFSCHILLING and I. ZSCHOKKE-GRÄNACHER Chlorophyll-B in Vesicles Studied by Site-Selection Spectroscopy	879
A. M. ATTALLAH Laser Application in Immunology: Detection of Killer Cell Activity with Ultramicro Techniques	889

x

VOLUME 2 CONTENTS	xi
HASSAN M. YOUNIS 4,4-Bis(1-Anilinonaphthalene 8-Sulfonate)(Bis-ANS): A Probe of the Conformational Changes in Chloroplast Coupling Factor 1 and the Mechanism of Photophosphorylation in Chloroplasts	899
HASSAN M. YOUNIS and SHAFIKA A. EL-KASSABANY Involvement of the Energy-Coupling Adenosine Triphosphatase Complex of Chloroplasts in the Mode of Action of Herbicides	917
PILL-SOON SONG Proton Transfer Processes in Plant and Protozoan Photoreceptors	931
KLAAS A. ZACHARIASSE, BOLESLAW KOZANKIEWICZ and WOLFGANG KÜHNLE Micelles and Biological Membranes Studied by Probe Molecules	941
A. H. EL-SEBAE, A. S. EL-BAKARY, J. LE PATOUREL, E. KADOUS and M. F. MACKLAD Effect of Photoperiodism on Fish Susceptibility to Insecticides	961
CHAPTER 9 PHOTOBIOLOGY—MAGNETIC RESONANCE TECHNIQUES	
G. L. CLOSS, R. J. MILLER and J. R. NORRIS The Influence of Electron–Nuclear Hyperfine Interactions on Kinetics in Photochemical Reactions	969
W. LERSCH, A. OGRODNIK and M. E. MICHEL-BEYERLE Comparison of Magnetic Field Experiments on Recombination of Radical Ion Pairs in Reaction Centers of Photosynthetic Bacteria	987
J. BECK, J. U. VON SCHÜTZ, and H. C. WOLF Fluorescence Detected Magnetic Resonance on Pigment Complexes of Photosynthetic Bacteria	995

VOLUME 2 CONTENTS

CHAPTER 11 PHOTOCHEMISTRY—LINEAR AND NONLINEAR

JEAN-CLAUDE LEHMANN Recent Developments of Chemical Photophysics in France	1261
E. V. KHOROSHILOVA, N. P. KUZMINA, V. S. LETOKHOV and YU. A. MATVEETZ Nonlinear Photochemical Synthesis of Biomolecules by Powerful UV Picosecond Pulses	1267
JEFFREY I. ZINK Excited State Distortions and Transition Metal Photochemistry	1277
ALLAN L. SMITH, AHARON GEDANKEN and DAYO ALUGBIN Some Aspects of the Photochemistry of the Xenon Fluorides	1299
E. KASSAB, E. M. EVLETH, G. CHAMBAUD and B. LEVY A Theoretical Investigation of the Electronic Quenching of the Various Excited States of H_2 by Ground State H_2	1307
SAUL G. COHEN and JAMAL D. KHAN Catalysis by Thiol and the Aniline–Thiol Pair in Photoreduction of Aromatic Ketones by Amines	1317
M. S. A. ABDEL-MOTTALEB, M. H. ABDEL-KADER and S. T. EL-ARABY Correlations of the Quantum Yield of Photochemical <i>trans/cis</i> Isomerization of Some Dyestuffs with Their Electronic Structure and with Solvent Polarity Scales	1329
ABDEL-GHANY EL-KOURASHY, M. E. SOLIMAN and M. A. EL-MANGOUCH Spectroscopic Studies of the Effect of Radiation Energy with Time on the Rate of Ion-Pair Interaction of Phosphorus(V)	1337

xiv

VOLUME 2 CONTENTS	xv
A. C. ALBRECHT Multiphoton Studies of Highly Excited States in the Condensed Phase	1345
EL-ZEINY M. EBEID, ABDEL-FATTAH M. HABIB and SALAH E. MORSI Photoreactivity of 1,4-Bis(<i>B</i> -pyridyl-2-vinyl) Benzene in Solution	1355
HEIKE SCHARPING and CORNELIUS ZETZSCH UV Photoabsorption Cross Sections of Low Volatile Substances in the Gas Phase Using a Gas Saturation Technique: Benzene, Monochlorobenzene, o-, m-, and p-Dichlorobenzene	1371
J. C. MICHEAU Photochemically Induced Dissipative Structures: A Useful Concept in Photochemistry and Photobiology	1381
M. H. ABDEL-KADER Proton Translocation and <i>cis/trans</i> Photoiosomerization in a Simple Merocyanine Dye: A Chemical Model and its Biological Implications	1397

Electron–Nuclear Multiple Resonance Studies on Primary Products of Bacterial Photosynthesis

W. LUBITZ,[†] F. LENDZIAN,[‡] H. SCHEER,[§] M. PLATO[‡] and K. MÖBIUS[‡]

† Institut für Organische Chemie, Freie Universität Berlin, Takustr. 3, D-1000
Berlin 33, ‡ Institut für Molekülphysik, Freie Universität Berlin, Arnimallee 14,
D-1000 Berlin 33, § Botanisches Institut, Universität München, Menzinger Str.
67, D-8000 München 19, West Germany

ENDOR and TRIPLE resonance techniques are applied to bacterial photosynthetic pigment anion and cation radicals in solution, yielding an almost complete set of isotropic H- and ¹⁴N-hyperfine couplings including signs. Assignments to molecular positions are attempted on the basis of the experiments including specific D-labeling. The results from the bacteriochlorophyll *a* cation radical are compared with those of the *in situ* light-induced primary donor cation P 870⁺ (protonated and partially deuterated) in the bacterium *Rhodopseudomonas sphaeroides* R-26. The latter is also studied by liquid state ENDOR/TRIPLE under physiological conditions (25°C, water). This comparison shows that P 870⁺ is a bacteriochlorophyll *a* dimer. The different shifts of the individual hyperfine couplings contain information about the structure of this dimer. On the basis of the experiments and MO calculations a specific dimer model is proposed.

INTRODUCTION

In recent years the mechanism of light-induced charge separation in photosynthesis has roused the interest of scientists from different fields.¹ In such investigations photosynthetic bacteria² are easier to study than plants since they have only *one* photosystem, and the reaction centers (RC's)—in which the primary events take place—have been isolated and well characterized.³ In the non-sulfur purple bacteria *Rhodopseudomonas* (*Rp.*) sphaeroides R-26 and *Rhodospiril-lum* (*R.*) rubrum G-9, which are studied in this paper, the RC's

contain three protein subunits, four bacteriochlorophyll (BChl) a and two bacteriopheophytin (BPh) a molecules, one or two ubiquinones (UQ), and one non-heme iron (3+).³ The structure of BChl a is shown in Figure 1.

In the RC the light energy is trapped by singlet excitation of a pigment absorbing at 870 nm (P 870), which donates an electron to an electron transport chain in a few picoseconds. P 870 is currently believed to be a "special pair" of BChl a molecules; the series of electron acceptors involves probably monomeric BChl a, BPh a, and iron ubiquinone complexes.⁴ During the charge separation process cation (P 870) and anion (BChl a, BPh a, UQ) radicals of the various pigments are formed. Much of our present knowledge about these species and their interactions in the RC has therefore evolved from the application of paramagnetic resonance methods⁵—used in conjunction with optical techniques. The dimeric nature of P 870⁺ was originally proposed by Norris et al.⁶ on the basis of EPR data. Further support for this model came from electron-nuclear double resonance (ENDOR) studies.⁷⁻¹¹ Similar investigations were performed in order to identify and characterize the anion radicals of the primary electron acceptors.9,12-17

FIGURE 1 Molecular structure of BChl *a* and numbering scheme; R = phytyl, p (in *Rp. sphaeroides*), R = geranylgeranyl, gg (in*R. rubrum*). In BPh *a* the central Mg is replaced by two hydrogens bound to N_I and N_{III}.

In all these studies ENDOR proved to be superior to EPR for the determination of the electron nuclear hyperfine coupling constants (hfc's) due to its much higher spectral resolution.¹⁸ Most of the *in vivo* ENDOR work has been carried out in frozen matrices,⁷⁻¹¹ where dipolar broadening masks all interactions except those belonging to nuclei with relatively small hfs anisotropy, e.g., rotating methyl groups.¹⁹ It was only recently that the first detection of liquid state ENDOR on a bacterial RC (H₂O, 25°C) was reported.²⁰ In these experiments the additional application of electron–nuclear–nuclear TRIPLE resonance¹⁸ proved to be very helpful for increasing the ENDOR sensitivity and resolution ("Special TRIPLE") and for determining the relative signs of the hfc's ("General TRIPLE").

In the present paper it is demonstrated that an almost complete set of isotropic ¹⁴N- and H-hfc's can be obtained by ENDOR/TRIPLE-in-solution for the *in vitro* prepared monomeric pigment radical cations (see also Refs. 21, 22) and anions (see also Refs. 16, 23). These systems are important as model compounds for the *in vivo* occurring radical ions. The data for BChl a^+ are compared to those of P 870⁺ in bacterial RC's, allowing conclusions about the electronic and geometric structure of the primary donor cation which is of importance for the understanding of the first events in photosynthesis.

EXPERIMENTAL

Rp. sphaeroides R-26 and *R. rubrum* G-9 were grown in Hutners medium.²⁴ *Rp. sphaeroides* R-26 RC's were isolated by the method of Clayton and Wang²⁵ and further purified on DEAE cellulose. Lauryldimethylaminoxid (LDAO) was exchanged against Triton X-100 by chemical reduction on a DEAE cellulose column. Ubiquinone was removed by the method of Okamura *et al.*²⁶ RC's of *R. rubrum* G-9 were prepared according to Snozzi and Bachofen.²⁷ The RC samples were concentrated by membrane filtration. They were filled under Argon in the sample tubes, which were then sealed. The RC concentration was $c. 2-3 \times 10^{-4}$ M.

The bacteriochlorophylls were isolated by the procedure of Strain and Svec.²⁸ BPh a was obtained from BChl a by treatment with hydrochloric acid.²³ The cation radical of BChl a was prepared by

W. LUBITZ et al.

iodine oxidation in CH₂Cl₂/CH₃OH (c. 6:1, by vol.) under high vacuum conditions.^{21,22} The anion radicals of BChl a and BPh a were generated by potentiostatically controlled electrolysis in 1,2-dimethoxyethane (DME), using tetra-*n*-butylammonium perchlorate (TBAP) as supporting electrolyte.²³ Optimum ENDOR signals²⁹ were obtained at $c. 3 \times 10^{-4}$ M for all three radicals.

The measurements were performed with a self-built computercontrolled spectrometer which allows the registration of EPR, ENDOR and General/Special TRIPLE resonance spectra. The experimental details have already been described elsewhere.^{18,30}

RESULTS AND DISCUSSION

ENDOR and TRIPLE resonance on isolated pigment radicals

As a representative example the BChl a_p^+ is chosen. The EPR spectrum (g = 2.0026) is completely unresolved. The ENDOR-in-solution spectrum, however, reveals eleven H-hfc's (Figure 2, bottom); additionally, all four ¹⁴N-hfc's could be observed at lower frequencies. For BChl a_{gg}^+ the same H- and ¹⁴N-hfc's are obtained within experimental error (≤ 10 kHz), clearly showing that the hydrophobic side chain (see Figure 1) has no influence on the spin density distribution of the isolated cation radicals. The hfc's including their signs (from General TRIPLE) are collected in Table I.

Following the method of Katz *et al.*³¹ partially deuterated BChl *a* was extracted from biosynthetically labeled bacteria. In such preparations large abundances of protons are only found at positions 1a, 5a, 2b and more than two bonds away from the π -system; the methine and β -proton (rings II, IV) positions are highly deuterated. Such D-labeling and further D-exchange experiments were used for assigning the H-hfc's to specific groups of protons in the radical (see Table I).

Our results are in agreement with those of Borg *et al.*²¹ who could resolve seven proton couplings in solution. Earlier frozen solution ENDOR experiments on BChl a^+ gave less detailed results.⁷⁻¹¹

The H- and ¹⁴N-ENDOR and TRIPLE resonance spectra of the anion radicals of BChl a and BPh a in solution have been analyzed in a similar way.²³ The isotropic hfc's including their signs and the assignments to molecular positions are also given in Table I. Although

FIGURE 2 H-ENDOR-in-solution spectra of $P870^+$ in RC's and BChl a_p^+ (both from *Rp. sphaeroides* R-26) at the given temperatures, the signs and assignments of the six largest hfc's (see Table I and II) are indicated. Experimental conditions, BChl a^+ : mw power 20 mW, r.f. power 100 W (11 G, rot. frame), 10 kHz fm of r.f. field, ± 50 kHz deviation, no field modulation, time constant 1 s, 4 scans; $P870^+$: *in situ* illumination (450–900 nm, 500 W Xe high pressure lamp), mw power 80 mW, ± 70 kHz fm deviation, 9 scans, rest as above.

the EPR spectra of BChl a^- and BPh a^- are very similar, a distinction of these species is clearly possible by their ENDOR and TRIPLE spectra.¹⁸ For all three radical ions discussed in this paper, Pariser-Parr-Pople^{16,32} and molecular fragment *ab initio*³³ calculations are available which support the above assignments (see Ref. 30).

A comparison between the cation and anion radicals (Table I) on the basis of known relationships between hfc's and π -spin densities^{23,30} yields the following result: In the *cation* there is little—or even negative—spin density at the four nitrogens and the methine carbons. High values are found for all carbons in the pyrrole rings I

TABLE I
Comparison of isotropic hfc's a (MHz) of BChl a^+ , BChl a^- , and BPh a^{-a}

Position ^b	Туре	BChl a ⁺	BChl a ⁻	BPh a^-
1a 5a αβδ	methyl protons	+4.85 +9.50 +0.15	+7.63 +9.19 -6.23	+7.10 +8.32 -6.94
u, p, o	inetime protons	+1.30 +2.30	-6.91 -9.65	-8.02 -8.50
3, 4, 7, 8	β-protons	+11.61 +13.00 +13.59 +16.43	$\begin{cases} +0.50 \\ +0.95 \\ -1.60 \end{cases}$	$\begin{cases} -1.50 \\ -1.84 \\ -2.63 \end{cases}$
	other protons	-0.50 -1.65		+0.48 +0.98
Rings II, IV, I, III	nitrogens	-3.17 -3.05 -2.35 ± 0.45	+6.52 +5.86 (-)1.18 (-)0.52	+7.19 +6.16 (-)1.20 (-)0.60

^a BChl a^+ : (I₂, CH₂Cl₂/CH₃OH), H-hfc's: 255 K, ¹⁴N-hfc's 270 K; BChl a^- , BPh a^- : (electrolysis, DME, TBAP), H-hfc's: 255 K: BChl a^- , 270 K: BPh a^- , ¹⁴N-hfc's: 280 K. Hfs data from ENDOR and Special TRIPLE, signs from General TRIPLE; for details see Refs. 23 and 30.

^b For numbering of positions see Figure 1. Except for methyl protons (see Ref. 9, 10, 41), individual assignments in the various types of nuclei cannot be given.

to IV (from β -proton and methyl hfc's). In both *anions* of BChl *a* and BPh *a* the nitrogens in rings II and IV have large and the other two have small spin densities. At the methine carbons and at carbons 1 and 5 the spin density is large. It has been argued by Fajer *et al.*³⁴ that the similarity of the primary chlorophyll donor and the intermediate chlorophyll and/or pheophytin acceptors favour electron transfer on a picosecond timescale. The striking differences between the generated cation and anion radicals, however, minimize orbital overlap and thereby inhibit wasteful back reactions.

ENDOR and TRIPLE resonance on pigment radicals in RC's

Illumination of RC's from *Rp. sphaeroides* R-26 results in a reversible bleaching of the optical band at 870 nm. Concomitantly a narrow Gaussian EPR signal at g = 2.0025 appears which is attributed to the

cation radical of P 870. *In situ* illumination in the ENDOR cavity allows the detection of the ENDOR spectrum (25°C, water) depicted in Figure 2 (top).

It has been shown²⁰ that in P 870⁺ all proton nuclei are still in the fast tumbling limit in spite of the long rotational correlation time τ_R of 30 ns (molecular weight of RC c. 100 000 daltons, water, 25°C). Therefore, a liquid solution ENDOR spectrum is obtained. However, the τ_R value is far from optimum ENDOR detection conditions²⁹ ($\tau_R^{opt} c. 1 \text{ ns}$), implying lower intensities and fairly large linewidths as compared to the BChl a^+ spectrum (Figure 2).

Seven H-hfc's can be deduced in P 870⁺ which are all positive and belong to *one* species according to a General TRIPLE experiment. Highest resolution is achieved by use of the Special TRIPLE technique (Figure 3, top). The same spectra are observed when the RC's are chemically oxidized by K_3 [Fe(CN)₆]. On thermal denaturation of the protein, EPR and ENDOR signals disappear.

In order to assign the ENDOR lines to specific groups of protons in the radical we have also studied deuterated RC's, vide supra. In Figure 3 the Special TRIPLE spectra of $P870^+$ in protonated and partially deuterated RC's are compared. Since in the latter case only lines belonging to the methyl groups in positions 1a and 5a show up (the acetyl and γ -proton hfc's are very small) an assignment as given in Figure 3 is straightforward. The additional line in the $P870^+$ spectra (smallest hfc) might be assigned to the acetyl group (2b) or to γ protons (3a, 4a, 7a, 8a) or to protons from the protein. It is remarkable that there are only two hfc's for the methyl groups in positions 1a and 5a (Figures 2 and 3). Assuming a bacteriochlorophyll dimer for $P870^+$, this finding already indicates a symmetrical spin distribution over both halves.

Since an assignment of the measured hfc's to molecular positions was achieved in both BChl a^+ and P 870⁺, the data can be directly compared (Table II). It is obvious that in P 870⁺ all hfc's are reduced in magnitude but not by a constant factor of 2 as proposed by the simple "special pair" model.⁶⁻¹¹

It is interesting that an average reduction factor defined as the ratio of average hfc's in each species is very close to two (1.95). The procedure of comparing hfc's is, however, questionable (unknown changes in the dihedral angles of the β -protons).³² A better approach to confirm the dimeric nature of P 870⁺ is to simulate the EPR

FIGURE 3 H-Special TRIPLE spectra of light-induced P 870⁺ in solution; bacteria grown with protonated succinate in H₂O (top), and in 99.9% D₂O (bottom). Experimental conditions: total r.f. power 200 W, 4 scans, ±50 kHz fm deviation, rest as for ENDOR (Figure 2). The shoulders on lines 1a and 5a (bottom) are due to non-averaged hfs anisotropy of the methyl groups and not due to additional couplings. (The deuterated RC's were coagulated resulting in a considerable increased τ_R value and solid state ENDOR line shapes.)

spectrum by using the ENDOR hfc's. The result is shown in Figure 4, in trace *a* a dimer and in trace *b* a monomer was chosen for the simulation. It is obvious that $P 870^+$ in *Rp. sphaeroides* is a dimer of BChl *a* molecules, which is also in accordance with recent EPR results from Wasielewski *et al.*³⁵

The reduction factors presented in Table II are in contradiction to earlier solid state ENDOR studies on $P 870^+$, where a halving of all observed hfc's was found.⁷⁻¹¹ Our temperature dependent ENDOR studies showed that this result was due to an incorrect assignment of the observed broad resonances in the frozen state.³⁰

т	•	D	T	T?	T	1
	А	к		н.		
		~	_			

BChl a_p^+	P 870 ⁺	RF^{a}		
+4.85	+4.00	1.21		
+9.50	+5.60	1.70		
+11.61	+3.30	3.52		
+13.00	+4.45	2.92		
+13.59	+8.60	1.58		
+16.43	+9.50	1.73		
	$ BChl a_{p}^{+} \\ +4.85 \\ +9.50 \\ +11.61 \\ +13.00 \\ +13.59 \\ +16.43 $	$\begin{array}{c c} BChl \ a_{p}^{+} & P \ 870^{+} \\ \hline \\ \hline \\ +4.85 & +4.00 \\ +9.50 & +5.60 \\ +11.61 & +3.30 \\ +13.00 & +4.45 \\ +13.59 & +8.60 \\ +16.43 & +9.50 \\ \hline \end{array}$		

Comparison of isotropic hfc's a (MHz) of BChl a_p^+ (255 K) and P 870⁺ (298 K) from *Rp. sphaeroides* R-26 (ENDOR/TRIPLE data)

^{*a*} RF: reduction factor of hfc's a (BChl a^+)/a (P 870⁺). The β -proton hfc's are not individually assigned, they are compared according to their ordering in magnitude. The smallest hfc of P 870⁺ (+1.4 MHz) is not considered since no assignment was made.

The comparison between the hfs data obtained for $P 870^+$ in Rp. sphaeroides R-26 and in another bacterium $(R. rubrum G-9)^{36}$ shows that the couplings are different. This is true not only for the β -proton hfc's which are strongly dependent on the geometry of rings II and IV, but also for the methyl couplings. No such differences of the hfc's of isolated BChl a_p^+ and BChl a_{gg}^+ (different side chains) could be found. These observations point to a possible geometrical distortion of the dimer by the protein environment.

Structural proposal for P 870⁺

Beyond the dimeric nature of P 870⁺ the hfs data contain information about its structure. By adopting the ESE results of Bowman and Norris³⁷ P 870⁺ can be described by a supermolecule, in which the unpaired electron is delocalized in a super MO extending over both BChl *a* halves. This requires an interplanar distance ≤ 3.5 Å (van der Waals distance of aromatic π -systems). The ENDOR results have shown that the halves are equivalent, i.e., they must be related to each other by a C₂-symmetry axis. A model which fulfills this requirement has already been proposed.³⁸⁻⁴⁰ In order to show if our experimental observations can be explained in the framework of such a model, we have performed a series of simple HMO calculations on a dimer constructed from the π -skeletons of the two BChl *a* molecules, including the keto groups at rings I and III. The best

FIGURE 4 Experimental and simulated EPR spectra of $P 870^+$ in solution. For the simulation the ENDOR couplings and assignments from Table II were used; trace a: simulation assuming a dimer (twice the number of protons belonging to each hfc, linewidth 2.3 G obtained from the residual small hfc in $P 870^+$ and the ¹⁴N couplings in BChl a^+); trace b: simulation assuming a monomer (linewidth 2.3 = 3.2 G).

agreement with the experiments was obtained for a dimer geometry with the following characteristics (Figure 5): (i) interplanar distance 3-3.5 Å (ii) maximum overlap in the region of rings III and V, (iii) two parallel planes (shifted against each other by 7-8 Å), α -face of the first BChl *a* partially overlapping the β -face of the second BChl *a*.

This proposed dimer geometry must, however, be considered as preliminary since the theoretical approach—so far—has been very simple (enforced by computer limitations). More sophisticated calculations (Extended HMO and SCF methods) are already in progress.

FIGURE 5 Horizontal and perpendicular view of the dimer model. Only the π -skeletons and the hydrated rings (broken lines) of the two monomeric halves are shown. Standard geometries with X-Ray modifications for the keto group at rings III were used for the Hückel MO calculations (CNDO/2 parametrization).

Furthermore we are currently trying to extend our ENDOR/TRIPLE studies to the primary donor and acceptors in other bacteria and in plant systems.

Note added in proof: After completion of this work, a manuscript by O'Malley and Babcock⁴² has been brought to our notice in which $P 870^+$ is proposed to consist of a monomeric BChl a^+ with altered spin distribution (see also ref. 36).

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (Sfb 143 and Sfb 161). The skillful assistance of C. Bubenzer (Universität München) in the RC preparations is gratefully acknowledged. H.S. thanks Dr. R. K. Clayton (Ithaca) for providing a stab culture of Rp. sphaeroides R-26.

References

- 1. Light-Induced Charge Separation in Biology and Chemistry, eds. H. Gerischer and J. J. Katz (Vlg. Chemie, Weinheim, 1979).
- 2. The Photosynthetic Bacteria, eds. R. K. Clayton and W. R. Sistrom (Plenum, in press, New York, 1978).
- 3. M. Y. Okamura, G. Feher and N. Nelson, in: Integrated Approach to Plant and
- 4. For a recent review see: W. W. Parson, Ann. Rev. Biophys. Bioeng. 11, 57 (1982), and references therein.
- 5. A. J. Hoff, Phys. Rept. 54, 75 (1979).
- J. R. Norris, R. A. Uphaus, H. L. Crespi and J. J. Katz, Proc. Natl. Acad. Sci. USA 68, 625 (1971).
- 7. J. R. Norris, M. E. Druyan and J. J. Katz, J. Am. Chem. Soc. 95, 1680 (1973).
- 8. G. Feher, A. J. Hoff, R. A. Isaacson and J. D. McElroy, *Biophys. J. Abstr.* 13, 61 (1973).
- G. Feher, A. J. Hoff, R. A. Isaacson and L. C. Ackerson, Ann. N.Y. Acad. Sci. 244, 239 (1975).
- 10. J. R. Norris, H. Scheer and J. J. Katz, Ann. N.Y. Acad. Sci. 244, 260 (1975).
- J. R. Norris, H. Scheer, M. E. Druyan and J. J. Katz, Proc. Natl. Acad. Sci. USA 71, 4897 (1974).
- 12. G. Feher and M. Y. Okamura, in: Ref. 2, Chapter 19, p. 362.
- 13. G. Feher, R. A. Isaacson and M. Y. Okamura, Biophys. J. Abstr. 17, 149 (1977).
- 14. J. Fajer, M. S. Davis and A. Forman, Biophys. J. Abstr. 17, 150 (1977).
- J. Fajer, D. C. Brune, M. S. Davis, A. Forman and L. D. Spaulding, *Proc. Natl. Acad. Sci. USA* **75**, 4956 (1975).
- J. Fajer, A. Forman, M. S. Davis, L. D. Spaulding, C. D. Brune and R. H. Felton, J. Am. Chem. Soc. 99, 4134 (1977).
- 17. M. Y. Okamura, R. A. Isaacson and G. Feher, *Biochim. Biophys. Acta* 546, 394 (1979).
- 18. K. Möbius, M. Plato and W. Lubitz, Phys. Rept. 87, 171 (1982).
- 19. J. S. Hyde, G. H. Rist and L. E. G. Eriksson, J. Phys. Chem. 72, 4269 (1968).
- F. Lendzian, W. Lubitz, H. Scheer, C. Bubenzer and K. Möbius, J. Am. Chem. Soc. 103, 4635 (1981).
- 21. D. C. Borg, A. Forman and J. Fajer, J. Am. Chem. Soc. 98, 6889 (1976).
- 22. A. J. Hoff and K. Möbius, Proc. Natl. Acad. Sci. USA 75, 2296 (1978).
- 23. W. Lubitz, F. Lendzian and K. Möbius, Chem. Phys. Lett. 81, 235 (1981); 84, 33 (1981).
- 24. G. Cohen-Bazire, W. R. Sistrom and R. Y. Stanier, J. Cell Comp. Physiol. 49, 25 (1957).
- 25. R. K. Clayton and R. T. Wang, Meth. Enzym. 23, 696 (1971).
- 26. M. Y. Okamura, R. A. Isaacson and G. Feher, Proc. Natl. Acad. Sci. USA 72, 3491 (1975).
- 27. M. Snozzi and R. Bachofen, Biochim. Biophys. Acta 546, 236 (1979).
- H. H. Strain and W. A. Svec, in: *The Chlorophylls*, eds. L. P. Vernon and G. R. Seely (Academic Press, New York, 1966) Chapter 2.
- 29. M. Plato, W. Lubitz and K. Möbius, J. Phys. Chem. 85, 1202 (1981).
- 30. F. Lendzian, Ph.D. thesis, Freie Universität Berlin, West Germany (1982).
- R. C. Dougherty, H. L. Crespi, H. H. Strain and J. J. Katz, J. Am. Chem. Soc. 88, 2854 (1966); J. J. Katz, R. C. Dougherty, H. L. Crespi and H. H. Strain, J. Am. Chem. Soc. 88, 2856 (1966).

- 32. M. S. Davis, A. Forman, L. K. Hanson, J. P. Thornber and J. Fajer, J. Phys. Chem. 83, 3325 (1979).
- 33. J. D. Petke, G. M. Maggiora, L. L. Shipman and R. E. Christoffersen, *Photochem. Photobiol.* **31**, 243 (1980); **32**, 661 (1980); **33**, 663 (1981).
- 34. J. Fajer, M. S. Davis, A. Forman, V. V. Klimov, E. Dolan and B. Ke, J. Am. Chem. Soc. 102, 7143 (1980).
- M. R. Wasielewski, J. R. Norris, H. L. Crespi and J. Harper, J. Am. Chem. Soc. 103, 7664 (1981).
- 36. W. Lubitz, F. Lendzian, H. Scheer, J. Gottstein, M. Plato and K. Möbius, (1983) *Proc. Natl. Acad. Sci. USA*, in press.
- 37. M. K. Bowman and J. R. Norris, J. Am. Chem. Soc. 104, 1512 (1982).
- 38. S. G. Boxer and G. L. Closs, J. Am. Chem. Soc. 98, 5406 (1976).
- 39. L. L. Shipman, T. M. Cotton, J. R. Norris and J. J. Katz, Proc. Natl. Acad. Sci. USA 73, 1791 (1976).
- 40. M. R. Wasielewski, U. H. Smith, B. T. Cope and J. J. Katz, J. Am. Chem. Soc. 99, 4172 (1977).
- A. Forman, M. S. Davis, I. Fujita, L. K. Hanson, K. M. Smith and J. Fajer, *Israel J. Chem.* 21, 265 (1981).
- 42. P. J. O'Malley and G. T. Babcock, (1983) Proc. Natl. Acad. Sci. USA, in press.