
Matthias Schmid & Hans Schneeweiss

The Effect of Microaggregation by Individual
Ranking on the Estimation of Moments

Technical Report Number 025, 2008
Department of Statistics
University of Munich

http://www.stat.uni-muenchen.de

http://www.stat.uni-muenchen.de/
http://www.stat.uni-muenchen.de/


The Effect of Microaggregation by
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of Moments
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Abstract

Microaggregation by individual ranking (IR) is an important tech-
nique for masking confidential data. While being a successful method
for controlling the disclosure risk of observations, IR is also known for
its favorable property of having a relatively small effect on the results
of statistical analyses. In this paper we conduct a detailed theoretical
analysis on the estimation of arbitrary moments from a data set that
has been anonymized by means of the IR method. We show that clas-
sical moment estimators remain both consistent and asymptotically
normal under relatively weak assumptions. This theory provides the
justification for applying standard statistical estimation techniques to
the anonymized data without having to correct for a possible bias
caused by anonymization.

Keywords: consistent estimation, disclosure control, individual ranking, mi-
croaggregation, general moments.

1 Introduction

Confidential data that have been collected by a statistical office are usually
anonymized before publication. Anonymization is accomplished by making
use of statistical disclosure control techniques. These techniques result in
a reduction of the information content of the data and thus in a low re-
identification risk of the observations in the published data set. A drawback

∗Institut für Medizininformatik, Biometrie und Epidemiologie, Friedrich-Alexander-
Universität Erlangen-Nürnberg, Waldstraße 6, D–91054 Erlangen, Germany. Email:
matthias.schmid@imbe.imed.uni-erlangen.de

†Institut für Statistik, Ludwig-Maximilians-Universität München, Ludwigstraße 33, D–
80539 München, Germany. Email: hans.schneeweiss@stat.uni-muenchen.de

1



2

of disclosure control techniques is that the reduction of the information con-
tent often leads to an efficiency loss and/or to biased statistical analysis
(Willenborg and de Waal 2001, Doyle et al. 2001, Domingo-Ferrer and Torra
2004, Ronning et al. 2005, Aggarwal and Yu 2008). Due to confidentiality
requirements, a certain amount of efficiency loss cannot be avoided. How-
ever, if the efficiency loss is not too large, data users will still benefit from
the published data. In order to control the efficiency loss arising from the
anonymization of data sets, the effect of statistical disclosure control tech-
niques on statistical analysis has to be carefully examined.

In this paper the focus is on the effect of microaggregation by individual
ranking (IR) on the estimation of general moments and, by implication, on
the least squares (LS) estimation of a linear model in transformed variables.
IR, which has been introduced by Defays and Anwar (1998), is an important
statistical disclosure control technique for continuous microdata. The idea of
IR is to anonymize each continuous variable in a data set one after another
by forming small groups (usually of size 3 or 5) of ”similar” data values and
by replacing the original data values with the respective group means. It is
thus hoped that the multivariate distribution of a data set is approximately
preserved. Although several authors have argued that the re-identification
risk resulting from the application of IR remains relatively high (Domingo-
Ferrer and Torra 2001, Domingo-Ferrer et al. 2002 , Winkler 2002), IR has
nevertheless been shown to be a successful technique for anonymizing confi-
dential data sets (see Ronning et al. 2005, who recommended IR for use in
official statistics in Germany).

In two previous papers (Schmid 2006, Schmid and Schneeweiss 2008) we have
analyzed the effect of IR on the estimation of linear models. In Schmid (2006)
it was shown analytically that a linear model can be consistently estimated
from the microaggregated data by standard LS estimation techniques. In
addition, if the continuous variables in a data set are assumed to follow a
mixed normal distribution each, the efficiency loss due to IR is asymptotically
zero. These results provide the justification of the application of least squares
techniques to a data set whose continuous variables have been anonymized
by means of the IR technique. In Schmid and Schneeweiss (2008) we have
extended this theory by considering linear models in transformed variables,
where nonlinear variable transformations are applied to the data after mi-
croaggregation. We have shown that even in this case the LS estimators of a
linear model remain consistent under mild regularity assumptions.
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It should be pointed out that the consistency results derived for transformed
data (Schmid and Schneeweiss 2008) do not automatically follow from the re-
sults for untransformed data (Schmid 2006). This is because nonlinear trans-
formations of microaggregated data introduce an additional (finite sample)
bias in the LS estimators. For instance, the empirical mean of three loga-
rithmized data values is usually different from the logarithmized mean of the
three values.

The purpose of this paper is to provide a generalization of the theory pre-
sented in Schmid (2006) and Schmid and Schneeweiss (2008) to the estima-
tion of arbitrary moments based on transformed and untransformed microag-
gregated data. The variables involved need not be continuous variables as in
Schmid and Schneeweiss (2008), so the consistency proof has to be adapted to
this more general case. In addition, arbitrary multivariate moments are con-
sidered and not only product moments as in Schmid and Schneeweiss (2008).
We will not only prove the consistency of the empirical moments computed
from microaggregated data but will also specify conditions and regularity
assumptions under which the moments are asymptotically normal. Arbitrary
moments include first, second, and product moments of the transformed and
untransformed data as special cases. Thus, the consistency results for linear
models presented in Schmid (2006) and Schmid and Schneeweiss (2008) are
confirmed. Moreover, since the consistent estimation of arbitrary moments
from the microaggregated data is guaranteed, any method-of-moments esti-
mator is in turn consistent if computed from the microaggregated data. It
should be noted that these results (obtained for the IR method) are funda-
mentally different from previous results obtained for other microaggregation
techniques, such as multivariate microaggregation with a sorting variable
(Mateo-Sanz and Domingo-Ferrer 1998, Domingo-Ferrer and Torra 2001). In
the latter case, moment estimators have been shown to be asymptotically
biased, see Schmid et al. (2007).

The paper is organized as follows: In Section 2 we give an example of the IR
method and illustrate the problems arising from nonlinear transformations of
the microaggregated data. In Section 3 the consistency of the empirical mo-
ments computed from transformed micraggregated data is proved. Section 4
deals with the asymptotic normality of these estimators. Section 5 contains
a simulation study and some examples on the theoretical results derived in
Sections 3 and 4. A summary of the results presented in this paper is given
in Section 6.
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2 Microaggregation by individual ranking

Microaggregation by individual ranking works as follows: First, a fixed group
size K is chosen. Next, the data set is sorted by the first continuous variable,
and groups of K consecutive observations are formed. The values of the
first continuous variable in each group are replaced by their corresponding
group means, while the values of the other variables in the data set are left
unchanged. Then the same procedure is repeated for the second continuous
variable, and so on. If the number of observations n is not a multiple of K,
it is common practice to alter the procedure such that the groups around
the medians contain K + mod (n/K) adjacent data values (see Domingo-
Ferrer et al. 2002). If there are discrete variables in the data set, they are
left unchanged during the IR procedure. It is generally considered necessary
to form groups of at least K = 3 observations, as data attackers can easily
identify an observation in a group of less than 3 observations if they have
sufficient background knowledge on only one of the observations. In practice,
it is common to form groups of sizes 3 or 5.

As an example of IR we consider a data set consisting of two vectors x
and y, both containing continuous data. In addition, we consider a ”dummy”
vector z containing the values of a discrete binary variable. Assume that the
original data set is given by

x 2 4 7 0 9 5 1 8 3
y 4 2 0 9 1 5 6 11 10
z 1 0 1 0 1 1 1 1 1

.

The first step of IR results in the sorted data set

x 0 1 2 3 4 5 7 8 9
y 9 6 4 10 2 5 0 11 1
z 0 1 1 1 0 1 1 1 1

,

where the rows of the original data set have been ordered according to the
values of x. In the second step of IR, with K chosen to be 3, the values of x
are microaggregated:
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x̃ 1 1 1 4 4 4 8 8 8
y 9 6 4 10 2 5 0 11 1
z 0 1 1 1 0 1 1 1 1

.

The third step of IR results in the sorted data set

x̃ 8 8 4 1 4 1 1 4 8
y 0 1 2 4 5 6 9 10 11
z 1 1 0 1 1 1 0 1 1

,

where the rows have been ordered according to the values of y. Finally, in
the fourth step of IR, again with K chosen to be 3, the values of y are
microaggregated:

x̃ 8 8 4 1 4 1 1 4 8
ỹ 1 1 1 5 5 5 10 10 10
z 1 1 0 1 1 1 0 1 1

.

Now suppose that ỹ is additionally transformed by means of a quadratic
transformation. Then

ỹ2 = (1, 1, 1, 25, 25, 25, 100, 100, 100) .

Obviously, taking the squares of the microaggregated values of y results in a
different data set than when the squared values of y are microaggregated. In
the latter case, one would have obtained

ỹ2 = (1.67, 1.67, 1.67, 25.67, 25.67, 25.67, 100.67, 100.67, 100.67) .

Now consider the estimation of a theoretical moment, i.e., the expectation
of an arbitrary one-dimensional function of the random variables (X, Y, Z)
from the microaggregated data. Since the original data have been altered by
IR, the consistent estimation of the theoretical moment by its corresponding
ordinary empirical moment is not guaranteed any more. In the next sections
we will address this problem.
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3 Consistent estimation of moments

Let X be a real random variable and let xi, i = 1, . . . , n, be an i.i.d. sample
taken from the distribution of X. The corresponding individually microag-
gregated data are denoted by x̃i, i = 1, . . . , n, where the group size for the
aggregation of X is denoted by K. For simplicity we always assume n to be a
multiple of K (this assumption does not affect the asymptotic results derived
in the following). We want to prove that the usual consistent estimator of
the moments of the distribution of X remains consistent if we replace the
original data by their microaggregated data values.

Let us consider very general moments: Suppose that the expectation E(h(X))
for some measurable function h exists. We know that, given an i.i.d. sample
(x1, . . . , xn), E(h(X)) can be consistently estimated by the empirical mean
1
n

∑n
i=1 h(xi). Can we estimate E(h(X)) also via the microaggregated sample

(x̃1, . . . , x̃n) in the same way? The next theorem gives an answer.

Theorem 1. Let X be a real-valued random variable and (x1, . . . , xn) an
i.i.d. sample from the distribution of X. Let (x̃1, . . . , x̃n) be the correspond-
ing microaggregated sample with fixed aggregation group size K, assuming
(w.l.o.g.) n to be a multiple of K. Let h be a continuously differentiable func-
tion with domain D = (dl, du) (which is a finite or infinite open interval
in R). The support of X is assumed to be contained in D. Suppose |h(X)|
is monotone (increasing or decreasing) for dl < x < cl and for cu < x < du

with some cl < cu. If E(h(X)) exists, then a. s.

limn→∞
1

n

n∑
i=1

h(x̃i) = E(h(X)) . (1)

Proof. Let B = [bl, bu] ⊂ D be a closed finite interval such that (cl, cu) ⊂ B
and E[|h(X)|IB̄(X)] < ε for some preassigned ε > 0. This is possible
because E(h(X)) exists. Let B = {i : xi ∈ B} and let Gi = {j :
xj and xi belong to the same microaggregation group}. We will prove that

lim
n→∞

∣∣∣∣∣ 1n
n∑

i=1

h(x̃i)−
1

n

n∑
i=1

h(xi)

∣∣∣∣∣ = 0 a. s. (2)
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Obviously,∣∣∣∣∣ 1n
n∑

i=1

h(x̃i)−
1

n

n∑
i=1

h(xi)

∣∣∣∣∣ ≤

∣∣∣∣∣ 1n ∑
i:Gi⊂B

h(x̃i)−
1

n

∑
i:Gi⊂B

h(xi)

∣∣∣∣∣ (3)

+

∣∣∣∣∣∣ 1n
∑

i:Gi⊂B̄

h(x̃i)−
1

n

∑
i:Gi⊂B̄

h(xi)

∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
1

n

∑
i:Gi 6⊂B

Gi 6⊂B̄

h(x̃i)−
1

n

∑
i:Gi 6⊂B

Gi 6⊂B̄

h(xi)

∣∣∣∣∣∣∣ .

Each of the three terms on the r. h. s. of (3) can be made less than a fixed
multiple of ε for sufficiently large n.

First consider the first term. By a Taylor series expansion,

h(xi) = h(x̃i) + h′(x∗i )(xi − x̃i) , (4)

where x∗i = tixi + (1 − ti)x̃i, ti ∈ (0, 1). Note that x∗i ∈ B because Gi ⊂ B.
Therefore, with H ′ = maxx∈B |h′(x)| (which exists because B is closed and h′

is continuous),∣∣∣∣∣ 1n ∑
i:Gi⊂B

h(x̃i)−
1

n

∑
i:Gi⊂B

h(xi)

∣∣∣∣∣ ≤ 1

n

∑
i:Gi⊂B

|h′(x∗i )||xi − x̃i|

≤ 1

n
H ′

∑
i:Gi⊂B

|xi − x̃i|

≤ 1

n
H ′

∑
i:Gi⊂B

||Gi||

≤ 1

n
H ′K||B|| , (5)

where ||Gi|| is the range of the xj belonging to group Gi and ||B|| = bu − bl

is the length of the interval B. The last inequality follows because there are
K elements in each Gi. The last term converges to 0 as n →∞, so that with
probability 1 ∣∣∣∣∣ 1n ∑

i:Gi⊂B

h(x̃i)−
1

n

∑
i:Gi⊂B

h(xi)

∣∣∣∣∣ < ε (6)
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for sufficiently large n.

Next consider the second term on the r. h. s. of (3). First note that∣∣∣∣∣∣ 1n
∑

i:Gi⊂B̄

h(x̃i)−
1

n

∑
i:Gi⊂B̄

h(xi)

∣∣∣∣∣∣ ≤ 1

n

∑
i:Gi⊂B̄

|h(x̃i)|+
1

n

∑
i:Gi⊂B̄

|h(xi)| . (7)

As x̃i is the arithmetic mean of the xj with j ∈ Gi, clearly minj∈Gi
{xj} ≤

x̃i ≤ maxj∈Gi
{xj}. Because of the monotonicity of |h(x)| in B̄, it follows that

|h(x̃i)| ≤ max
j∈Gi

|h(xj)| ≤
∑
j∈Gi

|h(xj)| . (8)

Therefore, since each Gi has K elements,∑
i:Gi⊂B̄

|h(x̃i)| ≤ K
∑

i:Gi⊂B̄

|h(xi)| ≤ K
∑
i∈B̄

|h(xi)| . (9)

Also, ∑
i:Gi⊂B̄

|h(xi)| ≤
∑
i∈B̄

|h(xi)| (10)

and hence

1

n

∑
i:Gi⊂B̄

|h(x̃i)|+
1

n

∑
i:Gi⊂B̄

|h(xi)| ≤ (K + 1)
1

n

∑
i∈B̄

|h(xi)| . (11)

By the Strong Law of Large Numbers, the last term converges a. s. to
(K + 1)E[|h(X)IB̄(X)|], which, by assumption, is less than (K + 1)ε. Thus,
for sufficiently large n, a. s.∣∣∣∣∣∣ 1n

∑
i:Gi⊂B̄

h(x̃i)−
1

n

∑
i:Gi⊂B̄

h(xi)

∣∣∣∣∣∣ < (K + 1) ε (12)

with probability 1.

Finally consider the last term on the r. h. s. of (3). This term comprises the
sample points of only two microaggregation groups, one on each side of the
interval B (on rare occasions, there may be only one group such that some
xi in this group lie to the left of bl and some to the right of bu, but such a
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group can be treated in a similar way as the other ones). These two groups
(which could also be empty) are in effect negligible. Nevertheless, we will
treat them in detail. It suffices to consider the group surrounding bu. Let Gu

be the corresponding set of indices such that some xi with i ∈ Gu lie in B,
while some other xi with i ∈ Gu lie to the right of bu. Since at most K − 1
sample points xi lie in B, we have

1

n

∑
i∈Gu

|h(xi)| ≤
K − 1

n
H +

1

n

∑
i∈B̄

|h(xi)| < ε (13)

a. s. for sufficiently large n, where H = maxx∈B |h(x)|. Denote the mean of
the xi, i ∈ Gu, by x̃u. There are three cases now: Case 1: x̃u ∈ B. Then
|h(x̃u)| ≤ H. Case 2: x̃u > bu and |h(x)| monotone decreasing for x > bu.
Then h(x̃u) ≤ h(bu). Case 3: x̃u > bu and |h(x)| monotone increasing for
x > bu. Then |h(x̃u)| ≤

∑
i∈B̄ |h(xi)|. In all three cases,

1

n

∑
i∈Gu

|h(x̃i)| =
K

n
|h(x̃u)| < ε (14)

a. s. for n sufficiently large. The same arguments hold true for the group on
the left side of B, and so∣∣∣∣∣∣∣

1

n

∑
i:Gi 6⊂B

Gi 6⊂B̄

h(x̃i)−
1

n

∑
i:Gi 6⊂B

Gi 6⊂B̄

h(xi)

∣∣∣∣∣∣∣ < 4 ε . (15)

Inequalities (3), (6), (12), and (15) imply that∣∣∣∣∣ 1n
n∑

i=1

h(x̃i)−
1

n

n∑
i=1

h(xi)

∣∣∣∣∣ < (5 + (K + 1)) ε (16)

a. s. for n sufficiently large.

Example 1: Theorem 1 applies to ordinary moments of X and moments of
transformed variables h(X), such as log(X) or Xλ, λ ∈ R+.

Remark 1: Theorem 1 also holds if we only suppose that |h(x)| ≤ h∗(x),
where h∗(x) has the monotonicity property required in Theorem 1, and
that E(h∗(X)) exists. Thus, equation 1 also holds for functions such as
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h(x) = sin(x), which do not satisfy the monotonicity condition required
in Theorem 1.

We next study a pair of random variables (X, Y ) and a general bivariate
moment given by some (measurable) function h(X, Y ). We assume that
E(h(X, Y )) exists. We give conditions under which E(h(X, Y )) can be con-
sistently estimated by the empirical mean 1

n

∑n
i=1 h(x̃i, ỹi) constructed from

the individually microaggregated data (x̃i, ỹi), i = 1, . . . , n. The following
conditions will be sufficient for our purpose.

H1: h(x, y) is defined on an open rectangle D = Dx × Dy, where Dx and
Dy are finite or infinite open intervals on the real line. The support of
(X,Y ) is contained in D.

H2: h(x, y) has continuous partial derivatives on D.

H3: There exist non-negative continuously differentiable functions hx and hy

defined on Dx and Dy, respectively, such that |h(x, y)| ≤ hx(x) + hy(y)
for all (x, y) ∈ D ∩ C̄, where C = Cx × Cy is a closed finite rectangle
contained in D.

H4: E(h2
x(X)) < ∞ and E(h2

y(Y )) < ∞.

H5: hx is monotone on each side of C̄x and hy is monotone on each side
of C̄y.

Theorem 2. Let (X, Y ) be a pair of real random variables and (xi, yi), i =
1, . . . , n, an i.i.d. sample from the distribution of (X, Y ). Let (x̃i, ỹi), i =
1, . . . , n, be the corresponding individually microaggregated sample with fixed
group size K for aggregating x and fixed group size L for aggregating y. Let
h(x, y) satisfy the conditions H1 to H5. Then a. s.

lim
n→∞

1

n

n∑
i=1

h(x̃i, ỹi) = E(h(X, Y )) . (17)

Proof. Let Bx and By be closed finite intervals such that Cx ⊂ Bx ⊂ Dx and
Cy ⊂ By ⊂ Dy, and let B = Bx × By. Choose Bx such that

E[hx(X)IB̄x
(X)] < ε , (18)

E[h2
x(X)IB̄x

(X)] < ε , (19)

P(X ∈ B̄x) < ε (20)
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for some preassigned ε > 0. Choose By analogously. Let Bx = {i : xi ∈
Bx}, By = {i : yi ∈ By}, B = Bx ∩ By = {i : (xi, yi) ∈ B}, and Gi =
{j : xj and xi belong to the same microaggregation group for x}. Similarly,
let Hi = {j : yj and yi belong to the same microaggregation group for y}.
We will prove that

lim
n→∞

∣∣∣∣∣ 1n
n∑

i=1

h(x̃i, ỹi)−
1

n

n∑
i=1

h(xi, yi)

∣∣∣∣∣ = 0 a. s. (21)

Now ∣∣∣∣∣ 1n
n∑

i=1

h(x̃i, ỹi)−
1

n

n∑
i=1

h(xi, yi)

∣∣∣∣∣ ≤ S1 + S2 + S3 + S4 + S5 , (22)

where

S1 =
1

n

∑
i:Gi⊂Bx
Hi⊂By

|h(x̃i, ỹi)− h(xi, yi)| , (23)

S2 =
1

n

∑
i:Gi⊂B̄x

|h(x̃i, ỹi)− h(xi, yi)| , (24)

S3 =
1

n

∑
i:Hi⊂B̄y

|h(x̃i, ỹi)− h(xi, yi)| , (25)

S4 =
1

n

∑
i:Gi 6⊂Bx
Gi 6⊂B̄x

|h(x̃i, ỹi)− h(xi, yi)| , (26)

S5 =
1

n

∑
i:Hi 6⊂By
Hi 6⊂B̄y

|h(x̃i, ỹi)− h(xi, yi)| . (27)

(28)

We start with S1. By a Taylor series expansion,

h(xi, yi) = h(x̃i, ỹi) +
∂

∂x
h(x∗i , y

∗
i )(xi − x̃i) +

∂

∂y
h(x∗i , y

∗
i )(yi − ỹi) , (29)

where (x∗i , y
∗
i ) = ti ·(xi, yi)+(1−ti) ·(x̃i, ỹi), ti ∈ (0, 1), and thus (x∗i , y

∗
i ) ∈ B.
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Let H ′ be an upper bound for ∂
∂x

h(x, y) and ∂
∂y

h(x, y), (x, y) ∈ B. Then

S1 ≤ 1

n
H ′

∑
i:Gi⊂Bx
Hi⊂By

(
|xi − x̃i|+ |yi − ỹi|

)

≤ 1

n
H ′

 ∑
i:Gi⊂Bx

|xi − x̃i|+
∑

i:Hi⊂By

|yi − ỹi|


≤ 1

n
H ′

 ∑
i:Gi⊂Bx

||Gi||+
∑

i:Hi⊂By

||Hi||


≤ 1

n
H ′
(
K||Bx||+ L||By||

)
, (30)

where ||Gi|| and ||Bx|| are defined as in the proof of Theorem 1 and ||Hi||
and ||By|| are defined analogously. It follows that

S1 < ε (31)

for sufficiently large n. Next consider S2. First,

S2 ≤ 1

n

∑
i:Gi⊂B̄x

|h(x̃i, ỹi)|+
1

n

∑
i:Gi⊂B̄x

|h(xi, yi)|

≤ 1

n

∑
i:Gi⊂B̄x

(hx(x̃i) + hy(ỹi)) +
1

n

∑
i:Gi⊂B̄x

(hx(xi) + hy(yi)) . (32)

Now, because of the monotonicity of hx on B̄x, just as in the proof of Theo-
rem 1,

1

n

∑
i:Gi⊂B̄x

hx(x̃i) ≤
K

n

∑
i∈B̄x

hx(xi) < Kε (33)

a. s., because 1
n

∑
i∈B̄x

hx(xi) converges a. s. to E[hx(X)IB̄x
(X)], which is

smaller than ε. Next,

1

n

∑
i:Gi⊂B̄x

hy(ỹi) ≤ 1

n

∑
i∈B̄x

hy(ỹi) =
1

n

n∑
i=1

hy(ỹi)IB̄x
(xi)

≤

√√√√ 1

n

n∑
i=1

h2
y(ỹi)

√√√√ 1

n

n∑
i=1

IB̄x
(xi) <

√
E(h2

y(Y )) ε (34)
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a. s. for n sufficiently large. The last inequality of (34) holds because a. s.,
due to Theorem 1 (with h2

y in place of h),

lim
n→∞

1

n

n∑
i=1

h2
y(ỹi) = E(h2

y(Y )) (35)

and limn→∞
1
n

∑n
i=1 IB̄x

(xi) = P(X ∈ B̄x), which is smaller than ε by assump-
tion. Thus, by (33) and (34),

1

n

∑
i:Gi⊂B̄x

(hx(x̃i) + hy(ỹi)) <
(
K +

√
E(h2

y(Y ))
)

ε . (36)

Setting K = 1 it follows that

1

n

∑
i:Gi⊂B̄x

(hx(xi) + hy(yi)) ≤
(
1 +

√
E(h2

y(Y ))
)

ε . (37)

Now, (32), (36), and (37) imply

S2 < C2 ε (38)

a. s. with some constant C2 for sufficiently large n. The sum S3 can be treated
in a similar way, and we get

S3 < C3 ε (39)

a. s. for sufficiently large n. The sums S4 and S5 are border line cases and can
be neglected. Nevertheless, let us study S4 in some detail. Let Gu be defined
as in the proof of Theorem 1 with Bx in place of B. There are K indices in Gu.
If (xi, yi) ∈ B then |h(xi, yi)| ≤ H, where H = max(x,y)∈B |h(x, y)|. Similarly,
|h(x̃i, ỹi)| ≤ H for (x̃i, ỹi) ∈ B. For the other sample points, |h(xi, yi)| ≤
hx(xi) + hy(yi) if (xi, yi) ∈ B̄, and h(x̃i, ỹi) ≤ hx(x̃i) + hy(ỹi) if (x̃i, ỹi) ∈ B̄.∑

i∈Gu
hx(xi) and

∑
i∈Gu

hx(x̃i) can be bounded in the same way as in the
proof of Theorem 1. As to the sums with yi and ỹi, we have a. s. for sufficiently
large n

1

n

∑
i∈Gu

hy(yi) ≤
1

n
KHy +

1

n

∑
i∈B̄y

hy(yi) < ε , (40)

where Hy = maxy∈By hy(y), and

1

n

∑
i∈Gu

hy(ỹi) ≤
1

n
KHy +

1

n

∑
ỹi∈B̄y

hy(ỹi) < ε . (41)
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Thus S4 < C4ε and similarly S5 < C5ε a. s. for sufficiently large n. Summing
up, we have ∣∣∣∣∣ 1n

n∑
i=1

h(x̃i, ỹi)−
1

n

n∑
i=1

h(xi, yi)

∣∣∣∣∣ < Cε . (42)

with some constant C.

Example 2: Let h(x, y) = h1(x)h2(y) and suppose that the second moments
of h1(X) and h2(Y ) both exist. Then E(h(X,Y )) is the mixed moment of
h1(X) and h2(Y ). As

|h(x, y)| ≤ h2
1(x) + h2

2(y) , (43)

the conditions of Theorem 2 are satisfied if h1 and h2 are continuously differ-
entiable and |h1| and |h2| are monotone for x and y outside a finite interval,
respectively. In Schmid and Schneeweiss (2008), Theorem 2 was proved for
this special case.

4 Asymptotics

Theorem 1 states that we can consistently estimate any moment E(h(X)) of
a random variable X by the arithmetic mean of the transformed microaggre-
gated data h(x̃i), in the same way as we would estimate E(h(X)) from the
transformed non-microaggregated data h(xi). We now give conditions under
which the estimator constructed from the microaggregated data is as efficient
as the corresponding estimator constructed from the non-aggregated data.
We can prove even more: The two estimators are asymptotically equivalent
under certain conditions, in the sense that

√
n( 1

n

∑n
i=1 h(x̃i)− 1

n

∑n
i=1 h(xi))

tends to 0 in probability with n →∞. There are two conditions that we need,
one concerning the transformation function h, the other one concerning the
distribution of X.

H (Condition on h):

a) h(x) is a continuously differentiable function on its domain D = (dl, du).
b) There is a fixed point b0 ∈ D with the following property: For any closed
interval B = [bl, bu] ⊂ D such that b0 is in the interior of B, let Hl(bl) =
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maxbl≤x≤b0 |h′(x)| and Hu(bu) = maxb0≤x≤bu |h′(x)|. Then there exist positive
numbers al, au and ml, mu such that for some bounds γ > 0 and δ > 0,

if dl = −∞, then Hl(bl) ≤ al(b0 − bl)
ml for b0 − bl > γ ,

if dl > −∞, then Hl(bl) ≤ al(bl − dl)
−ml for bl − dl < δ ,

if du = ∞, then Hu(bu) ≤ au(bu − b0)
mu for bu − b0 > γ ,

if du < ∞, then Hu(bu) ≤ au(du − bu)
−mu for du − bu < δ .

Remark 2: If condition H holds for some b0 ∈ D, then it holds for any
b0 ∈ D. In particular, b0 can always be chosen such that P(X < b0) > 0 and
P(X > b0) > 0.

F (Condition on the distribution of X):

a) The support of X is inside D.
b) Let F be the distribution function of X. Then

if dl = −∞, then lim
n→∞

[
1− F (b0 − n

1
4(ml+1) )

]n
= 1 ,

if dl > −∞, then lim
n→∞

[
1− F (dl + n

− 1
4ml )

]n
= 1 ,

if du = ∞, then lim
n→∞

[
F (b0 + n

1
4(mu+1) )

]n
= 1 ,

if du < ∞, then lim
n→∞

[
F (du − n−

1
4mu )

]n
= 1 .

Remark 3: If condition F holds for some b0 it holds for every b0. Therefore
the b0 of condition F need not necessarily be the same as the b0 of condition
H (although it will be so in this paper). In particular, one could set b0 = 0.

While the conditions on h bound the growth of h′(x) when x approaches the
boundaries of D, the conditions on the distribution of X describe how fast
the distribution function F (x) has to tend to 0 or 1 when x approaches the
boundaries of D. The stronger h′(x) grows, i.e., the larger the numbers ml

and mu are, the faster F (x) has to go to its limits 0 or 1.

Theorem 3. Suppose an i.i.d. sample x1, . . . , xn of a random variable X has
been microaggregated. If the transformation function h and the distribution
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function of X satisfy conditions H and F , respectively, then

plimn→∞
1√
n

[
n∑

i=1

h(x̃i)−
n∑

i=1

h(xi)

]
= 0 . (44)

Proof. We need some preliminary definitions. Let Bn = [bl(n), bu(n)] be a
closed finite interval depending on n with b0 lying in its interior. Let bl =
bl(n) and bu = bu(n) be the following functions depending on whether the
boundaries of D are finite or infinite:

if dl = −∞, b0 − bl = n
1

4(ml+1) ,

if dl > −∞, bl − dl = n
− 1

4ml ,

if du = ∞, bu − b0 = n
1

4(mu+1) ,

if du < ∞, du − bu = n−
1

4mu .

Define Bl0 := {i : xi ∈ [bl, b0]} and B0u := {i : xi ∈ [b0, bu]}. According to
Remark 1, we can choose b0 and a fixed closed interval B0 = [b0l, b0u] such
that b0l < b0 < b0u, P(b0l < X < b0) > 0, and P(b0 < X < b0u) > 0. Let G0

be the the set of indices of the aggregation group for which some xi lie to the
left and some to the right of b0. (There is at most one such group).

The proof has four variants depending on whether the bounds of D are fi-
nite or infinite. Let us consider only the case, where du = ∞ and dl >
−∞ (i.e., one bound is finite, the other one infinite). The other three
cases can be treated similarly. For any ε > 0 let An be the event that
1√
n
|
∑n

i=1 h(x̃i)−
∑n

i=1 h(xi)| > ε and let Bn be the event that xi ∈ Bn for all
i = 1, . . . , n. Finally let Cn be the event that the sample points with indices
belonging to G0 lie all inside B0. We have to prove that limn→∞ P(An) = 0
for all ε > 0. Now

P(An) ≤ P(An ∩Bn ∩ Cn) + P(B̄n) + P(C̄n) . (45)

We want to prove that P(An ∩ Bn ∩ Cn) → 0 as well as P(B̄n) → 0 and
P(C̄n) → 0. First consider the event An ∩ Bn ∩ Cn. Under this event (with
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the notations of the proof of Theorem 1,

ε <
1√
n

n∑
i=1

|h(x̃i)− h(xi)| ≤
1√
n

n∑
i=1

|h′(x∗i )||xi − x̃i|

≤ 1√
n

[
Hl(bl)

∑
i:Gi⊂Bl0

|xi − x̃i|+ Hu(bu)
∑

i:Gi⊂B0u

|xi − x̃i|

+
∑
i∈G0

|h′(x∗i )||xi − x̃i|

]

≤ K√
n

[
Hl(bl)(b0 − bl) + Hu(bu)(bu − b0) + h0

]
, (46)

where h0 = H0|B0|, H0 = maxx∈B0 |h′(x)|, and |B0| is the length of B0.
We assume n large enough so that bu − b0 > γ and bl − dl < δ. With
b0 − bl = b0 − dl − (bl − dl) and using H, we have

ε <
K√
n

[
al(b0 − dl)(bl − dl)

−ml + al(bl − dl)
−ml+1 + au(bu − b0)

mu+1 + h0

]
≤ K√

n

[
al(b0 − dl)n

1
4 + aln

1
4 + aun

1
4 + h0

]
= K

[
al(b0 − dl + 1) + au

]
n−1/4 + Kh0n

−1/2 , (47)

which goes to 0 if n → ∞. Thus P(An ∩ Bn ∩ Cn) → 0. Next consider B̄n.
We have

P(B̄n) ≤ P
(

max
i=1,...,n

xi > bu

)
+ P

(
min

i=1,...,n
xi < bl

)
= 1− [F (bu)]

n + 1− [1− F (bl)]
n . (48)

Now, by condition F ,

[F (bu)]
n =

[
F (b0 + n

1
4(mu+1) )

]n
→ 1 (49)

and
[1− F (bl)]

n =
[
1− F (dl + n

− 1
4ml )

]n
→ 1 . (50)

Thus P(B̄n) → 0.

Finally, P(C̄n) → 0 because P(b0l < X < b0) > 0 and P(b0 < X < b0u)
> 0.
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Assuming that the estimator 1
n

∑n
i=1 h(xi) of E(h(X)) is asymptotically

normal with asymptotic variance σ2
h/n, the asymptotic equivalence of

1
n

∑n
i=1 h(x̃i) and 1

n

∑n
i=1 h(xi) implies that 1

n

∑n
i=1 h(x̃i) is also asymptot-

ically normal with the same asymptotic variance:

√
n

(
1

n

n∑
i=1

h(x̃i)− E(h(X))

)
→ N(0, σ2

h) . (51)

Thus the estimator with microaggregated data is (asymptotically) just as
efficient as the estimator with the original data.

Example 3: Let X ∼ N(µ, σ2) and h(x) = xk, k ∈ Z+. The estimator
1
n

∑n
i=1 h(xi) then estimates the k-th moment of X. With microaggregated

data the estimator is 1
n

∑n
i=1 h(x̃i). We show that the conditions of Theo-

rems 1 and 3 are satisfied. First note that D = (−∞,∞). Obviously, h(x)
is continuously differentiable and |h(x)| is monotone for x > 0 as well as for
x < 0. Also E(Xk) exists. By Theorem 1, 1

n

∑n
i=1 x̃k

i is a consistent estimator
of E(Xk).

To show that the conditions of Theorem 3 are satisfied, we choose b0 = 0 and
let bl = −bu, where bu > 0. Obviously H is satisfied with mu = ml = k − 1.
F is also satisfied because (assuming w.l.o.g. µ = 0 and σ2 = 1)

lim
[
Φ(n

1
4k )
]n

= 1 , (52)

see Schmid et al. (2007). Similarly,[
1− Φ(−n

1
4k )
]n

=
[
Φ(n

1
4k )
]n
→ 1 . (53)

Thus by Theorem 3, 1
n

∑n
i=1 x̃k

i is an asymptotically normal estimator of
E(Xk) with the same asymptotic variance as 1

n

∑n
i=1 xk

i .

Example 4: Let X be lognormally distributed, i.e., log X ∼ N(µ, σ2) and let
h(x) = (log X)k, k ∈ Z+. The estimator 1

n

∑n
i=1 h(xi) then estimates the k-th

moment of log X. With microaggregated data the estimator is 1
n

∑n
i=1 h(x̃i).

We show that the conditions of Theorems 1 and 3 are satisfied.

First note that the domain of log X is D = (0,∞) and the support of X
coincides with D. Obviously h is continuously differentiable. In addition,
|h(x)| = | log X|k is monotone for 0 < x < 1 and for x > 1. Also, E(h(X))
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exists. Thus Theorem 1 can be applied showing that 1
n

∑n
i=1(log x̃i)

k is a
consistent estimator of E[(log X)k].

To verify the conditions for Theorem 3, first note that dl = 0 and du = ∞.
Let b0 = 1 and let 0 < bl < 1 < bu. As |h′(x)| = k| log x|k−1x−1,

Hu(bu) = max
1≤x≤bu

|h′(x)| = k(k − 1)k−1e1−k =: a (54)

for bu large enough and

Hl(bl) = max
bl≤x≤1

|h′(x)| = k| log bl|k−1b−1
l . (55)

Now | log bl|k−1b−1
l < b−k

l because | log x| < 1
x

for 0 < x < 1. Thus, condi-
tion H is satisfied with mu = 0 and ml = k. Without loss of generality we
may assume X to be standard log-normally distributed, i.e., log X ∼ N(0, 1).
Then (with b0 = 1 and mu = 0)

F
(
b0 + n

1
4(mu+1)

)
= Φ{log(1 + n

1
4 )} =: Φ(bn) . (56)

Now Φ(bn) > 1− 1√
2π

1
bn

e−
1
2
b2n for bn > 0, see Durrett (1991), Theorem (1.3).

Since an := n√
2πbn

e−
1
2
b2n = n√

2π log(1+n1/4)
e−

1
2

log2(1+n1/4) → 0 for n → ∞, we

have (1− an

n
)n → 1 and

[Φ(bn)]n → 1 . (57)

Thus
[F (b0 + n

1
4(mu+1) )]n → 1 (58)

for n →∞. Similarly, with dl = 0 and ml = k,

[1− F (dl + n
− 1

4ml )]n = [1− F (n−
1
4k )]n

= [1− Φ(− 1

4k
log n)]n = [Φ(

1

4k
log n)]n → 1 . (59)

This shows that condition F is satisfied as well. Thus Theorem 3 can be
applied showing that 1

n

∑n
i=1(log x̃i)

k is an asymptotically normal estimator
of E[(log X)k].

The multivariate case

Theorem 3 carries over to the multivariate case under similar conditions.
Here we only consider the bivariate case.
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Theorem 4. Let (X,Y ) be a pair of random variables as in Theorem 2 and
let h(x, y) be a function satisfying coditions H1 and H2. Let b0 = (b0x, b0y)
be a point in D and let B = [blx, bux] × [bly, buy] be a closed finite rectangle
in D. Consider the four subrectangles of B:

Buu = [b0x, bux]× [b0y, buy] , (60)

Blu = [blx, b0x]× [b0y, buy] , (61)

Bul = [b0x, bux]× [bly, b0y] , (62)

Bll = [blx, b0x]× [bly, b0y] . (63)

Let Huu = Huu(bux, buy) = max(x,y)∈Buu max
(

∂
∂x

h(x, y), ∂
∂y

h(x, y)
)

and simi-

larly Hlu, Hul, and Hll. Assume that there exist functions Hux = Hux(bux),
Huy = Huy(buy), Hlx = Hlx(blx), and Hly = Hly(bly) such that Huu ≤
Hux + Huy, Hul ≤ Hux + Hly, Hlu ≤ Hlx + Huy, and Hll ≤ Hlx + Hly,
where

Hux(bux) =

{
au(bux − b0x)

mux if dux = ∞
au(dux − bux)

−mux if dux < ∞ , (64)

Huy(buy) =

{
au(buy − b0y)

muy if duy = ∞
au(duy − buy)

−muy if duy < ∞ , (65)

Hlx(blx) =

{
al(b0x − blx)

mlx if dlx = −∞
al(blx − dlx)

−mlx if dlx > −∞ , (66)

Hly(bly) =

{
al(b0y − bly)

mly if dly = −∞
al(bly − dly)

−mly if dly > −∞ . (67)

The marginal distributions of X and Y are supposed to satisfy conditions
analogous to F (with D, du, dl b0, mu, ml replaced by Dx, dux, dlx, b0x, mux,
mlx, and Dy, duy, dly, b0y, muy, mly, respectively). Under these conditions,

plimn→∞
1√
n

[
n∑

i=1

h(x̃i, ỹi)−
n∑

i=1

h(xi, yi)

]
= 0 . (68)

Proof. In principle, the proof of Theorem 4 is analogous to the proof of
Theorem 3. Preliminaries are as follows:
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Choose Bn = [blx(n), bux(n)]× [bly(n), buy(n)] such that

bux − b0x = n
1

4(mux+1) if dux = ∞ ,

dux − bux = n−
1

4mux if dux < ∞ ,

b0x − blx = n
1

4(mlx+1) if dlx = −∞ ,

blx − dlx = n
− 1

4mlx if dlx > ∞ ,

and similarly for buy and bly.

Define B0x as B0 in the proof of Theorem 3 and similarly B0y with y in place
of x. Define G0x as G0 in the proof of Theorem 3 and similarly G0y with y
in place of x. Let B0ux = {i : xi ∈ [b0x, bux]}, Bl0x = {i : xi ∈ [blx, b0x]},
B0uy = {i : yi ∈ [b0y, buy]}, and Bl0y = {i : yi ∈ [bly, b0y]}. Now let

• An be the event that 1√
n
|
∑n

i=1 h(x̃i, ỹi)− h(xi, yi)| > ε,

• Bn be the event that (xi, yi) ∈ Bn for all i = 1, . . . , n,

• Cn be the event that xi ∈ B0x if i ∈ G0x and yi ∈ B0y if i ∈ G0y.

Then P(An) ≤ P(An ∩Bn ∩ Cn) + P(B̄n) + P(C̄n).

We prove that all these probabilities go to zero. Consider An ∩ Bn ∩ Cn.
Under this event ε < 1√

n

∑n
i=1 |h(x̃i, ỹi)− h(xi, yi)|. This sum splits into the

five partial sums∑
Gi⊂B0ux
Hi⊂G0uy

|h(x̃i, ỹi)− h(xi, yi)| ,
∑

Gi⊂B0ux
Hi⊂Bl0y

|h(x̃i, ỹi)− h(xi, yi)| ,

∑
Gi⊂Bl0x
Hi⊂B0uy

|h(x̃i, ỹi)− h(xi, yi)| ,
∑

Gi⊂Bl0x
Hi⊂Bl0y

|h(x̃i, ỹi)− h(xi, yi)| ,

∑
i∈G0x∪G0y

|h(x̃i, ỹi)− h(xi, yi)| .

Each partial sum, divided by
√

n, goes to zero as n → ∞. For the last sum
this follows from arguments similar to those used in the proof of Theorem 3.
As to the other four sums we consider only the first one. The other three can
be treated in a similar way.
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In the first sum the index i is such that Gi ⊂ B0ux and Hi ⊂ B0uy. We have

1√
n

∑
i

|h(x̃i, ỹi)− h(xi, yi)|

=
1√
n

∑
i

∣∣∣∣ ∂

∂x
h(x∗i , y

∗
i )(xi − x̃i) +

∂

∂y
h(x∗i , y

∗
i )(yi − ỹi)

∣∣∣∣
≤ 1√

n
Huu(bux, buy)

(∑
i

|xi − x̃i|+
∑

i

|yi − ỹi|

)
≤ K√

n
[Hux(bux) + Huy(buy)] [bux − b0x + buy − b0y] . (69)

Case 1: dux = ∞, duy = ∞. In this case

K√
n

[Hux(bux) + Huy(buy)] [bux − b0x + buy − b0y]

=
Kau√

n
[(bux − b0x)

mux + (buy − b0y)
muy ] [bux − b0x + buy − b0y]

=
Kau√

n

[
n

mux
4(mux+1) + n

muy
4(muy+1)

] (
n

1
4(mux+1) + n

1
4(mux+1)

)
≤ Kau2n

−1/4
(
n

1
4(mux+1) + n

1
4(mux+1)

)
→ 0 (70)

because n−
1
4
+ 1

4(m+1) = n−
m

4(m+1) → 0.

Case 2: dux < ∞, duy < ∞. In this case

K√
n

[Hux(bux) + Huy(buy)] [bux − b0x + buy − b0y]

=
Kau√

n

[
(dux − bux)

−mux + (duy − buy)
−muy

]
· [(dux − b0x)− (dux − bux) + (duy − b0y)− (duy − buy)]

= Kau2n
−1/4

(
c1 − n−

1
4mux − n

− 1
4muy

)
→ 0 , (71)

where c1 := dux − b0x + duy − b0y.
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Case 3: dux < ∞, duy = ∞. In this case

K√
n

[Hux(bux) + Huy(buy)] [bux − b0x + buy − b0y]

=
Kau√

n

[
(dux − bux)

−mux + (buy − b0y)
muy
]

· [(dux − b0x)− (dux − bux) + (buy − b0y)]

=
Kau√

n

[
n1/4 + n

muy
4(muy+1)

] [
c2 − n−

1
4mux + n

1
4(muy+1)

]
≤ Kau2n

−1/4
(
c2 − n−

1
4mux + n

1
4(muy+1)

)
→ 0 (72)

as in Case 1, where c2 := dux − b0x.

Case 4: dux = ∞, duy < ∞. This case can be treated as Case 3.

Concerning the events B̄n and C̄n, we have

P(B̄n) ≤ P(max
i

xi > bux) + P(min
i

xi < blx)

+P(max
i

yi > buy) + P(min
i

yi < bly)

= 1− [Fx(bux)]
n + 1− [1− Fx(blx)]

n

+ 1− [Fy(buy)]
n + 1− [1− Fy(bly)]

n → 0 (73)

and P(C̄n) → 0 as in the proof of Theorem 3.

5 Simulations and data example

We start with a simulation study on the quadratic regression

Y = 5 ·X2 + ε , (74)

where X and ε are independent and standard normally distributed each.
The slope parameter β = 5 can be expressed as a continuously differentiable
function of the moments E(Y ·X2) and E((X2)2). Now suppose that Y and
X have both been microaggregated with group size K = 3, and that the
quadratic transformation has to be applied to the data values of X after mi-
croaggregation. Then Theorems 1 and 2 guarantee the consistent estimation
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Min. 1st Qu. Median Mean 3rd Qu. Max.
Original data 4.904 4.978 5.009 5.008 5.032 5.157
Microaggregated data 4.902 4.987 5.011 5.017 5.049 5.155

Table 1: Simulation study on quadratic regression - summary statistics of the
100 least squares estimates of β in model (74). The standard deviations of
the least squares estimates, multiplied with

√
n =

√
300, were 0.792 (original

data) and 0.855 (microaggregated data).

of E(Y ·X2) and E((X2)2) from the data (see Examples 1 and 2), and thus
also the consistent least squares estimation of β. Moreover, due to Theo-
rem 4, application of the delta method guarantees the asymptotic normality
and efficiency of the least squares estimator of β computed from the mi-
croaggregated data. It is straightforward to extend these results to the case
of a multiple polynomial regression. Table 1 shows the estimation results for
n = 300 and 100 simulation runs. The similarities between the least squares
estimator based on the non-aggregated data and the least squares estimator
based on the transformed microaggregated data are obvious.

Our next example is the method-of-moments estimator of the shape and
scale parameters of a Gamma distributed random variable X. Denote the
shape parameter by α and the scale parameter by β. It is well known that
the method-of-moments estimators computed from an i.i.d. sample x1, . . . , xn

are α̂ = m2
1/(m2 −m2

1) and β̂ = (m2 −m2
1)/m1, where m1 :=

∑n
i=1 xi/n and

m2 :=
∑n

i=1 x2
i /n are the first and second empirical moments of X. Since

we have shown in Theorem 1 that the corresponding empirical moments
computed from a microaggregated data set x̃1, . . . , x̃n converge a. s. to m1

and m2 as n →∞, estimation of α and β based on the microaggregated data
yields asymptotically the same values as estimation based on the original
data. Table 2, where the estimation results of a simulation study with 100
simulation runs are shown, confirms this result (n = 300, K = 3, α = 0.5,
β = 2).

Our third example concerns the maximum likelihood estimation of the scale
parameter c of a Levy distribution with density function

f(x) =

√
c

2π

e−c/(2x)

x3/2
. (75)

The score function of a Levy distributed i.i.d. data sample x1, . . . , xn is given
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Estimates of α

Min. 1st Qu. Median Mean 3rd Qu. Max.
Original data 0.372 0.468 0.510 0.514 0.561 0.729
Microaggregated data 0.394 0.479 0.517 0.520 0.564 0.729

Estimates of β

Min. 1st Qu. Median Mean 3rd Qu. Max.
Original data 1.324 1.757 1.972 1.966 2.167 2.676
Microaggregated data 1.320 1.736 1.945 1.938 2.105 2.622

Table 2: Simulation study on the shape and scale parameter estimation of
a gamma distribution - summary statistics of the 100 method-of-moments
estimates (α = 0.5, β = 2).

Min. 1st Qu. Median Mean 3rd Qu. Max.
Original data 1.710 1.900 2.002 2.012 2.124 2.375
Microaggregated data 1.712 1.905 2.012 2.018 2.134 2.377

Table 3: Simulation study on maximum likelihood estimation of the scale
parameter c of a Levy distribution - summary statistics of the 100 maximum
likelihood estimates (c = 2).

by
∂l

∂c
(x1, . . . , xn) =

n

2c
−

n∑
i=1

1

2xi

. (76)

As the maximum likelihood estimator ĉ :=
[∑n

i=1(1/xi)/n
]−1

is a consistent

estimator of c,
[∑n

i=1(1/x̃i)/n
]−1

is also consistent (which is guaranteed
by Theorem 1 and the monotonicity of h(x) = 1/x). Table 3, where the
estimation results of a simulation study with 100 simulation runs are shown,
confirms this result (n = 300, K = 3, c = 2).

Our final example is an analysis based on the data of the 2004 cost structure
survey of enterprises of the mining and manufacturing industry in Germany
(KSE). This survey is carried out regularly by the German Federal Statis-
tical Office. As the data obtained from this survey contain comprehensive
information on the German industry, they form an important basis for the
national accounts of Germany. Also, they are a typical example of an of-
ficially collected data set that has to be anonymized before dissemination.
The 2004 KSE data has been obtained from n = 16 099 companies with 20 or
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β1 β2 β3 β4 β5

non-aggregated data 0.426 0.313 0.065 0.131 0.046
IR (log trafo after MA) 0.426 0.313 0.065 0.131 0.046

Table 4: Least squares estimates of model (77) obtained from the 2004 KSE
data. The abbreviation ”MA” stands for ”microaggregation”.

σβ1 σβ2 σβ3 σβ4 σβ5

non-aggregated data 0.0021 0.0036 0.0015 0.0023 0.0027
IR (log trafo after MA) 0.0021 0.0036 0.0015 0.0023 0.0027

Table 5: Estimated standard deviations of the least squares estimates of
model (77) obtained from the 2004 KSE data. The abbreviation ”MA” stands
for ”microaggregation”.

more employees. Following the approach of Fritsch and Stephan (2003) and
Ronning et al. (2005) , we estimate a linear model of the form

log(Y ) = γ0 +
5∑

j=1

βj log(Xj) + ε , (77)

where Y is an adjusted gross output of the companies and the regressors
X1, . . . , X5 are various cost factors. Model (77) corresponds to a logarith-
mized Cobb-Douglas production function whose production elasticities are
equal to the coefficients β1, . . . , β5. As the least squares estimator of model
(77) from a microaggregated data set with variables Y,X1, . . . , X5 is based
on the first and second moments of log(Y ), log(X1), . . . , log(X5), Theorems 1
to 4 apply (see Examples 1 and 3), assuming that the regressor variables are
(at least approximately) lognormally distributed.

Tables 4 and 5 show the estimation results obtained from the transformed
original data and from the transformed microaggregated data (IR with group
size K = 3). As expected, we see that IR has virtually no effect on the
coefficient estimates of model (77) and their estimated standard deviations.1

1Note that the coefficient estimates in Tables 4 and 5 have been rounded to two decimal
places, so the results obtained from the non-aggregated data are not exactly the same as
the results obtained from the microaggregated data.
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6 Summary and conclusion

Microaggregation by individual ranking (IR) is a disclosure control technique
which is generally considered to have a relatively small impact on the analytic
potential of an anonymized data set. In this paper we have shown analytically
that IR has indeed favorable properties with respect to the estimation of sta-
tistical models: Any arbitrary moment which is defined as the expectation of
a continuously differentiable function h of a set of random variables can be
consistently estimated from the microaggregated data by using the standard
empirical moment estimators. Moreover, we did not assume the variables
under consideration to be continuous. Thus, mixed moments between a mi-
croaggregated continuous and a non-microaggregated discrete variable can be
estimated, as well as moments purely based on microaggregated continuous
variables.

A further important result is the proof of asymptotic normality of the moment
estimators based on the microaggregated data. This follows from the fact that
the moment estimators are asymptotically equivalent to the corresponding
moment estimators computed from the non-aggregated data. Moment esti-
mators with microaggregated and with the original data are thus equally
efficient asymptotically. These results have been derived under suitable reg-
ularity conditions concerning the behavior of the transformation function h
and of the distribution at the border of the domain of h. The simulation stud-
ies and data examples presented in Section 5 show that the asymptotic theory
derived in this paper is already applicable when sample sizes are relatively
small, i.e., when n ≥ 300.

It should finally be pointed out that the favorable properties of the IR method
go hand in hand with a relatively weak protection effect of IR (there is gen-
erally a trade-off between analytic potential and protection effect of a dis-
closure control technique). The protection effect, however, can be enhanced
if the group size K is taken sufficiently large. Our asymptotic results do not
depend on K. In addition, experiments conducted by Ronning et al. (2005)
have shown that the application of IR to a set of continuous variables is suffi-
ciently protective if the discrete variables (which serve as the main identifiers
for an attacker) are suitably anonymized by means of appropriate disclosure
control techniques for discrete data (an overview of such methods is given
in Willenborg and de Waal 2001). Other microaggregation methods, such
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as distance-based microaggregation techniques (Domingo-Ferrer and Mateo-
Sanz 2002, Laszlo and Mukherjee 2005, Domingo-Ferrer et al. 2006) or mi-
croaggregation by a sorting variable (Mateo-Sanz and Domingo-Ferrer 1998,
Domingo-Ferrer and Torra 2001), are generally considered to be more ef-
fective in protecting confidential data than the IR method. However, the
analytic potential of these methods seems to be limited (though not useless,
see Schmid et al. 2007 for the case of microaggregation by a sorting variable).

While analyzing the protection effect of IR clearly is beyond the scope of this
paper, we suggest that in those cases where the application of IR to a data set
sufficiently reduces the disclosure risk, IR should be applied, since the method
guarantees that many standard estimation techniques result in valid findings.
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