GENE 06068

Chimerization of antibodies by isolation of rearranged genomic variable regions by the polymerase chain reaction

(Hybridoma; transfectoma; force cloning; cassette vectors; PCR; recombinant DNA)

Winfried Weissenhorn^a, Elisabeth Weiss^a, Marina Schwirzke^b, Brigitte Kaluza^b and Ulrich H. Weidle^b

"Institut für Immunologie der Universität München, D-8000 Munich (F.R.G.) Tel. (49-89) 5996-689; and ^b Boehringer Mannheim GmbH, Abteilung für DNS-Neukombination, D-8122 Penzberg (F.R.G.)

Received by H.G. Zachau: 14 January 1991 Revised/Accepted: 14 April/10 July 1991 Received at publishers: 30 July 1991

SUMMARY

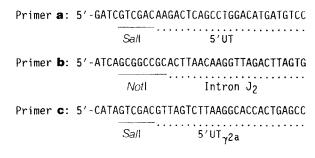
We describe a new method for amplification, by polymerase chain reaction (PCR), of rearranged segments encoding the variable part of light and heavy chains of an antibody (Ab) from the chromosomal DNA of hybridoma cells for the chimerization of Abs. A fundamental prerequisite for this is the knowledge of the exact sequences in the 5′-untranslated region of light and heavy chain mRNA, and of the joining segment used for rearrangement. This allows the design of nondegenerated oligodeoxyribonucleotides for PCR. The primer design permits directional cloning of the amplified, promoterless fragments into cassette vectors, in which they will be linked to the appropriate human constant domains and immunoglobulin (Ig) promoter/enhancer elements. The method is illustrated for chimerization of an Ab directed against the human T-lymphocyte antigen, CD4. The chimerized Ab is secreted in abundant quantities after transfection of the engineered plasmids into non-Ig-producing myeloma cells.

INTRODUCTION

The benefits of mAbs in the treatment of human diseases, such as autoimmune diseases, graft rejections and cancer

Correspondence to: Dr. U.H. Weidle, Boehringer Mannheim GmbH, Abteilung für DNS-Neukombination, Nonnenwald 2, Postfach 1152, D-8122 Penzberg (F.R.G.)

Tel. (49-8856)60-2801; Fax (49-8856)8744.


Abbreviations: aa, amino acid(s); Ab, antibody; Ap, ampicillin; bp, base pair(s); C, constant region; cDNA, DNA complementary to mRNA; D, diversity region; ELISA, enzyme-linked immunosorbent assay; Fab fragments, antigen-binding fragments of Abs that are derived by papain digestion and contain the light chain and part of the heavy chain (variable region and first constant domain); H, heavy chain of Ab; Ig, immunoglobulin; J, joining region; kb, kilobase(s) or 1000 bp; L, light chain of Ab; mAb, monoclonal Ab; nt, nucleotide(s); oligo, oligodeoxyribonucleotide; PA, polyacrylamide; PCR, polymerase chain reaction; ss, single strand(ed); UT, untranslated region; V_H , variable heavy chain; V_L , variable light chain.

are now widely accepted. A major progress toward therapeutic applicability was the construction of chimeric Abs with variable rodent and constant human domains (Verhoeyen and Riechmann, 1988). Substantially lower immunogenicity has been found for chimeric Abs compared to their murine counterparts in colon cancer patients (Lo Buglio et al., 1989). With the advent of PCR technology (Saiki et al., 1985; 1988) cloning of cDNAs for L and H chains of Ig genes has been dramatically facilitated by making use of degenerate oligos (LeBœuf et al., 1989; Orlandi et al., 1989; Huse et al., 1989; Larrick et al., 1989). For expression, the V_L and V_H regions have to be cloned into vectors carrying the appropriate constant human region thus mimicking Ig genes. In contrast to Ig cDNAs, Ig genes are well expressed in Ig nonproducer hybridoma cells (Weidle et al., 1987). For this purpose, the isolated Vregions have to be mutagenized to match the reading frame of the Ig gene on the vector. Alternately, restriction sites have to be incorporated into the primers for directed cloning and expression (Orlandi et al., 1989). In this paper we present a different approach for cloning the relevant $V_{\rm L}J$ and $V_{\rm H}DJ$ regions with non-degenerate primers. Our technique includes PCR amplification of specific genomic DNA fragments and their subsequent force-cloning into cassette vectors. To our knowledge, this is the first report on the cloning of rearranged $V_{\rm L}J$ and $V_{\rm H}DJ$ regions from genomic DNA by PCR. In contrast to the procedure described by Orlandi et al. (1989), the expressed Ab gene retains its authentic signal peptide sequence (including introns) and does not differ at the N-terminal aa from the original murine Ab.

EXPERIMENTAL AND DISCUSSION

(a) Principle of the method for chimerization

The most important prerequisite for the new method of chimerization is the knowledge of the exact sequence of the 5'UT region of the mRNA and of the J region used for the V_LJ and V_HDJ rearrangement for the L and H chain of the Ab. This information allows the design of nondegenerate primers for the isolation of the relevant V_LJ and V_HDJ

Primer d: 5'-GAGCGCGCCCCTTAAAAATAAAGACCTGGAGAGGCCA $\frac{Notl}{\text{Notl}} \qquad \text{Intron J4}_{\gamma2a}$

Fig. 1. Primers used for amplification of V_LJ and V_HDJ regions of mAb MT151 by PCR. Primers $\bf a$ and $\bf b$ were used for amplification of the V_LJ region, $\bf c$ and $\bf d$ for the amplification of the V_HDJ region of mAb MT151. Primers $\bf a$, $\bf b$ and $\bf c$ are 35-mers, and primer $\bf d$ is a 38-mer. The numbers of matching nt for primers $\bf a$, $\bf b$, $\bf c$ and $\bf d$ are 25, 23, 25 and 26. Primers were synthesized on an Applied Biosystems (Foster City, CA) oligo synthesizer. The 5' primers contain in their overhanging part four nt and a SalI recognition site, the matching part corresponds to nt in the 5' UT region of κ and the γ_{2a} mRNA. The 3' primers contain in their non-matching part four random nt and a NotI recognition site, in their matching part 23 nt corresponding to the J_2 intron of the L-chain encoding gene and to the J_4 intron of the H-chain encoding gene. Restriction sites are underlined. Dashed lines represent lg gene sequences.

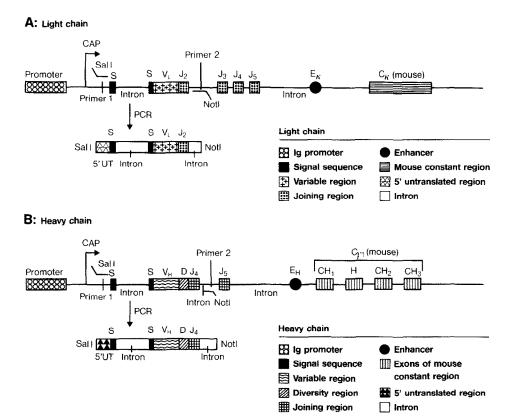


Fig. 2. Schematic representation of the chimerization method. The procedure is shown for the L chain (A) and for the H chain (B). PCR amplification with primers complementary to the 5'UT region of the mRNA and to intron sequences 3' to the J segment used for rearrangement leads to V_LJ and $V_{11}DJ$ fragments with a SalI site at their 5' ends and a NotI site at their 3' ends for directed cloning into cassette vectors with Ig promoter elements and the appropriate human constant regions. A general outline of the procedure is described in section a. C, constant region; CAP, initiation site for mRNA; D, diversity region; E_K and E_H , enhancers for light and heavy chain; H, hinge region; J, joining region; S, signal sequence; V_L and V_H , variable region of L and H Ig genes.

regions from DNA of the hybridoma cell line by PCR. The primers (Fig. 1) are designed as follows: (a) and (c) 5' primers matching to the 5'UT regions of L and H chain mRNA. They include at their 5' end a restriction enzyme cleavage site (SalI) useful for force cloning. Primers (b) and (d) are the 3' primers matching the intron sequences downstream from the J region used for the rearrangement. This is possible because the J loci for the L and H chains of the mouse are completely sequenced (Max, 1981; Sakano et al., 1980). The 3' primers include a NotI cleavage site at their 5' ends for force cloning of the amplified fragments. As a result of the amplification procedure promoterless V_1J and $V_H DJ$ fragments are obtained including its intron, the $V_{\rm L}J$ or $V_{\rm H}DJ$ region and intron sequences 3' from the Jregion used for rearrangement including the splice donor consensus GT (Fig. 2). The resulting amplified V_1J and V_HDJ fragments are endowed with a SalI site at their 5' ends and a NotI site at their 3' ends for directed cloning into a cassette vector containing Ig promoter elements and appropriate human constant regions.

(b) Application of the technique to the chimerization of an anti-CD4 antibody

The mAb MT151 (IgG_{2a}) binds to an epitope in the first extracellular loop of the human T lymphocyte surface antigen CD4 (Reinherz et al., 1986). The murine Ab has been successfully used in the treatment of patients with rheumatoid arthritis (Herzog et al., 1987). Therefore, a chimerized, less immunogenic version of this Ab is of great importance for clinical applications. The sequence of the 5' UT and the V regions of the κ and γ_{2a} chains of mAb MT151 was determined as described in the legend to Fig. 3. We identified rearrangement of V_1 with the J_2 segment of the L chains and of V_H with J_4 of the H chains. This information enabled us to synthesize 5' and 3' primers for amplification of the rearranged VJ and VDJ segment by PCR (Fig. 1). For the light chain, a 600-bp $V_{\rm T}J$ fragment, and for the heavy chain, an approx. 700-bp VDJ fragment was amplified (Fig. 3). The fragments with SalI and NotI sites were subcloned and the sequences of five isolates for each chain were determined (Sanger et al., 1977). Compared to the cDNA sequence we detected an exchange in one of the five $V_1 J$ isolates as well as in one of the five $V_H DJ$ isolates due to the high error rate of Taq polymerase. We have applied the described technique to isolate the $V_L J$ and $V_H D J$ segments of the two additional mAbs, one directed against an epitope on human CD4 different from that of mAb MT151 and another binding to the α-chain of the human interleukin-2 receptor. Also for these two mAbs fragments in the range of 600-700 bp were amplified (data not shown). Sequencing of five isolates of subcloned $V_L J$ and $V_H D J$ regions for each Ab revealed that the error rate of Taq polymerase was comparable to that obtained for mAb

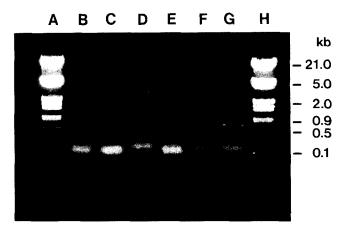
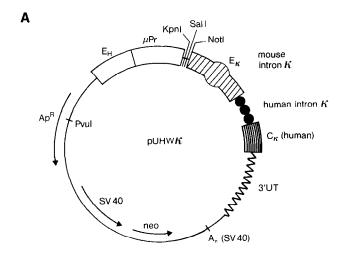



Fig. 3. Amplification of $V_L J$ and $V_H DJ$ regions encoding mAb MT151 by PCR. Lanes: A and H, marker fragments; B and F, control PCR (minus DNA); C, amplification with primers c and d; D and E, amplification with γ primers different from those shown in Fig. 1; G, amplification with κ primers **a** and **b**. The sequences of primers **a**, **b**, **c** and **d** are shown in Fig. 1. Methods. For cDNA cloning and sequence determination RNA was isolated from 2×10^7 cells (Chirgwin et al., 1979). The RNA pellet (250 μ g) was dissolved in 12.5 μ l H₂O, incubated with 375 μ l dimethylsulfoxide for 20 min at 45°C, ethanol-precipitated and dissolved in H₂O. Synthesis of cDNA was performed with 200 μg RNA and 20 ng ³²Plabelled primers with the first-strand buffer of the BRL cDNA synthesis kit according to the instructions of the manufacturer. κ primer: 5'-GAA-GATGGATACAGTTGGTGC. y primer: 5'-GGCCAGTGGATAGA-CAGATGG. These primers match the 5' part of the constant regions of the κ and the γ chain. After treatment of the ss DNA with 50 μ g RNase A for 30 min, phenolization and ethanol precipitation, the ssDNAs were size-fractionated on a 5% PA gel and the position of the V_1 and V_{11} fragments visualized by autoradiography. The bands were excised, DNA eluted with 2 M NH₄ · acetate at 37°C, precipitated, and tailed with G residues with terminal deoxynucleotidyl-transferase (Maniatis et al., 1982). After phenol extraction and ethanol precipitation, the ss DNA was dissolved in 10 µl H₂O. 3 µl were used for the following PCR reaction. 10 pmol of 5' and 3' oligos were used in a 20 µl reaction in 10 mM Tris · HCl pH 8.4/50 mM KCl/1 mM MgCl₂/0.1 mM dNTPs and Tag polymerase. 5' primer: 5'-GCATGCGCGCGGGCCGCGGAGGCCC-CCCCCCCCC (contains sites for SacII, Sph1, NotI and SfiI; Loh et al., 1989). The 3' primer contains an EcoRI cleavage site near the 5' end and matches the nt of the 5' part of the constant regions of κ and γ mRNA. 3' primer κ: 5'-GGGAATTCTGGTGCAGCATCAGCCC. 3' primer 7: 5'-GGGAATTCGATAGACAGATGGGGGTG. The reaction was carried out in a Perkin-Elmer cycler with the following conditions: 5 min at 94°C, 2 min at 42°C, five cycles (1 min each) at 72°C, 1 min at 94°C, 1 min at 55°C, 20 cycles at 72°C (1 min each), 10 min at 72°C. An aliquot of the PCR products was size-fractionated on a 1% low-melting-agarose gel, the amplified DNA was eluted, cleaved with EcoRI + NotI, subcloned and the sequence determined by the dideoxy method (Sanger et al., 1977). Reaction conditions for PCR amplification with primers a, b, c and d: 10 mM Tris · HCl pH 8.3/50 mM KCl/1.5 mM MgCl₂/0.1% (w/v) gelatine/1 μ g chromosomal DNA/5' and 3' primer 1 µg each/dATP, dGTP, dCTP, dTTP 200 µM each/Tag polymerase (Boehringer-Mannheim) 2.5 units in a reaction volume of $100 \mu l$. The reaction mixture was overlayered with 100 µl mineral oil (Sigma). The reaction mixture was kept at 92°C for 5 min, then for 2 min at 55°C and 2 min at 72°C. Before the following 26 cycles at 72°C (2 min each) the mixture was kept for 2 min at the temperatures indicated above. 10% of the mix was size-fractionated on a 1.5% low-melting-point agarose gel (0.5 µg ethidium bromide/ml), the amplified DNA was isolated, cleaved with SalI + NotI and ethanol-precipitated.

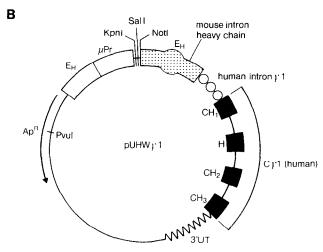


Fig. 4. Expression vectors for chimeric Ab in non-Ig producer hybridoma cells. Amplified V₁J and V₁DJ fragments encoding mAb MT151 (Fig. 3) were cloned as SalI-NotI fragments into cassette vectors pUHW κ (A), and pUHWy1 (B) (which were cleaved with SalI + Not1) to give rise to vectors pUHW-CD4κ and pUHW-CD4γ1 by forced cloning. As promoter elements both vectors contain a combination of a heavy-chain enhancer (E_H), and a μ gene promoter (μ Pr) (Weidle et al., 1987). Both vectors contain a polylinker including unique KpnI, SalI and NotI sites. Plasmid pUHW κ contains the constant region of a human κ gene and is based on pSV2neo (Southern and Berg, 1982). The plasmid contains a hybrid light-chain intron with mouse and human elements. Plasmid pUHWκ contains the mouse light-chain enhancer region as a 2-kb EcoRI-Asp700 fragment (Picard and Schaffner, 1984) and a part of the human light chain intron, the human κ exon and 3' UT region as a 2.8-kb fragment from pC1 (Klobeck et al., 1984). Plasmid pUHWyl is the cassette vector for the insertion of amplified V_HDJ fragments. It contains the mouse heavy-chain enhancer region as a 1.6-kb HindIII-EcoRI fragment (Neuberger, 1983) and part of the human heavy-chain intron, the four exons and three introns and 3'UT region of the human y1 gene as a 7-kb HindIII fragment (Takahashi et al., 1984). Plasmids pUHW-CD4k and pUHW-CD4y1 were linearized at their unique PvuI sites and an equimolar mixture of both plasmids (5 μ g per 10⁶ cells) was transfected into Sp2/0 cells (Ochi et al., 1983) by electroporation. Stable transfectants were isolated by selection with G418 (1000 µg/ml) as described (Lenz and Weidle, 1990) and reconstituted Ab was quantified by ELISA. μ Pr, promoter of a mouse μ gene; E_{κ} and E_{H} , enhancers of light and heavy chains of the mouse, respectively; 3' UT, 3' untranslated region;

MT151. The size of the intron which separates the signal sequences was in the range between 60 and 120 nt, when the six isolates of the three mAbs were compared (data not shown). All three mAbs make use of different J segments. From these observations we conclude that the method is of general applicability. After sequencing, the amplified SalI-Not I fragments $(V_I J \text{ and } V_H DJ)$ of mAb MT151 were force-cloned into cassette vectors pUHW κ (with a human κ constant region) and pUHWy1 (with a human y1 constant region). The vectors are displayed in Fig. 4. Both vectors make use of heavy-chain enhancer and promoter elements at the 5' end of the $V_L J$ and $V_H DJ$ fragments to be inserted by force-cloning and can be linearized at their unique PvuI sites in the ApR gene before transfection into hybridoma cells. Plasmids pUHWκCD4 and pUHW γ CD4 obtained after ligation of the appropriate V_IJ and $V_H DJ$ fragments into $pUHW\kappa$ and $pUHW\gamma 1$ were transfected into Sp2/0 cells (Ochi et al., 1983) and stable transformants were isolated by G418 selection. Transformants expressing up to $10 \mu g/ml$ of chimerized Ab per 10^6 cells and 24 h were obtained.

(c) Conclusions

- (1) We demonstrated for the first time the feasibility of cloning rearranged genomic $V_L J$ and $V_H DJ$ segments of Ab with PCR and nondegenerate oligos.
- (2) After the PCR, the amplified promoterless fragments can be directionally cloned into cassette vectors carrying the appropriate human constant regions.
- (3) The method seems to be of general applicability because it has been applied successfully to the chimerization of Ab from three different hybridoma cell lines.
- (4) Contrary to previous approaches making use of cDNA cloning, mutation and insertion into expression vectors, authentic $V_{\rm L}J$ and $V_{\rm H}DJ$ genomic segments are isolated by our method.
- (5) High-level synthesis of chimerized Ab was monitored after transfection of expression vectors with human κ and $\gamma 1$ constant regions and the $V_L J$ and $V_H D J$ regions of the murine Ab into non-Ig-producer myeloma cells.

ACKNOWLEDGEMENTS

Our work was partly supported by BMFT (Bundesministerium für Forschung und Technologie) and Genzentrum München. Thanks are due to Dr. Sandro Rusconi for reading this paper instead of a dull magazine in the train and Brigitte Kindermann for help with the preparation of the

 A_n (SV40), polyadenylation signal derived from simian virus 40; H, exon coding for hinge region; Ch_1 , CH_2 , CH_3 , exons of the human $\gamma 1$ gene. Arrows indicate the direction of transcription.

manuscript. We are indebted to Drs. T. Honjo and H.G. Zachau for providing us with plasmids.

REFERENCES

- Chirgwin, J.M., Przybyla, A.E., MacDonald, R.J. and Rutter, W.J.: Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18 (1979) 5294–5299.
- Herzog, C., Walker, C., Pichler, W., Aeschlimann, A., Wassmer, P., Stockinger, H., Knapp, W., Rieber, E.P. and Müller, W.: Monoclonal anti-CD4 in arthritis. Lancet 2 (1987) 1461–1462.
- Huse, W.D., Lekshmi, L., Iverson, S., Kang, A.S., Alting-Mees, M., Burton, D.R., Benkovic, S.J. and Lerner, R.: Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science 246 (1989) 1275-1281.
- Klobeck, H.-G., Combriato, G. and Zachau, H.G.: Immunoglobulin genes of the light chain type from two human lymphoid cell lines are closely related. Nucleic Acids Res. 12 (1984) 6995-7006.
- Larrick, J.W., Daniellson, L., Brenner, C.A., Wallace, E.F., Abrahamson, M., Fry, K.E. and Borrebaeck, C.A.K.: Polymerase chain reaction using mixed primers: cloning of human monoclonal antibody variable region genes from single hybridoma cells. Bio/Technology 7 (1989) 934-938.
- LeBœuf, R.D., Galin, F.S., Hollinger, S.K., Peiper, S.C. and Blalock, J.E.: Cloning and sequencing of immunoglobulin variable-region genes using degenerate oligodeoxyribonucleotides and polymerase chain reaction. Gene 82 (1989) 371-377.
- Lenz, H. and Weidle, U.H.: Expression of heterobispecific antibodies by genes transfected into producer hybridoma cells. Gene 87 (1990) 213-218.
- Lo Buglio, A.F., Wheeler, R.H., Trang, J., Haynes, A., Rogers, K., Harvey, E.B., Sun, L., Ghrayeb, J. and Khazeli, M.B.: Mouse/human chimeric monoclonal antibody in man: kinetics and immune response: Proc. Natl. Acad. Sci. USA 86 (1989) 4220-4224.
- Loh, E.Y., Elliott, J.F., Cwirla, S., Lanier, L.L. and Davies, M.M.: Polymerase chain reaction with single sided specificity: analysis of T cell receptor delta chain. Science 243 (1989) 217-220.
- Maniatis, T., Fritsch, E.F. and Sambrook, J.: Molecular Cloning. A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1982.
- Max, E.E.: The nucleotide sequence of a 5.5-kilobase DNA segment containing the mouse kappa immunoglobulin J and C region genes. J. Biol. Chem. 256 (1981) 5116-5120.

- Neuberger, M.: Expression and regulation of immunoglobulin heavy chain gene transfected into lymphoid cells. EMBO J. 2 (1983) 1373-1378.
- Ochi, A., Hawley, R.G., Hawley, T., Shulman, M.J., Traunecker, A., Köhler, G. and Hozumi, N.: Functional immunoglobulin M production after transfection of cloned immunoglobulin heavy chains into lymphoid cells. Proc. Natl. Acad. Sci. USA 80 (1983) 6351-6355.
- Orlandi, R., Güssow, D.H., Jones, P.T. and Winter, G.: Cloning immunoglobulin variable domains for expression by the polymerase chain reaction. Proc. Natl. Acad. Sci. USA 86 (1989) 3833-3837.
- Picard, D. and Schaffner, W.: A lymphocyte-specific enhancer in the mouse immunoglobulin gene. Nature 307 (1984) 80-82.
- Reinherz, E.L., Nadler, L.M., Haynes, B.F. and Bernstein, I.D.: Leukocyte Typing II, Vol. 1: Human T Lymphocytes. Springer-Verlag, New York, 1986.
- Saiki, R.K., Scharf, S., Faloona, F., Mullis, K.B., Horn, G.T., Erlich, H.H. and Arnheim, N.: Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle-cell anemia. Science 230 (1985) 1350-1354.
- Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.T., Mullis, K.B. and Erlich, H.A.: Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239 (1988) 487-491.
- Sakano, H., Maki, R., Kurosawa, Y., Roeder, W. and Tonegawa, S.: Two types of somatic recombination are necessary for the generation of complete immunoglobulin heavy-chain genes. Nature 286 (1980) 676-683.
- Sanger, F., Nicklen, S. and Coulson, A.R.: DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74 (1977) 5463-6467.
- Southern, P. and Berg, P.: Transformation of mammalian cells to antibiotic resistance with a bacterial gene under the control of the SV40 early region promoter. J. Mol. Appl. Genet. 1 (1982) 327-341.
- Takahashi, N., Noma, T. and Honjo, T.: Rearranged immunoglobulin heavy chain variable region (V_H) pseudogene that deletes the second complementarity determining region. Proc. Natl. Acad. Sci. USA 81 (1984) 5194-5198.
- Verhoeyen, M. and Riechmann, L.: Engineering of antibodies. BioEssays 8 (1988) 74-78.
- Weidle, U.H., Koch, S. and Buckel, P.: Expression of antibody cDNA in murine myeloma cells: possible involvement of additional regulatory elements in transcription of immunoglobulin genes. Gene 60 (1987) 205-216.