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CHAPTER11 

Hormonal and liver-specific control of 
expression of the tyrosine aminotransferase 

gene 

DORIS NITSCH, SIEGFRIED RUPPERT, GAVIN KELSEY, ANDREAS SCHEDL, F A L K WEIH, 

A . FRANCIS STEWART, U W E STRÄHLE, WOLFGANG SCHMID, CAROL DE V A C K , 

ANDREAS REIK, MICHAEL BOSHART AND GÜNTHER SCHÜTZ 

1. The tyrosine aminotransferase gene as a model system to study the 
interplay of Controlling genes and hormone-signalling pathways 

From a Single cell a variety of cell types and tissues with differential structures and 
functions develop. To understand the underlying processes of differentiation it is nec-
essary to elucidate the mechanisms of selective activation of those genes that give cells 
their characteristic structures and functions. Of particular importance for differentia
tion processes is the establishment of patterns of gene activity by regulatory genes. 
As a model system we have chosen the tyrosine aminotransferase (TAT) gene [1] and 
analysed the regulatory processes which determine its cell- and developmental-specif-
ic expression. We are characterizing the control sequences that determine cell-specific 
expression and the proteins that interact with these regulatory elements in Order to 
understand their mode of action. T A T gene expression is an attractive system with 
which to analyse the molecular mechanism of a developmental process for the rea-
sons summarized and shown in Fig. 1: 

(1) Expression of the T A T gene is cell type-specific. As far as is known, only the 
parenchymal cells of the liver are able to synthesize the enzyme [1]. 

(2) Expression of the gene is regulated developmentally: the enzyme is not ex
pressed before birth. Enzyme synthesis Starts around birth and attains its maximal 
level within a few hours [2]. This developmental activation is likely to be dependent 
on glucocorticoids and glucagon, the effect of which is mediated by c A M P [3]. 

(3) A particularly interesting aspect of this system is the fact that the activity of 
the gene is influenced by two genetically defined trans-acting loci as deduced from 
analysis of a set of mouse mutations and by analysis of expression in somatic cell 
hybrids. 
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Fig. 1. Control of expression of the tyrosine aminotransferase gene. 

(a) The albino lethal mutations of mice are characterized by a set of overlapping 
deletions within the region of the albino locus (c-locus) on chromosome 7 [4]. It has 
been shown that several liver-specific enzymes are expressed at a strongly reduced 
level in homozygous mutant animals [4]. One of the genes affected by the mutation 
is the T A T gene. The transcription rate of the T A T gene is severely reduced [5], sug-
gesting that the factor indicated by the mutation is involved in cell-specific expression 
of the gene [6]. Since the structural gene for T A T is not deleted and has been mapped 
to chromosome 8 [7], it has been concluded that the albino lethal deletions remove 
a regulatory locus [6], which we denote as alf (factor indicated by the albino lethal 
mutations). 

(b) The second trans-acting factor involved in T A T gene regulation is indicated 
by the phenomenon of extinction [8, 9]. In intertypic hybrids of TAT-expressing he-
patoma cells and -non-expressing fibroblasts, T A T gene expression is shut off - a 
phenomenon termed 'extinction'. The work of Keith Fournier and his colleagues [9, 
10] has shown that distinct loci are responsible for the extinction of specific gene ex
pression. For extinction of T A T gene expression a locus named 'Tse-V (tissue-specif-
ic extinguisher 1) which maps on mouse chromosome 11 is operative as a dominant 
negative regulator [9]. Since the T A T gene is encoded on chromosome 8 [7], this clear-
ly indicates that the extinguishing factor also acts in trans. 

In order to understand these complex regulatory processes involved in T A T gene 
regulation and the interplay between Controlling genes and signalling molecules, we 
are characterizing in detail those elements that are important for cell-specific expres
sion as well as for responsiveness towards glucocorticoids and c A M P [11-13]. We 
are particularly interested in determining the targets for the factors indicated by the 
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albino lethal mutations and the tissue-specific extinguisher Tse-1 and the mode of 
action of these two trans-acting factors. By gene transfer into hepatoma cells, by 
characterization of proteins interacting with regulatory sequences of the gene using 
in vivo and in vitro footprinting methods and finally by isolation and characteriza
tion of these proteins, we are dissecting the mechanisms underlying the cell- and devel-
opmental-specific expression of the T A T gene. 

2. Two distinct trans-acting loci control overlapping sets of liver-specific 
genes 

Mice homozygous for deletions around the albino locus on chromosome 8 fail to ac-
tivate expression of a set of neonatal liver functions and die a few hours after birth. 
The perinatal lethal phenotype is associated with the reduction in activity of a 
number of enzymes expressed in liver (glucose-6-phosphatase, tyrosine aminotransfe
rase, serine dehydratase and phosphoenolpyruvate carboxykinase), as well as with 
ultrastructural abnormalities of hepatocytes and cells of the proximal convoluted tu-
bules of the kidney [4, 14]. However, a large number of other enzymes remain unin-
fluenced by the mutation, attesting to its specific nature [4]. In the case of phospho
enolpyruvate carboxykinase and T A T , it has been established that the decreased 
enzyme activities result from lower levels of steady-state m R N A [7, 15], which are 
due to a decreased transcriptional rate as deduced from nuclear run-on assays [5]. 

In order to understand the perinatal lethal phenotype more fully and to elucidate 
the nature and function of the product of the perinatal survival locus, we have at-
tempted to identify additional genes influenced by the albino lethal mutations. Using 
differential c D N A Screening we have collected and characterized genes whose cell 
type-specific transcription is affected in the mutants [5]. With this approach nine dis
tinct genes could be identified, designated 4 X1 to X 9 \ none of which maps to the 
locus indicated by the albino lethal deletions [5]. This permits the conclusion that 
none encodes the transactivating protein indicated by the mutant phenotype. Some 
of the gene products encoded by these m R N A s have been identified by sequence 
analysis (see legend to Fig. 2). 15 genes, so far, have been identified whose expression 
is affected by alf (Fig. 2). Most of the genes are expressed in liver only. Some (X5, 
ASS and A S L ) , however, are expressed in all tissues analysed (liver, kidney, brain, 
heart, lung and skin), but the effect of the deletion is apparent only in liver. Interest-
ingly, the m R N A for C / E B P , a transactivator with restricted tissue distribution [16], 
is also influenced by alf and is reduced in liver, but not in other tissues. 

A l l the genes found to be affected by the albino lethal mutation are induced by 
c A M P and glucocorticoids, C / E B P being the only exception [5]. However, expression 
of the genes encoding proteins involved in mediation of hormonal signalling (the glu
cocorticoid receptor, the c A M P response element-binding protein (CREB) or protein 
kinase A) is not affected by the mutation [5]. 
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Tse-1 alf 

Fig. 2. Co-ordinate regulation of overlapping sets of genes by two distinct transacting loci. All the genes 
listed are regulated by the factor indicated by the albino lethal mutation (denoted alf). A subset of these 
genes is also regulated by the tissue-specific extinguisher 1 ( T s e - 1 ) . Since the genes coding for X7 and X9 
are not expressed in the hepatoma cell lines analysed, evidence for co-regulation by Tse-1 cannot be estab-
lished. X1-X9 designate the mouse cDNA clones isolated by subtractive cDNA hybridization. The follow-
ing abbreviations are used: T A T (tyrosine aminotransferase), CPSI (carbamoylphosphate synthetasc I), 
ASS (argininosuccinate-synthetase), SDH (serine dehydratase), PEPCK (phosphoenolpyruvate carboxyki
nase), aFIB (a-chain of fibrinogen), SPI (serine protease inhibitor), A L D B (aldolase B), ASL (argininosuc-
cinate-lyase), C/EBP (CCAAT box/enhancer-binding protein). 

Interestingly, a subset of the genes affected by the mutation is negatively controlled 
by the tissue-specific extinguisher locus Tse-1 [5, 10]. As discussed in more detail 
below, 7te-/-dependent extinction can be relieved by c A M P and a Tlse-V-responsive 
dement co-resides with a c A M P response element (CRE) [12, 17]. This raises the in-
teresting possibility that a functional antagonism between negative control mediated 
by Tse-1 and hormonal induction might play a role in the hormone-dependent perin
atal activation of this set of liver genes [2]. 

In summary, these results show that two trans-acting factors regulate expression 
of overlapping sets of liver-specific genes. These sets of genes are also characterized 
by the observations that most of them are activated shortly after birth and that their 
transcription rates are influenced by both glucocorticoids and c A M P . Since the ulti-
mate demonstration of the function of the gene indicated by the albino lethal muta
tion depends upon its isolation, we are now attempting to clone it from the knowl-
edge of its chromosomal location [18]. 
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3. Alterations in chromatin structure indicate cis-acting regulatory 
sequences of the T A T gene 

To understand the various levels of control of the T A T gene it is imperative to iden-
tify the regulatory regions of the gene. We have used DNasel hypersensitive site anal
ysis as a means to identify ds-regulatory elements in the T A T upstream region. By 
comparing the DNasel-hypersensitive regions found in expressing and non-express-
ing cells with the enhancing activity of the sequences comprising the hypersensitive 
regions in gene transfer assays into these cells, we could establish that specific 
chromatin changes relate to the function of these sequences [11, 19, 20]. This correla-
tive analysis of hypersensitive sites (HS) and transcriptional enhancers of the T A T 
gene was performed in hepatoma cells expressing the T A T gene (Tse-1'"), in hepato-
ma cells carrying a short segment of a human fibroblast chromosome with an active 
Tse-1 locus which have a strongly reduced T A T m R N A level [10] and in fibroblasts 
in which the gene is inactive (Fig. 3). 

DNasel-hypersensitive sites 3.6 and 11 kb upstream of the initiation site indicate 
liver-specific enhancers, they are absent in fibroblasts [19]. Both sites are fully devel-
oped in Tse-1 ~ and Tse-1+ hepatoma cells. However, the enhancer at —3.6 kb is 
inactive in cells expressing Tse-1 [12, 19]. As will be discussed below, the target for 
Tse-1 action is the c A M P response element, which is crucial to enhancer function 
but which by itself does not constitute enhancing activity. Obliteration of its func-
tional activity by Tse-1 thus does not lead to disappearance of the HS, in agreement 
with the complex structure of this enhancer with binding sites for several proteins 
[12]. The activity of the enhancer at —11 kb is not affected by Tse-1 [19]. This site 
is hypersensitive in foetal livers several days before the T A T gene is transcriptionally 
activated (F. Stewart and G . Yeoh, unpubl. data). This element might function dur
ing development to establish an active T A T locus, similar to the role of the dominant 
control region of the /?-globin gene Cluster [21]. 

- 1 1 - 3 . 6 - 2 . 5 P basal 

inducible TAT mRNA 

cell line activity HS activity HS activity HS HS level 

HEPATOMA (Tse-1 ~) present present + present present high 

HEPATOMA (Tse-1 V present _ present + present present, very low 
but modified 

FIBROBLAST - absent - absent + absent absent u n -
detectable 

Fig. 3. Correlation of DNasel-hypersensitive sites (HS) and enhancer function of the tyrosine aminotrans
ferase gene. The enhancer activities were analysed by transient transfection assays in different cell lines 
as indicated on the left. Sequences at —11 and —3.6 kb act as liver cell-specific enhancers, the element 
at — 2.5 kb as a glucocorticoid-inducible enhancer. P denotes the promoter. 
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The glucocorticoid-inducible enhancer [11] is characterized by a hormone-depend-
ent HS at —2.5 kb. This site is rapidly induced following glucorticoid administration 
[11, 20] and maintained as long as the inducer is present. Removal of glucocorticoids 
leads to rapid disappearance of the site. The HS is not inducible in fibroblasts, but 
the enhancer is active in a transfected reporter plasmid [11], indicating additional 
controls in the endogenous gene. 

The HS at —3.6 and —2.5 kb have been analysed in detail. As discussed below, 
this analysis reveals the complex nature of far upstream enhancers and gives an in-
sight into the molecular interactions occurring between constitutive and inducible 
factors. 

4. The glucocorticoid enhancer of the T A T gene 

Our understanding of how Steroid hormones affect gene expression has advanced 
considerably in recent years [22-24]. Our interest focused on the identification and 
characterization of elements required for steroid-dependent transcription of the T A T 

B 

I N D U C I B I L 1 T Y R E C E P T O R B I N D I N G 

| G R E | - * 

— | G R E | 1 G R E | + + 

- < C A C C C > - | G R E | + +• + 

-<^CAaT>--| G R E | + + n. d. 

Fig. 4. The glucocorticoid-dependent enhancer of the tyrosine aminotransferase gene has a modular struc
ture. The glucocorticoid-dependent enhancer of the T A T gene (schematically outlined in A) is located 2500 
bp upstream of the Start site of transcription and is composed of two GREs and sites for transcription 
factors recognizing the C C A A T and C A C C C sequence. (B) A Single G R E is not sufficient for induction 
from a distance. Multiple GREs or a combination of a G R E with binding sites for factors recognizing 
the C C A A T and C A C C C elements are required to constitute a hormone-inducible enhancer. The receptor 
binds in a co-operative fashion to a G R E dimer when compared to a monomer (indicated by + + + + +). 
Binding affinity to a G R E is not influenced by the presence of a C A C C C element. 
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gene [l 1]. By gene transfer experiments, genomic footprinting analyses and in vitro 
binding studies with the purified glucocorticoid receptor we characterized glucocorti-
coid-responsive elements of the T A T gene and defined the role of the hormone in 
the interaction of the receptor with its recognition sequence. 

The element of the T A T gene required for glucocorticoid induction is located 2.5 
kb upstream of the Start site of transcription (Figs. 3, 4). These sequences contain 
two glucocorticoid receptor-binding sites which affect expression of the gene in a syn-
ergistic fashion [11] and C C A A T and C A C C C box-related sequences (Fig. 4) [25]. 
Although the proximal receptor-binding site has no inherent capacity to stimulate 
transcription, when present in conjunction with the distal glucocorticoid response el
ement (GRE) , this element enhances glucocorticoid induction of gene expression 
synergistically [11]. Using the genomic footprinting technique we were able to show 
that the receptor binds to its target sequence only after induction with hormone. 
Concomitant with alterations in DNA-pro te in interaction in vivo at the G R E 
changes are seen at a C A C C C box-related sequence in the vicinity of the G R E [26]. 

The Observation that the G R E s are found in close vicinity to binding sites for other 
transcription factors prompted a more detailed analysis of the dependence of recep
tor function on other transcription factors [25, 27]. It became clear that a Single G R E 
is not capable of mediating hormone inducibility when positioned far upstream of 
the Start site of transcription. Inducibility can, however, be attained by multimerizing 
the steroid-responsive sequences (Fig. 4), as found in the glucocorticoid-dependent 
enhancer of the T A T gene [25, 27]. Alternatively, a single steroid-responsive element 
can function in combination with a binding site for other transcription factors. We 
have demonstrated that the transcription factors interacting with the C C A A T and 
C A C C C boxes which are found in the vicinity of the T A T G R E s , as well as N F 1 -
and Spl-binding sites, can fulfil this synergistic action [25, 27]. Interestingly, these 
combinations of a G R E with different transcription factor-binding sites show strong 
cell type-dependent induction of expression. For example, the combination of a G R E 
with a C A C C C box is most active in hepatoma cells. This correlates well with the 
Observation that concomitant with receptor binding at the G R E in vivo, alterations 
in pro te in-DNA interaction occur at the C A C C C box [26]. 

What is the molecular basis for the functional synergy of glucocorticoid-responsive 
sequences in vivo? By detailed analysis in vitro of receptor binding to one or two 
receptor-binding sites using various techniques, we demonstrated that the functional 
synergy of G R E s is based on co-operative binding of the receptor to these elements 
(Fig. 4). Measurement of the relative affinity showed a > 10-fold higher affinity of 
the glucocorticoid receptor to a duplicated G R E when compared to a single element. 
Thus, co-operative binding of the receptor to two adjacent G R E s is a basis for the 
synergism observed at the level of transcription [28]. However, no evidence for co-
operative binding of the receptor and NF1 or the C A C C C box-recognizing protein 
has been found in similar analyses (C. de Vack, unpubl. data). 

The D N A elements of the T A T gene which mediate induction by glucocorticoids 
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are also capable of mediating response to progesterone and testosterone when trans-
fected in appropriate reporter constructs into cells that contain the corresponding 
hormone receptors [27, 29]. This finding is surprising since these hormones control 
vastly different processes in different target cells. In view of the fact that the receptors 
mediating the effects of glucocorticoids, progesterone, testosterone and aldosterone 
interact with the same sequence it was of interest to determine whether the presence 
or absence of a Steroid receptor is sufficient to control the transcriptional activity of 
genes that harbour a Steroid response element. To address this question we in-
troduced an expression vector for the progesterone receptor into hepatoma cells in 
which this receptor is not synthesized. By stably expressing the progesterone receptor 
in hepatoma cells we could demonstrate that the T A T gene becomes responsive to 
progesterone [30]. Thus, we conclude that steroid-specific effects, at least in part, are 
determined by differential expression of the respective receptors in target tissues. This 
is at least one mechanism by which steroid-specific gene activation is achieved. 

Mutational analysis of response elements has also shown that the sequences re
quired for estradiol- and ecdysone-dependent expression are closely related to those 
required for glucocorticoid/progesterone induction (Fig. 5) [27, 29, 31]. The similari-
ty of the Steroid response elements has its counterpart in the similarity of amino acid 
residues in the DNA-binding region of the corresponding receptor molecules [22-24]. 
In line with this close relationship of response elements is the recent demonstration 
that three amino acid substitutions in the estradiol receptor are sufficient to alter its 
target specificity to that of the glucocorticoid receptor [32]. 

5. Cell-specific expression of the T A T gene 

5 . 1 . The — 3 . 6 enhancer i s composed of a c A M P - r e s p o n s i v e sequence a n d a l i v e r c e l l -
specific element 

As summarized above we have identified two elements which are important for liver 
cell-specific expression of the T A T gene located at —3.6 and — 11 kb. This conclu-
sion is based on gene transfer experiments into hepatoma and non-hepatoma cell 
lines [19]. To characterize the enhancer at —3.6 kb in more detail a series of 5' and 
3' internal deletion mutants was analysed which defined a sequence of 80 bp as abso-
lutely essential for enhancer function of the element located 3.6 kb upstream [12]. 
To define the regulatory sequences a series of clustered point mutations was estab-
lished. Analysis of these mutants showed that mutations in two regions destroyed 
enhancer function entirely [12]. Each of the two sequences was inactive by itself in 
front of a heterologous promoter. However, if multimerized, each element could 
function as a strong transcriptional activator (Fig. 6). One of these elements has a 
sequence similar to the c A M P response element (CRE) found in cAMP-inducible 
genes [33, 34]. This element confers strong c A M P induction and interacts in vivo 
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T - G - T - A - C - A - N N N - T - G - T - T - C - T G l u c o c o r t i c o i d , P r o g e s t e r o n e 
T e s t o s t e r o n e , A l d o s t e r o n e 

A - G - G - T - C - A - N N N - T - G - A - C - C - T 

A - G - G - G - T - T - N N N - T - G - C - A - C - T E c d y s o n e 

Fig. 5. Sequence comparison of Steroid response elements. The response elements for glucocorticoids, pro
gesterone, testosterone and aldosterone are 15 bp palindromic sequences which mediate induction of gene 
transcription by the respective Steroid. The response elements for estrogens and ecdysone are distinct, but 
closely related sequences. Identical bases in Steroid response elements are indicated by dots. 

with a protein in expressing hepatoma cells, but not in fibroblasts, as evidenced from 
genomic footprinting experiments [13]. The intensity of interaction seen at the C R E 
increases upon c A M P administration. This increase in footprinting activity is tran-
sient and is also inducible in the presence of cycloheximide [13]. These observations 
allow the conclusion that cAMP-dependent post-translational modifications lead to 
an increased binding activity of a protein, possibly C R E B , to the T A T C R E . 

- 3 6 0 0 

C R E 1 , C R E < ^ c e i l speci fTT^) /, / L-
• — ' +1 

E N H A N C E R ACTIVITY IN 

H E P A T O M A H E P A T O M A 

T S E - 1 - T S E - 1 » 

C A M P * c A M P C A M P » c A M P 

F I B R O B L A S T 

ÜRF}<z> 

Fig. 6. Two distinct elements are essential for the function of the T A T enhancer at - 3.6 kb. Two essential 
elements were defined by functional analysis of a series of clustered point mutants: a cell-specific module 
and a cAMP response element which is the target for Tse-1 (A). Enhancer activity of plasmids carrying 
these elements alone or in combination was determined in transfection assays into hepatoma cells (Tse-1 ~ 
and Tse-1+ ) and into fibroblasts (B). The two elements are functionally interdependent. Relief of extinc
tion by c A M P demonstrates the dominant effect of cAMP over Tse-1. 
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The multimer of the second essential element behaves as a cell type-specific activa-
tor of transcription [12]. This element is active in liver cells, but inactive in any other 
cell type tested so far. In conjunction with the element carrying the C R E sequence, 
an enhancing element with all the regulatory properties of the T A T gene enhancer 
can be regenerated (Fig. 6) [12]. 

5.2. R e v e r s a l of e x t i n c t i o n by c A M P 

The c A M P response element of the —3.6 kb enhancer is also a target for negative 
regulation by Tse-1 [12] (Fig. 6). In a hepatoma microcell hybrid line which contains 
only a small segment of the human fibroblast chromosome carrying Tse-1 [10] admin-
istration of c A M P is able to overcome extinction of expression of the transfected re-
porter gene, thus revealing a functional antagonism between Tse-1 and the c A M P 
signal transduction pathway. In vivo footprinting revealed characteristic changes in 
D M S reactivity at the C R E . In the presence of a functional Tse-1 locus, protein-
D N A interaction at the C R E sequence is abolished. This binding can be recovered 
by addition of c A M P [12]. Thus, the extinguished State of the T A T gene is character-
ized by the absence of binding at the C R E . As might be expected from the relief of 
extinction by c A M P , this footprint reappears after administration of the inducer. 

As hormones acting via the c A M P pathway are thought to be critically involved 
in turning on T A T gene expression around birth, this suggests that the functional 
antagonism between Tse-1 and the c A M P pathway might form the basis of a molecu-
lar switch governing the onset of T A T gene expression at birth. The strong increase 
of gluconeogenic hormones around birth may trigger the expression of the T A T gene 
[1, 2]. This is in line with previous experience that T A T enzyme activity can be prema-
turely induced before birth by administration of glucagon in utero [2]. 

In order to understand the mechanism involved in the cell-specific expression of 
the T A T gene, and in particular to understand the mode of action of the product 
of the Tse-1 locus, we are presently isolating and characterizing the proteins involved 
in recognition of the C R E sequence and the liver cell-specific element. Analysis of 
possible modifications of the CRE-binding protein in response to c A M P and the 
tissue-specific extinguisher might give an understanding of the biochemical basis of 
activation of these Controlling proteins. 

6, Summary 

Two different signal transduction pathways control the activity of the T A T gene via 
two inducible enhancers (Fig. 7). These enhancers are composed of constitutive and 
inducible elements which appear to be crucial for cell-specific and hormone-depend-
ent transcription. The effect of glucagon via the c A M P transduction pathway most 
likely involves specific phosphorylation events [35]. As shown from genomic foot-
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~ i T T T n 1 1 1 1 1 F ~ n 1 r 
kb -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 

C e l l - s p e c i f i c enhancer C e l l - s p e c i f i c enhancer 

- T s e -1 r e s p o n s i v e 
- c A M P r e s p o n s i v e 

11 lr t ^ 4̂  DNase I HSs 

P r o m o t e r 

Fig. 7. Several enhancers determine the cell-specific and hormone-dependent activation of the T A T gene. 
The 5'-flanking region of the T A T gene is outlined with DNasel-hypersensitive regions and enhancers indi
cated. Shaded and filled arrows point to DNasel-hypersensitive sites observed in T A T gene-expressing 
hepatoma lines. The filled arrows indicate functionally identified elements; P indicates the promoter. The 
dependence of the DNasel HS at the G R E on glucocorticoids is indicated by the double arrow. 

printing experiments this phosphorylation may be the basis of the increased affinity 
of a DNA-binding protein recognizing the C R E . This C R E is essential for function 
of the liver-specific enhancer at —3.6 kb in hepatoma cells and it has to co-operate 
with a protein recognizing a liver cell-specific module. Since the c A M P response ele
ment is a target for the tissue-specific extinguisher it may contribute, in conjunction 
with a cell-specific enhancer, to the cell-specific and developmentally timed expres
sion of the gene. The enhancer at —3.6 kb is characterized by a constitutive chroma-
tin-hypersensitive site, possibly due to the fact that not only the CRE-binding protein 
determines the active State of this enhancer. The enhancer at — 11 kb is not in
fluenced in its activity by c A M P and glucocorticoids but is liver cell-specific. A D N a 
sel-hypersensitive region is present in fetal livers, possibly indicating that this distal 
element may function early in development to establish an activated locus. 

The glucocorticoid-dependent enhancer is characterized by a hormone-dependent 
DNasel-hypersensitive site which is induced by interaction of the glucocorticoid re
ceptor with its binding site (Fig. 7). The glucocorticoid-dependent enhancer is char
acterized by the presence of two receptor-binding sites plus binding sites for addition-
al transcription factors recognizing the C C A A T and the C A C C C motif. This 
combination of glucocorticoid receptor recognition sequences with transcription fac
tor binding sites might be involved in the cell-specific modulation of activity of the 
T A T gene. It is most remarkable that the sequences involved in hormonal control 
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function in conjunction with elements which display preferential activity in liver cells. 
This unique combination may be crucial for the precisely timed onset of expression 
of the T A T gene at birth in the parenchymal cells of the liver. 
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