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In recent years, flexible hazard regression models based on penalised splines

have been developed that allow us to extend the classical Cox-model via the

inclusion of time-varying and nonparametric effects. Despite their immedi-

ate appeal in terms of flexibility, these models introduce additional difficulties

when a subset of covariates and the corresponding modelling alternatives have

to be chosen. We present an analysis of data from a specific patient popula-

tion with 90-day survival as the response variable. The aim is to determine

a sensible prognostic model where some variables have to be included due to

subject-matter knowledge while other variables are subject to model selection.

Motivated by this application, we propose a two-stage stepwise model building
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strategy to choose both the relevant covariates and the corresponding mod-

elling alternatives within the choice set of possible covariates simultaneously.

For categorical covariates, competing modelling approaches are linear effects

and time-varying effects, whereas nonparametric modelling provides a further

alternative in case of continuous covariates. In our data analysis, we identified

a prognostic model containing both smooth and time-varying effects.

Key words: hazard regression, mixed models, model building, prognostic model, P-splines,

time-varying effects

1 Introduction

Knowledge on factors which determine the prognosis of critically ill, septic patients is of

utmost clinical importance. Traditional prognostic models mostly used binary outcome

variables reflecting intensive care unit or hospital mortality. However, the latter variables

are highly sensitive to variations in the rate of inter-institutional patient transfer (Kahn,

Kramer and Rubenfeld, 2007), and derived prognostic models, are, therefore, likely to

be biased. This bias may be overcome by using survival time as dependent variable, for

example in a hazard regression model. Besides the question how to model the prognosis

of septic patients, the more difficult remaining problem is the exact specification of a

regression model. In our application, it turned out that both non-linear and time-varying

effects are present, requiring a flexible regression model allowing for these possibilities.

Moreover, we have to decide which of the covariates to include in the final model, taking

into account that some covariates are preset due to subject matter knowledge. Still the

precise form of the effect (e.g. linear vs. non-linear) may be unknown and has to be

determined from the data in a model selection procedure.

We start our methodological considerations with the popular Cox proportional hazards

model (Cox, 1972) that specifies the impact of covariates v on continuous survival times

in a regression model for the hazard rate of an observation i, i = 1, . . . , n, via

λi(t) = λ(t, vi) = λ0(t) exp(v′iγ), (1)

where γ is a vector of regression coefficients and λ0(t) is a baseline hazard rate common

to all observations. The two most distinctive features of the Cox model are the propor-

tionality of the hazard rates for different observations and estimation of the regression
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coefficients based on the partial likelihood. Proportional hazards result from the clear

separation of temporal effects in the baseline hazard rate and (multiplicative) covariate

effects in the linear predictor v′iγ. This specification is quite restrictive and often in conflict

with data observed in practice where covariate effects may well be time-varying leading

to non-proportional hazards. Moreover, restricting the attention to linear effects can be

misleading when some of the true covariate effects are sufficiently non-linear.

Therefore, recent approaches as in Kneib and Fahrmeir (2007) or Kauermann, Xu and

Vaida (2008) replace the linear predictor with a more flexible predictor comprising time-

varying and nonparametric effects leading to the hazard rate model

λi(t) = λ0(t) exp

(
L∑

l=1

gl(t)uil +
J∑

j=1

fj(xij) + v′iγ

)
, (2)

where gl(t) are time-varying effects of covariates ul, fj(xj) are smooth effects of contin-

uous covariates xj, and v′γ represents linear effects. In the application our research is

based on, the major aim is to determine a sensible prognostic model, i.e. a model that

contains all covariates that are relevant for prognosis in an appropriate way. Note that

we are not interested in individual predictions of the survival time of specific patients

but instead aim at determining an interpretable model containing all relevant prognostic

factors. Therefore, we require a model building procedure allowing for enough flexibility

in the model specification while avoiding unnecessary complexity. In addition, we have to

account for the constraint that some of the covariates are preset, i.e. they have to be part

of the final model due to subject-matter knowledge. In this case, we only have to decide

between modelling alternatives, whereas exclusion of the covariates is not an option. In

summary, we require both a flexible model as in (2) and a model selection strategy to

identify prognostic factors based on a set of candidate covariates.

We propose a semiparametric approach where both smooth model terms and time-varying

effects are specified as penalised splines allowing for considerably more flexibility, espe-

cially in the time-varying effects as compared to approaches based on artificial covari-

ates (e.g. Therneau and Grambsch, 2000) or fractional polynomials (Sauerbrei and Roys-

ton, 1999; Sauerbrei, Royston and Look, 2007). Representing the log-baseline hazard rate

as a further penalised spline yields the possibility to base estimation (and more generally

inference) on the full instead of the partial likelihood. Thus, the penalised spline approach

provides a direct estimate for the full survival time distribution. Hennerfeind, Brezger
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and Fahrmeir (2006) derive simulation based Bayesian estimation schemes, whereas Kneib

and Fahrmeir (2007) consider mixed model based penalised likelihood estimation, extend-

ing previous suggestions by Cai, Hyndman and Wand (2002) and Kauermann (2005).

Both approaches provide a fully automated estimation procedure, including estimation of

smoothing parameters corresponding to the penalised spline functions.

Our model building strategy relies on a two-stage stepwise selection procedure that op-

erates on the level of the covariates on the first stage and within modelling alternatives

for a given covariate on the second stage. For example, for binary covariates, the ef-

fect may either be time-constant, time-varying or the covariate may have no effect at

all. For continuous covariates, a further modelling possibility is provided by a flexible,

nonparametric effect. In each selection step, all modelling alternatives of all covariates

not already included in the model are compared based on an optimality criterion that

fits the purpose of the data analysis. For example, classical criteria such as Akaikes in-

formation criterion (AIC) or the Bayesian information criterion (BIC) can be considered

but can be replaced by prediction-oriented measures such as the integrated Brier score

(Graf et al., 1999) if prediction is the ultimate purpose of the analysis. In summary, the

algorithm combines discrimination between time-constant and time-varying effects as well

as selection between linear and nonlinear effects. In addition, it also allows comparison

with pre-specified models in terms of the final optimality criterion.

The rest of the paper is organised as follows: Section 2 describes the specification of

structured hazard regression models in more detail and outlines mixed model based in-

ference. Section 3 presents the two-stage model selection procedure, which is evaluated

in a simulation study in Section 4. Section 5 presents our application together with some

adaptations of the basic model building strategy. The final Section 6 discusses and sum-

marises our findings. Details on mixed model based penalised likelihood estimation are

presented in Appendix A.
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2 Structured Hazard Regression

2.1 Model Specification

In structured hazard regression models, the hazard rates are related to additive predictors

by an exponential link, i.e.

λi(t) = exp(ηi(t)), i = 1, . . . , n, (3)

with

ηi(t) = g0(t) +
L∑

l=1

gl(t)uil +
J∑

j=1

fj(xij) + v′iγ. (4)

As in the introduction, gl(t), l = 1, . . . , L, are time-varying effects of covariates uil, and

fj(xij), j = 1, . . . , J , are nonparametric, smooth effects of continuous covariates xij,

but note that (4) contains the log-baseline effect g0(t) = log(λ0(t)) in addition. This

modification allows us to derive the full likelihood not only for the regression effects but

also for parameters describing the log-baseline hazard.

Let Ti, i = 1, . . . , n, denote the true survival time of observation i and Ci the corresponding

censoring time. Then, the observed data in case of right-censored observations is given

by the censored survival time ti = min(Ti, Ci) and the indicator of non-censoring δi =

1(Ti ≤ Ci). Under the usual assumption of non-informative and independent censoring,

the likelihood contribution for observation i with hazard rate λi(t) is given by

Li = λi(ti)
δi exp

(
−
∫ ti

0

λi(t)dt

)
.

Taking logarithms and assuming (conditional) independence between the observations,

the complete data log-likelihood is obtained as

n∑

i=1

[
δiηi(ti)−

∫ ti

0

λi(t)dt

]
.

Since the log-likelihood involves an integral over the hazard rate, the estimation scheme

discussed in the following section will rely on numerical integration to compute the likeli-

hood and its derivatives. In the software we employed for our application, the trapezoidal

rule is used to evaluate this integral. The software supports three standard settings for

choosing the integration points: (i) using all available (distinct) data points, (ii) using

a quantile based grid (employing 60 quantiles and five equidistant points between these
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quantiles as default), and (iii) setting up an equidistant grid (with 300 points as default).

While the two former choices adapt automatically to the distribution of the data, the

latter is more stable with respect to gaps and holes in this distribution that may lead

to numerical problems and instable estimates. Kneib and Fahrmeir (2007) compared

equidistant and quantile based integration points in a simulation and found only minor

differences. In our application, we therefore considered quantile based integration points,

corresponding to the standard choice. Note that the numerical integration can be avoided

by data augmentation leading to an approximate Poisson likelihood (Kauermann, 2005).

However, this possibility comes at the cost of a severely increased sample size while nu-

merical integration allows to work with the original data.

The specification of a structured hazard regression model contains several unknown func-

tions, including the log-baseline hazard g0(t), the time-varying effects gl(t) and the non-

parametric effects fj(xj). A flexible yet parsimonious approach to model these functions

is to approximate them by polynomial splines, i.e. to assume

f(x) =
M∑

m=1

βmBm(x) or g(t) =
M∑

m=1

βmBm(t), (5)

where we dropped the function index for the sake of simplicity. The basis functions Bm are

B-splines of degree q defined over a grid of equally spaced knots κ0 < κ1 < . . . < κs, M =

q+s (Dierckx, 1993). The basis function approach allows us to replace the nonparametric

estimation problem by a parametric analogon where the regression coefficients defining the

splines are added to the vector of unknowns. Eilers and Marx (1996) propose to use a rich

basis to enable flexibility of the resulting functions but to supplement pure likelihood based

estimation with a penalty term that penalises wiggly functions. Instead of a squared k-th

derivative penalty as employed in the popular smoothing spline approach, Eilers and Marx

(1996) use a simple approximation based on k-th order differences of adjacent parameters.

The penalty associated with a parameter vector β = (β1, . . . , βM)′ is therefore given by

pen(β) =
1

2τ 2

M∑

m=k+1

∆k(βm)2 (6)

where ∆1(βm) = βm − βm−1 for first order differences and ∆2(βm) = ∆1(∆1(βm)) =

βm − 2βm−1 + βm−2 for second order differences. Note that in contrast to the standard

formulation of penalty terms, we include τ 2 as an inverse smoothing parameter. Hence,

large values of τ 2 correspond to rough function estimates, whereas small values enforce
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smoothness. Automatic determination of τ 2 is of course an integral part of estimating

structured hazard regression models. We will facilitate this task based on a mixed model

representation where τ 2 turns into a random effects variance, providing an explanation for

our parameterisation. Mixed model based inference in semiparametric regression models

has gained wide attention in recent years, see the introductory paper by Wand (2003) and

Ruppert, Wand and Carroll (2003) for a general overview.

2.2 Mixed Model Based Inference

Estimation of structured, Cox-type survival models is based on the penalised log-likelihood

criterion
n∑

i=1

[
δiηi(ti)−

∫ ti

0

λi(t)dt

]
−

L∑

l=0

pen(β(l))−
J∑

j=1

pen(β(j)).

The parameter vectors β(l), l = 0, . . . , L and β(j), j = 1, . . . , J each consist of M elements

and represent the coefficients of the basis functions for gl(·) and fj(·), respectively. Based

on derivatives of the penalised log-likelihood, we can devise a Newton-Raphson-type al-

gorithm for penalised likelihood estimation. The crucial quantities in obtaining these

penalised likelihood estimates are the smoothing parameters τ 2
l and τ 2

j that control the

compromise between fidelity to the data (in terms of the likelihood) and smoothness (in

terms of the penalty terms). A full inferential procedure that provides both estimates for

the regression coefficients and the smoothing parameters can be derived based on a mixed

model interpretation of structured hazard regression models (Cai et al., 2002; Kauer-

mann, 2005; Kneib and Fahrmeir, 2007). Therefore, we first have to note that the penalty

term associated with a penalised spline can be equivalently interpreted as a special ran-

dom effects distribution. The quadratic penalty (6) can be represented as a quadratic

form

pen(β) =
1

2τ 2
β′Kβ,

where the penalty matrix K = D′D is composed as the cross-product of an appropriate

difference matrix D. Comparing the penalty to a Gaussian distribution with density

p(β|τ 2) ∝ exp

(
− 1

2τ 2
β′Kβ

)
(7)

reveals that the penalty essentially equals the negative log-density of a Gaussian random

effects distribution. Within that distribution, the smoothing parameter τ 2 turns into a

random effects variance.
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A difficulty arising with random effects distribution (7) is its partial impropriety arising

from the rank-deficiency or the penalty matrix K. This rank-deficiency reflects that a

(k − 1)-th order polynomial remains unpenalised when applying a k-th order difference

penalty. Since standard mixed models require proper random effects distributions, a

reparameterisation into fixed effects representing the unpenalised part and random effects

representing the penalised part has to be applied to all vectors of regression coefficients

associated with nonparametric or time-varying effects. Afterwards, the model (4) can be

written as

ηi(ti) = w(ti)
′γ + z(ti)

′ν (8)

where γ comprises the collection of all fixed effects corresponding to covariates w(ti), ν

contains random effects corresponding to covariates z(ti), and all random effects variances

are collected in the vector θ of length L+ J . In terms of the mixed model representation

(8), the likelihood and log-likelihood will be denoted as L(γ, ν) and l(γ, ν) but actually

coincide with the quantities derived above.

The advantage of the mixed model representation is the availability of algorithms for

the joint determination of the random effects and of their variances. The approach is

based on penalised likelihood estimation for the random effects and marginal likelihood

estimation for the variances. The latter employs a Laplace approximation to the marginal

likelihood, yielding a simple Newton-Raphson algorithm (see Kneib and Fahrmeir (2007)

and Appendix A for details).

The mixed model based estimation procedure is implemented in the software package

BayesX, freely available from http://www.stat.uni-muenchen.de/~bayesx.

3 Model Building

Based on the estimation scheme from the previous section, it is possible to obtain esti-

mates in a model with fixed model structure, i.e. given the modelling specification for the

different covariates. However, in practice, several competing modelling strategies exist for

different types of covariates. In particular, categorical covariates could be included with

linear or time-varying effects. For continuous covariates, a further alternative is to include

them with a smooth effect as a penalised spline. In the following section, we develop a

two-stage stepwise procedure that provides a means of model building, taking into account
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these alternative modelling strategies. The discrimination between modelling alternatives

is based on suitable model comparison criteria. Some specific examples will be discussed

in Section 3.2.

3.1 Two-Stage Stepwise Procedure

Consider the following two-stage stepwise procedure:

Starting Model: Define a starting model. Typically this will be the empty model con-

taining only the baseline hazard rate. A non-empty starting model with preset variables

can be obtained by modifications described in Section 5.1.

Initial Choice Set: Define an initial choice set of covariates not already included in the

starting model.

Model Comparison Criterion: Choose an appropriate model comparison criterion.

See the Section 3.2 for some suggestions.

[i] Modelling Alternatives: For each covariate in the choice set, define a set of

modelling alternatives, e.g. linear effect vs. time-varying effect in case of categorical

variables, or linear effect vs. nonparametric effect vs. time-varying effect in case of

continuous covariates.

[ii] Estimation of Models: For each of the covariates in the choice set and for each

modelling possibility, estimate the hazard regression model obtained from the current

model by adding the covariate in the respective modelling possibility and store the

model comparison criterion.

[iii] Selection Step with Stopping Criterion: If the optimal model comparison cri-

terion obtained in step [ii] improves the model comparison criterion of the current

model, replace the current model with the best-fitting model from step [ii], delete the

corresponding covariate from the choice set, and go to step [iv]. Otherwise terminate

the algorithm.

[iv] Backward Deletion: Perform a backward deletion step on the current model, i.e.

estimate all hazard regression models obtained from the current model by dropping

one covariate at a time. If an improvement of the model comparison criterion can

be achieved, make the reduced model with optimal model comparison criterion the

working model and add the deleted variable to the choice set. Continue with step [i].
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The selection procedure is called two-stage since it differentiates between inclusion of

variables on the first stage and different modelling possibilities for the covariates on the

second stage. It proceeds in a stepwise fashion, where each forward step for inclusion of

additional terms is followed by a backward deletion step.

A “toy example” that illustrates the application of our two-stage stepwise procedure can

be found in Table 1. In this example, we apply the conditional AIC (AICc, see Section 3.2)

as model comparison criterion. We start with an empty model containing only the baseline

hazard rate and three variables in the initial choice set with either two or three modelling

alternatives (step [i]). For each variable and each modelling possibility, the model is fitted

and the AICc is calculated (step [ii]). “Apache II score” modelled as smooth term has

the minimal AICc, and thus is added to the starting model. In the next iteration, only

two variables are left in the choice set. “Palliative operation for malignant disease” is

added as linear term as it is the minimizer of AICc. In the last step of this example, age

is chosen as linear term. The inclusion of the variable, in each step, improves the AICc

of the previous step (i.e. AICc decreases) (step [iii]). Between step 1 and 2 no backward

deletion step (step [iv]) is needed, as only one variable is included in the model so far.

The backward step after step 2 was performed in the usual manner but did not lead to a

better model.

Of course, the proposed selection scheme can be modified at some points if recommended

by the application at hand. One might, for example, think of starting with a full model

instead of the empty model but this approach will suffer from two drawbacks: Firstly, it

is not clear which model should be the full model. In particular, for continuous covariates

it is unclear whether a full model should contain nonparametric or time-varying effects.

Secondly, the full model would typically be overly complex. This would lead to a higher

computational burden compared to the proposed strategy. Moreover, it may often be

impossible to identify the full model from given data if, for example, the percentage of

censoring is high or the number of possible covariates is large.

3.2 Model Comparison Criteria

The model comparison criterion that is probably applied most frequently in practice is

Akaikes information criterion (AIC). Since estimation in our structured hazard regression
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model is based on mixed model methodology, it seems plausible to base the model building

procedure on an AIC for mixed models. However, two different versions of AIC are

available: The marginal AIC is based on the marginal likelihood of the mixed model with

the random effects integrated out, i.e.

AICm = −2 log[

∫
L(γ, ν)dν] + 2[dim(γ) + dim(θ)]. (9)

It consists of the log-marginal likelihood as pure model fit criterion and the number of

fixed effects, dim(γ), plus the number of smoothing variances, dim(θ), as a measure of

model complexity. In contrast, the conditional AIC

AICc = −2l(γ, ν) + 2 df (10)

is based on the conditional likelihood L(γ, ν) in combination with the effective degrees of

freedom df as a complexity measure. The degrees of freedom are defined as the trace of

the product of unpenalised Fisher information and inverse penalised Fisher information,

see the appendix for details. They replace the usual parameter count since the effective

dimensionality reduction induced by the random effects distribution has to be taken into

account.

Vaida and Blanchard (2005) (in the context of mixed models) and Wager, Vaida and

Kauermann (2007) (in the context of mixed model based penalised spline smoothing)

compare both AIC versions and also devise some general rules to judge the appropriateness

of either of the two. If the number of random effects is fixed and all observations share

the same set of random effects, the conditional AIC is more appropriate. This situation

arises in the context of mixed model based smoothing where the random effects are given

by the coefficients of the basis functions. Since all observations share the same random

effects, there is no necessity to obtain a marginal model comparison measure without

the random effects. Moreover, the random effects represent the penalised part of the

nonparametric function and integrating them out corresponds to marginalising over parts

of the function. Since, however, the nonparametric functions are of major interest in

our analyses, a conditional model comparison measure is recommended. Moreover, the

conditional AIC coincides with the classical AIC from the smoothing literature as outlined

for example in Hastie and Tibshirani (1990).

Note, however, that still the marginal AIC is frequently employed in mixed model based

smoothing since it is the sole model comparison criterion delivered by most mixed model
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implementations in statistical software. However, it is more appropriate for clustered data,

where the random effects are introduced to model correlations between the elements of

one cluster. For example, Kauermann et al. (2008) apply the marginal AIC in structured

hazard regression models with time-varying effects expressed as random effects and addi-

tional random effects for cluster-specific effects (i.e., frailties) to select between different

candidate models. Greven and Kneib (2008) investigate conditional and marginal AIC

in linear mixed models and detect theoretical defects for both of them. However, their

results do not immediately carry over to structured hazard regression models and our em-

pirical experience suggests deviations from the theoretical behaviour predicted by Greven

and Kneib (2008). We therefore decided to stick to the conditional AIC in our application

but provide some further remarks in the discussion section.

A straightforward alternative to the conditional AIC is the conditional BIC where the

penalty parameter is replaced by the logarithm of the sample size n, yielding

BICc = −2l(γ, ν) + ln(n) df . (11)

Of course, any other criterion that can be used to evaluate the fit of a model can also

be applied. The corrected AIC (Hurvich, Simonoff and Tsai, 1998), for example, can be

applied to force the selection of sparser models since it uses a larger penalty for the degrees

of freedom when the number of parameters approaches the sample size. The corrected

AIC has also been successfully applied in the context of hazard regression models with

random effects (Therneau and Grambsch, 2000), making it suitable for mixed model based

penalised spline estimation as considered in this paper.

The (integrated) Brier score can be used to assess the predictive power of competing

models and thus to distinguish between different models (Gerds and Schumacher, 2006).

The mean squared error of prediction in survival models, i.e. the Brier score, can be

estimated as

B̂s(t) = 1/n
n∑

i=1

[
I(T ∗i > t)− Ŝ(t|x∗i )

]2

· wi(t), (12)

where the Brier score is evaluated for an arbitrary but fixed value t, Ŝ(t|x∗i ) is the survivor

function estimated on the training data and evaluated for a new observations x∗i , i =

1, . . . , n. The indicator function I(·) is 1, if the time-point t is before the observed event

time T ∗i of the new observation x∗i and 0 otherwise. The weights wi(t) depend on the

censoring distribution (for details see Gerds and Schumacher, 2006). The Brier score now
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can be plotted against time. To have a summary measure, the integral over time of the

Brier score can be used (Graf et al., 1999).

Further examples of available model comparison criteria include scoring rules as discussed

in Gneiting and Raftery (2007).

4 Simulation Study

To assess the properties of the proposed algorithm, we conducted a small simulation study

employing the conditional AIC (10) and the conditional BIC (11) as model comparison

criteria. We generated 100 independent data sets, each with 400 observations, for both

criteria. The simulations apply a generalized version of the sampling algorithm proposed

by Bender, Augustin and Blettner (2005) and are based on the hazard rate

λ(t,x) = exp
(

log(t+ 0.01) + 0.9 · x1 + sin(−x2
2 − 0.6x3

2) + 0.5
√
t · x3

)

with time t and covariates x = (x1, . . . , x5)′. Thus, we have five possible covariates but

only three have an effect on the survival time Ti. To be more specific, x1 enters in linear

form, the effect of x2 has a flexible, nonlinear form, and x3 has a time-varying effect. The

covariates are sampled independently from uniform distributions on [−1, 1], i.e.

x1, . . . , x5
i.i.d.∼ U [−1, 1].

The observed survival time is then defined as ti = min(Ti, Ci), where censoring is intro-

duced through Expo(8) distributed censoring times Ci. This leads to roughly 80% to 90%

non-censored observations.

Table 4 summarizes the modelling alternatives selected for each of the covariates based on

the conditional AIC and the conditional BIC. Since the different modelling alternatives are

mutually exclusive, all rows sum up to 100 (the total number of simulation replications).

Comparing results for AICc and BICc, we find the expected behaviour that BICc favors

sparser models. In particular, the spurious covariates x4 and x5 are never selected by

BICc, whereas a small number of false decisions is found for AICc. On the other hand,

the BICc also tends to select a linear effect for x3 instead of the correct time-varying effect.

Hence, despite finding the relevant covariates in most simulation replications, BICc tends

to favor models without time-varying effects. Based on AICc, we find a similar tendency

towards linear effects for x3 (42 out of 100) but the number of correct decisions increases
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quite a bit (from 11 to 43). It is also noteworthy that based on AICc the modelling

alternative chosen most frequently is the correct one for all covariates. Furthermore, 100

out of 100 replications yielded the correct choice of a flexible effect for x2. Both AICc

and BICc eventually identify the influential covariates in all replications but sometimes

mistake the correct form of the influence (both, AICc and BICc) and may introduce a

small number of spurious covariates (AICc).

[Table 1 about here.]

While Table 4 presents marginal frequencies of modelling alternatives for the covariates,

it is of course also of interest to identify complete model specifications (i.e. combinations

of modelling alternatives for the covariates) that are frequently chosen by our procedure.

Table 5 shows the frequency of replications where the correct model was chosen together

with the models that are chosen most frequently. Based on BICc, only a very small

number of different models has been identified (in at least two simulation replications).

Only nine replications led to the correct model. Note however, that this small number is

simply resulting from the fact that only 11 replications identified the time-varying effect

of x3 and therefore 11 is also the maximal number of correct model identifications that

could be achieved. The model most frequently selected by BICc is correct apart from the

misspecification for x3. Based on AICc, the number of different models deemed as optimal

(in at least two replications) strongly increases. The model chosen most frequently now

(in 14 out of 100 cases) is actually the correct one, followed by models where either the

effect of x3 is mistaken to be linear (14 cases) or the effect of x1 is mistaken to be time-

varying (11 cases). All other modelling possibilities appear less than five times within

the simulation. Again, it turns out that all influential variables are found in most of the

simulation replication.

[Table 2 about here.]

Inspection of the estimated effects (omitted for the sake of brevity) of x1 (truly linear)

and x2 (truly smooth) showed that the true effects were estimated very well. Minor

deviations, especially in the case where time-varying effects were selected for x1, can

at least partly be attributed to the heavily skewed distribution of the observed survival

times t. The skewness of the marginal distribution of t is also responsible for difficulties
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regarding the detection and estimation of time-varying effects. Since the right tail of

the distribution is very sparse, estimation of the effect is highly variable in this region

or might bias the whole estimation (e.g. Gray, 1992). Problems with the detection and

estimation of time-varying effects can be observed in many other publications, even in

very manageable simulation settings. For example, Abrahamowicz and MacKenzie (2007)

estimate an interaction surface of a smooth and a time-varying effect were the other three

covariates are a priori known to have a linear effect on the log hazard. Despite this prior

knowledge, there is considerable variation in the estimation of the effects. Kauermann

et al. (2008) use a setting similar to ours, where the log-baseline hazard and time-varying

effects are both modeled using penalised splines. Their simulation setting consists of one

time-varying effect for a binary covariate and an additional frailty term, which can be

simultaneously modeled with their proposed stacked Laplace-EM algorithm. Again, high

variability for the estimates of time-varying effects is observed.

In summary, our simulation study supports that the two-stage stepwise model building

procedure has the potential to detect correct functional forms in survival models. The

correct detection of time-varying effects is less powerful, but this seems to be attributable

to the increased difficulty in this task that has already been observed in previous attempts.

One of the main advantages of the two-stage procedure lies in the fact that all resulting

models are easily interpretable since each covariate enters in exactly one functional form

and no combinations such as time-varying and flexible effects of the same covariate are

considered. Note also that the final model delivered by the two-stage stepwise approach

should only be considered a candidate model delivered by an automatic model building

strategy. Instead of investigating the possibility to detect the “true model” (which will

probably not exist in reality anyway), the results of our simulation study should pro-

vide some evidence that the proposed procedure detects reasonable models for further

investigation.

The model comparison criterion employed should be chosen to meet the requirements of

the study performed. If variable selection is of particular interest, BICc may be used

to identify these variables, despite its drawback of favoring simpler, linear models over

models with time-varying effects. If, on the other hand, it is more important to correctly

identify the functional forms of the covariate effects of the influential variables, AICc

may be favored, despite its tendency to introduce some spurious covariates. Since we

15



are particularly interested in time-varying effects in our application, we considered the

(conditional) AIC instead of (conditional) BIC in the following. Note also that it may

well be useful to investigate the performance of a specific comparison measure (or other

settings in the two-stage stepwise procedure) in simulations designed to meet the data

under consideration. Although general recommendations seem to be difficult to derive,

this will then allow to choose a sensible model building strategy for the given application.

5 Application: Prognostic model for surgical patients

with severe sepsis

Our analysis was based on data from a database, which was initiated in 1993 in the In-

tensive Care Unit, Department of Surgery, Campus Großhadern, LMU Munich, Germany,

for benchmarking and quality control. The documentation period started on March 1st,

1993, and lasted until February 28th, 2005. We could obtain relevant covariates reflecting

the state of the patient on admission day, and 90-day survival time in 462 patients with

severe sepsis. We aimed to build a prognostic model to asses which variables have an

influence on the prognosis of the patients. The purpose was not to make individual pre-

dictions for each patient but to identify influential prognostic factors and to understand

how these act on the survival time.

5.1 Starting model

Based on subject-matter knowledge, six of the covariates included in the original choice

set should be definitely included in the final model. We therefore adapted the two-stage

selection strategy from the previous section to account for this fact. In a first step, we

derived a starting model, where only the modelling possibility had to be chosen for each

of the fixed covariates. This is implemented by accepting the best-fitting modelling alter-

native in step [iii] even if it does not reduce the AICc of the previous model. Application

of the modified procedure to our data, led to a model containing the effects presented in

the upper part of Table 2 (in the order of inclusion). As one can see in the last two steps,

we did not use a stopping criterion (e.g. increase of AICc) for the selection of the starting

model. This is because we just wanted to detect suitable modelling alternatives but do
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not select variables. We will provide further discussion of the effects of variables in the

starting model along the results of the final model in the next section.

5.2 Prognostic model

After deciding on the optimal starting model, we derived the final prognostic model by

applying the original two-stage procedure to the choice set of remaining covariates. Note

that the fixed covariates are of course not subject to deletion in the backward selection

step [iv].

Table 2 shows the full choice set, the model alternative selected in the stepwise proce-

dure, and the conditional AIC obtained in the corresponding inclusion step. The covariate

set mainly represents variables indicating renal, pulmonary and cardio-circulatory func-

tion, and nature and severity of the underlying disease. While most covariate labels are

self-explanatory, some of them require supplementary explanation: Apache II score is a

measure for the severity of disease determined within the first 24 hours of admission and

the Horowitz ratio (PaO2/FiO2) describes the quality of lung function by referring the

arterial partial oxygen pressure to the corresponding inspiratory oxygen concentration.

The effects of the selected smooth terms are plotted in Figure 1 and time-varying terms

are shown in Figure 2. In the latter, one can clearly see the differences in the shapes

of the log-baseline hazard rate for the variable “fungal infection” (present vs. absent).

In particular, Figure 2 also reveals the ability of structured hazard regression models to

address the problem of nonproportional hazards.

Table 3 shows the linear effects of the variables included in the prognostic model.

[Figure 1 about here.]

[Figure 2 about here.]

Relevant risk factors (p < 0.05) for a shorter survival time were palliative operation

for malignant disease, age, creatinine concentration at admission, year of therapy and

operation for thoracic diseases. According to 95% pointwise confidence intervals of smooth

and time-varying terms, also a high Apache II score on admission day, and the nature

and localization of the infection (fungal infection, peritonitis) were associated with an

increased mortality. Gender, haemoglobin concentration, the need for renal replacement
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or catecholamine therapy, the Horowitz ratio or the primary diagnosis of a malignant

disease were not associated with mortality.

Our results show that a clinically plausible prognostic model can be constructed based on

the suggested algorithm. This model can help the physician in charge to judge the true

relevance of various clinical variables for patient outcome, and to adjust his therapeutic

concepts according to individual risk profiles.

6 Summary and Discussion

We have developed a sensible model building strategy for structured, Cox-type hazard

regression models that combines selection of relevant covariates with the determination

of the appropriate modelling alternative in a two-stage stepwise procedure. It therefore

allows to investigate time-constant and time-varying effects in one step, making it par-

ticularly attractive for model building in the survival analysis context. The two-stage

procedure can, however, also be applied in any other type of regression models where

multiple modelling alternatives exist for a covariate. A typical example are generalised

additive models, where linear vs. non-linear modelling of continuous covariates is of in-

terest. Further modelling alternatives may include specific forms of interactions, such as

surfaces or varying coefficient terms. Note, however, that in this case two components

have to be treated simultaneously in the modelling alternatives. For example, in case of

an interaction between two continuous covariates, modelling alternatives would include

effects of only one single covariate, an additive combination of both covariates and a

completely nonparametric interaction surface (to name only a few). In our application,

we defined the modelling alternatives in cooperation with our collaborators from the De-

partment of Surgery and, as a consequence, restricted our attention to models without

interaction effects.

Employing penalised splines as a major modelling component allows for considerable

flexibility in estimating semiparametric regression models. In particular, time-varying

effects of qualitatively very different functional forms can be treated within one framework.

In contrast to the artificial covariate approach, penalised splines avoid the need to specify a

global functional form for time-varying effects. Fractional polynomials fall in between the

purely parametric approach and penalised spline estimation and would be an alternative

18



possibility to define modelling alternatives in the two-stage stepwise procedure. This could

for example be useful in the determination of time-varying effects where the penalised

spline approach had a tendency towards simple linear effects.

One of the main benefits of the two-stage procedure lies in the fact that it ensures that

any selected covariate is included in exactly one modelling alternative. Hence it yields

interpretable models and avoids models that contain, for example, combinations of time-

varying and flexible effects of the same covariate.

Model comparison is accomplished based on a criterion such as the conditional AIC, al-

lowing for the comparison of all models fitted throughout the iterative model building

process. In addition, the final model can be compared to alternatives derived with com-

peting procedures or from subject-matter knowledge. Note that the proposed procedure

leaves the choice of the appropriate criterion to the user. While our simulation supports

that the conditional AIC seems to be reasonable criterion in the context of hazard regres-

sion models with time-varying effects, other choices may be deemed preferable in other

contexts. Moreover, recent research has shown that the conditional AIC has some severe

theoretical defects in simple linear mixed models (Greven and Kneib, 2008) that may

make its use also questionable in hazard regression.

In our application, we employed the model building procedure to determine a suitable

prognostic model for 90-day survival of patients with severe sepsis. Another area where

the proposed strategy can be applied is the derivation of confounder models (Moubarak

et al., 2008). In this case, the two-stage procedure can be employed to determine the

confounder model from a set of covariates excluding the covariate of primary interest.

After performing model selection, the effect of this covariate can be assessed by additional

inclusion in the chosen confounder model.

A Details on Penalised Likelihood Estimation

This appendix summarises details on likelihood based estimation of structured hazard

regression models. Further details can be found in Kneib and Fahrmeir (2007).

In vector matrix notation, the predictor (8) can be written as

η = Wγ + Zν.
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Accordingly, the penalised log-likelihood is then given by

lp = δ′η − 1′Λ− 1

2
ν ′Σ−1ν

where δ refers to the vector of censoring indicators, Λ contains the evaluations of the

cumulative hazard rate

Λ(ti) =

∫ ti

0

λi(t)dt,

1 is a vector of ones and Σ corresponds to the covariance matrix of the random effects ν.

Taking first and second derivatives yields the score function

s =


sγ
sν


 =



∂lp
∂γ
∂lp
∂ν


 =




δ′W − 1′
∂Λ

∂γ

δ′Z − 1′
∂Λ

∂ν
− Σ−1ν




and the Fisher information matrix

H =


Hγγ Hγν

Hνγ Hνν


 =



1′

∂2Λ

∂γ∂γ′
1′

∂2Λ

∂γ∂ν ′

1′
∂2Λ

∂ν∂γ′
1′

∂2Λ

∂ν∂ν ′
+ Σ−1


 . (13)

Both quantities rely on first and second derivatives of the cumulative hazard rate that are

(for example) given by
∂

∂γj
Λ(ti) =

∫ ti

0

wij(t)λi(t)dt

and
∂

∂γj∂γk
Λ(ti) =

∫ ti

0

wij(t)wik(t)λi(t)dt

and analogous expressions when random effects ν are involved. All integrals have to be

evaluated numerically, relying on the trapezoidal rule for simplicity. Score function and

Fisher information form the basis for a Newton-Raphson algorithm for the determination

of the regression coefficients (for given variance parameters).

The Fisher information matrix also forms the basis for determining the degrees of freedom

for the estimated model that have been employed in the definition of the conditional AIC

and the conditional BIC. Let

H̃ =



1′

∂2Λ

∂γ∂γ′
1′

∂2Λ

∂γ∂ν ′

1′
∂2Λ

∂ν∂γ′
1′

∂2Λ

∂ν∂ν ′




denote the Fisher information derived from the unpenalised log-likelihood. Then, the

effective degrees of freedom are defined as

df = trace
(
H̃H−1

)
,
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see Gray (1992).

Estimation of the variance parameters is based on an approximate marginal likelihood

procedure, where a Laplace type approximation to the marginal log-likelihood

lmarg(Σ) = log

[∫
Lp(γ, ν,Σ)dγdν

]

is considered, yielding

lmarg(Σ) ≈ −1

2
log |Σ| − 1

2
log |H| − 1

2
ν ′Σ−1ν.

First and second derivatives of this approximate marginal log-likelihood can be derived

based on matrix differentiation rules, again allowing to set up a Newton-Raphson type

estimation procedure.
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Apache II score (on admission day)
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Figure 1: Smooth terms for “Apache II score” (pre-selected in the starting model),
“Horowitz ratio”, and “haemoglobin concentration” in the prognostic model;
Dashed lines are 80% and 95% point-wise confidence intervals.
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Figure 2: log(baseline hazard rate) in subgroups defined by fungal infection (present vs.
absent) and peritonitis (present vs. absent).
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AICc

linear smooth time-varying not selected
x1 (true: linear) 63 9 28 0
x2 (true: smooth) 0 100 0 0
x3 (true: time-varying) 42 15 43 0
x4 7 2 11 80
x5 7 11 12 70

BICc

linear smooth time-varying not selected
x1 (true: linear) 98 0 2 0
x2 (true: smooth) 10 75 0 15
x3 (true: time-varying) 88 0 11 1
x4 0 0 0 100
x5 0 0 0 100

Table 4: Selection frequencies of model components using AICc (top) or BICc (bottom)
as inclusion criterion. Correctly selected model components are printed in bold
face.
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AICc

x1 x2 x3 x4 x5

linear smooth time-varying – – 15
linear smooth linear – – 14
time-varying smooth time-varying – – 11
time-varying smooth linear – – 4
linear smooth time-varying time-varying – 4
linear smooth smooth – smooth 4
linear smooth smooth – – 4
linear smooth linear – time-varying 3
linear smooth linear – linear 3
smooth smooth time-varying – – 3
linear smooth time-varying – time-varying 3
linear smooth linear – smooth 3
time-varying smooth time-varying linear – 2
time-varying smooth linear – linear 2
time-varying smooth linear linear – 2
time-varying smooth time-varying – time-varying 2
linear smooth linear time-varying – 2
linear smooth linear smooth smooth 2
smooth smooth time-varying linear – 2
smooth smooth linear – – 2

BICc

x1 x2 x3 x4 x5

linear smooth time-varying – – 9
linear smooth linear – – 65
linear – linear – – 13
linear linear linear – – 9

Table 5: Selection frequencies of models: Model selection based on AICc (top) and BICc

(bottom); Only models with selection frequency > 1 are given. First row: True
model.
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