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Femtosecond Studies of the Reaction Center of 
Rhodopseudomonas v i r i d i s : The Very First Dynamics 
of the Electron-Transfer Processes 

W. Z i n t h , M . C . Nuss, M . A . F r a n z , a n d W. K a i s e r 

Physik-Department, Technische Universität München, 
D-8000 München, F . R . G . 

H . M i c h e l 

Max-Planck-lnstitut für Biochemie, D-8033 Martinsried, F . R . G . 

The X-ray s t r u c t u r e a n a l y s i s of c r y s t a l s made up of r e a c t i o n 
centers (RC) of Rhodopseudomonas v i r i d i s provides us wit h the 
information on the l o c a t i o n and o r i e n t a t i o n of the various 
pigments i n the p r o t e i n matrix 71 ,2/. A f t e r many years of specu-
l a t i o n one i s now i n the p o s i t i o n to p r e d i c t unequivocally the 
path of the e l e c t r o h i n the RC f o l l o w i n g the absorption of a 
photon by the s p e c i a l p a i r i n the RC. This note i s concerned 
with the time-dependence of the very f i r s t events. 

We present here r e s u l t s from u l t r a f a s t time-resolved e x p e r i -
ments. The RC were e x c i t e d by a f i r s t u l t r a s h o r t l i g h t pulse 
which t r i g g e r e d the photochemical r e a c t i o n s . A second, properly 
delayed probing pulse monitored absorbance changes induced by 
the various t r a n s i e n t intermed.i.ates. The measurements wi t h 
highest time r e s o l u t i o n ( 1 x 1 0 ~ 1 3 s) were made with e x c i t i n g and 
probing pulses of 150 f s (1 .5x10~13 s) du r a t i o n at a wavelength 
of 620 nm. These pulses were generated i n a cw dye-laser System 
operating i n the c o l l i d i n g pulse mode (CPM) / 3 / . The exposure 
of the sample to l i g h t was held on a low l e v e l by the f o l l o w i n g 
two techniques: F i r s t , an e l e c t r o - o p t i c a l modulator operating 
at 100 KHz cuts short pulse t r a i n s of f i v e i n d i v i d u a l pulses from 
the 100 MHz r e p e t i t i o n r a t e emission of the CPM l a s e r . Second 
r o t a t i o n of the sample c e l l with 25 Hz ensured tha t each short 
pulse t r a i n i l l u m i n a t e d a new p o r t i o n of RC / 4 / . The l i g h t i n t e n -
s i t y was kept so low that i n the excited-sample volume l e s s 
than 1 0 " 2 of the r e a c t i o n centers were e x c i t e d . The changes of 
absorption were monitored by delayed probe pulses at the same 
wavelength. To Supplement our femtosecond data, e x c i t e and probe 
measurements using Single picosecond pulses from a Nd-glass l a s e r 
System were made at d i f f e r e n t probe frequencies. Tuning of the 
probe pulse was achieved by frequency Converters based on the 
stimulated Raman process. E x c i t a t i o n wavelength was 620 nm. In 
the picosecond experiments l e s s than 15% of the RCs were ex­
c i t e d . 

The r e a c t i o n centers of Rhodopseudomonas v i r i d i s s tudied here 
were prepared accordirig to the procedure given i n / 1 / . We used 
r e a c t i o n center preparations where 20 mM ascorbate was added 
i n order to reduce the quinones. i n that way i t was guaranteed 
that o x i d i z e d s p e c i a l p a i r s d i d not accumulate. The absorption 
spectra of the RC were studied p r i o r to and a f t e r each e x p e r i -
mental run. An absorbance change i n d i c a t i n g a decomposition of 
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F i g . 1 Absorbance spectrum of a Suspension of r e a c t i o n center 
preparation of Rhodopseudomonas v i r i d i s . The broken l i n e s repre-
sent a decomposition of the band around 605 nm i n t o the c o n t r i -
butions from the Q x t r a n s i t i o n of the accessory BChl^ Umax ^ 
605 nm) and of the s p e c i a l p a i r ( A m a x ^ 618 nm). 
(Sample: RC without ascorbate). 

the RC during the picosecond and femtosecond experiments was not 
observed. 

In Fig.1 p a r t of the absorption spectrum of the r e a c t i o n center 
i n S o l u t i o n i s depicted. The band at 610 nm corresponds to the 
Q x t r a n s i t i o n of the two accessory b a c t e r i o c h l o r o p h y l l b molecules 
(BChlA) and the broad Shoulder around 620 nm belongs to the Q 
t r a n s i t i o n of the s p e c i a l p a i r (P) , the b a c t e r i o c h l o r o p h y l l dimer. 
The p o s i t i o n of the Q x t r a n s i t i o n of P i s w e l l e s t a b l i s h e d from 
bleaching experiments /5/. Photooxidation of P reduces the ab­
so r p t i o n band at 960 nm, the Q y t r a n s i t i o n of P, and simultane-
ously the absorption around 618 nm. The broad absorption at 
530 nm i n Fig.1 i s made up of absorption bands of the two 
bacteriopheophytin b molecules (BPh) of the r e a c t i o n center and 
of the four cytochrome u n i t s attached to the RC. 

With l i g h t pulses of 620 nm we e x c i t e d predominantly the 
s p e c i a l p a i r ; approximately 20% of the i n c i d e n t r a d i a t i o n was 
absorbed by the neighboring BChl^. In Fig.2 the absorption 
changes, i n i t i a t e d by the femtosecond e x c i t a t i o n pulse and moni­
tored by the delayed probe pulse, are presented as a f u n c t i o n of 
delay time between the two pulses. Four successive processes are 
r e a d i l y seen i n the f i g u r e : During the passage of the e x c i t a t i o n 
pulse of 150 f s the absorption of the sample decreases s t r o n g l y . 
At the end of the e x c i t a t i o n the absorption increases very r a p i d l y 
with a time constant shorter than the pulse d u r a t i o n . The enhanced 
absorption decreases f o r approximately 1 ps and recovers with a 
time constant of 5 ps. 

The experimental data suggest that four t r a n s i e n t species are 
seen during the f i r s t 10 ps a f t e r e x c i t a t i o n of the s p e c i a l p a i r : 
A f i r s t State having reduced absorbance (at 620 nm) l i v e s shorter 
than the pulse d u r a t i o n ; a second intermediate of enhanced ab­
sorbance l a s t s f o r 1 ps, a t h i r d one l i v e s 5 ps, and a fo u r t h one 
i s s t a b l e during our subsequent Observation time of 100 ps. 
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F i g . 2 Absorbance change induced by 150 f s pulses a t X = 620 nm 
measured as a fu n c t i o n of time delay at the same wavelength. The 
tr a n s i e n t absorbance changes i n d i c a t e the existence of four i n t e r -
mediate s t a t e s formed a f t e r o p t i c a l e x c i t a t i o n . 

The assignment of the d i f f e r e n t absorption processes of Fig.2 
to molecular s t a t e s i s supported by se v e r a l sources of Information. 
(i) As pointed out above, the x-ray work t e i l s us the l o c a t i o n of 
the d i f f e r e n t pigments w i t h i n the protein„and thus gives strong 
i n d i c a t i o n on the course of the e l e c t r o n a f t e r e x c i t a t i o n of the 
s p e c i a l p a i r . ( i i ) Our picosecond data (discussed below) at the 
frequency p o s i t i o n of the BChl and BPh absorption bands help us 
to i n t e r p r e t our data f o r times exceeding 1 ps. ( i i i ) Informa­
t i o n on the absorption p r o p e r t i e s of the o x i d i z e d s p e c i a l p a i r P + 

may be deduced from the known spectra of the State P+Q~. Assuming 
that the negative Charge at the quinone does not i n f l u e n c e the 
v i s i b l e spectrum ,we deduce that P + has a broad absorption exten-
ding from a peak around 1.3 \im throughout the v i s i b l e . A d d i t i o n a l 
spectroscopic data /6/ give Information on the absorbance changes 
induced by reducing the pigments BChl and BPh. In Fig.3 the ab­
sor p t i o n changes are depicted which occur when b a c t e r i o c h l o r o p h y l l b 
and bacteriopheophytine b are reduced chemically to form BChl"* 
and BPh", r e s p e c t i v e l y . The curves i n Fig.3 (redrawn from /6/) 
were taken i n Solutions of dimethylformamide (BChlb -) and CH2CI2 
(BPh -). While small s h i f t s of the band are l i k e l y when going i n t o 
the p r o t e i n surrounding, the broad features of the spectra should 
b a s i c a l l y remain unchanged,allowing the f o l l o w i n g d i s c u s s i o n . 

According to our present t e n t a t i v e p i c t u r e the time-sequence 
of events i s as f o l l o w s : (i) During the e x c i t a t i o n the s p e c i a l 
p a i r i s promoted to the e x c i t e d State; the reduced number of 
s p e c i a l p a i r s i n the ground State leads to a decrease i n absorp­
t i o n at the very beginning. The observed absorbance decrease i s 
enhanced by the s o - c a l l e d coherence a r t i f a c t , w h i c h e x i s t s only 
during the time d u r a t i o n of the e x c i t i n g pulse. ( i i ) Immediately 
f o l l o w i n g the e x c i t a t i o n , i . e . even during the e x c i t a t i o n pulse 
of 150 f s , a second, s t r o n g i y absorbing species i s formed. To our 
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3 Absorbance change induced by reduction of BChlb i n dimethyl-
formamide ( s o l i d curve) and of BPhb i n CH2CI2 (broken curve, a f t e r 
/6/) . Absorption changes deduced from our time-resolved data are 
shown f o r the State P*"" (AA(P +~), open c i r c l e ) and f o r the o x i -
dized s p e c i a l p a i r (AA(P +), füll c i r c l e ) . 

Interpretation»fast Charge Separation i n the e x c i t e d s p e c i a l p a i r 
forms the P +~ State w i t h i n 150 f s . ( i i i ) The f o l l o w i n g decrease 
i n absorption w i t h i n 1 ps suggests to us the r a p i d passage of 
the e l e c t r o n at the neighboring B C h l A forming a t r a n s i e n t P + B C h l A ~ 
State. The e l e c t r o n continues i t s path to the pheophytine w i t h i n 
5 ps; we see a new State P +BPh". In our samples, where the 
quinones are chemically reduced, back-reactions r e t u r n the RC to 
i t s i n i t i a l State w i t h i n l e s s than 10~"4 s. 

Some comments should be added concerning the absolute values 
of the absorbance changes induced by the various intermediates. 
At l a t e delay times one observes State P +BPh". I t s absorbance 
change AA i s induced, i n a f i r s t - o r d e r approximation, by o x i d a t i o n 
of the s p e c i a l p a i r ( g i v i n g A A(P +)) and r e d u c t i o n of a b a c t e r i o -
pheophytine (AA(BPh")):AA(P+BPh-) = A A(P +) + A A(BPh -). In a 
s i m i l a r way we o b t a i n A A(P +BChl A-) * A A(P +") + A A ( B C h l A " ) . Knowing 
AA(BChl~) and AA(BPh") from Fig.3 we can deduce from Fig.2 the 
values of AA(P+) (füll c i r c l e s i n Fig.3) and A A(P +") (open c i r c l e 
i n F i g . 3 ) . 

A d d i t i o n a l Information supporting the presented I n t e r p r e t a t i o n 
and y i e l d i n g the absorbance changes A A(P +) at other wavelengths 
can be deduced from the picosecond measurements: In Fig.4 the 
change of absorption at 592 nm i s presented a f t e r picosecond ex­
c i t a t i o n at 623 nm. As pointed out i n F i q . 1 , at 592 nm the Q x 

t r a n s i t i o n of B C h l A absorbs stronger than the s p e c i a l p a i r . A f t e r 
e x c i t a t i o n of the s p e c i a l p a i r at 62 3 nm the absorption at 59 2 nm 
r i s e s during the pulse d u r a t i o n of 4 ps and remains constant f o r 
longer times. A more c a r e f u l a n a l y s i s of the data shows, however, 
that the build-up of the absorption i s slowed down. The broken 
curve i n the f i g u r e represents the measured i n t e g r a l over the 
a u t o c o r r e l a t i o n curve. The d i f f e r e n c e between the instantaneous 
response and the experimental data are presented on an enlarged 
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F i g . Absorbance change induced by pulses at 620 nm with 
4 ps durati o n measured at A = 592 nm (füll c i r c l e s ) . The broken 
curve shows the i n t e g r a t e d c r o s s - c o r r e l a t i o n curve. D i f f e r e n c e s 
between the s o l i d and the broken curve are drawn i n an enlarged 
scale (x(-3)) as the open c i r c l e s . 

scale by the dash-dotted curve. One may e x p l a i n the data of Fig.4 
as f o l l o w s : The e x c i t a t i o n of the s p e c i a l p a i r at 62 3 nm leads 
to an enhanced absorption at 592 nm due to the r a p i d generation 
of P+~* and the slower formation of the f i n a l State P+BPh"~ w i t h i n 
5 ps. The delay i n the build-up i s an i n d i c a t i o n of a s h o r t - l i v e d 
intermediate State, which absorbs weaker than the f i n a l State 
P+BPH"". We b e l i e v e that t h i s intermediate State i s P + B C h l A . In-
deed, according to the data of Fig . 3 , the absorbance change 
AA (BChl-*) i s considerably smaller than A A (BPh) at 592 nm. 

The S i t u a t i o n ät the probing frequency at 540 nm i s quite 
d i f f e r e n t . In Fig.5 the change of absorption a f t e r picosecond ex­
c i t a t i o n at 620 nm i s depicted. We f i n d a r a p i d l y r i s i n g (within 

10 0 10 20 30 
Delay Time Cps3 

F i g . 5 Absorbance change induced by pulses at X - 620 nm wi t h 
4 ps duration probed at X=540 nm. At t h i s wavelength the b a c t e r i o -
pheophytines give a negative absorbance change AA. The p o s i t i v e 
AA at e a r l i e r times i s due to the o x i d i z e d s p e c i a l p a i r P +. 
290 



the time r e s o l u t i o n of 1 ps) enhanced absorption, followed by 
a negative absorption change. The short p o s i t i v e absorption 
change i s be l i e v e d to be due to a strong absorption of the P +~ 
and P+BChl" states at 540 nm. These s h o r t - l i v e d states are not 
resolved with pulses of a few picosecond duration. The negative 
absorption change f o r the t r a n s i t i o n BPh •+ BPh" (see Fig.3 ) 
changes the sign of AA i n Fig.5. In f a c t , the negative values 
of AA b u i l d up with a time-constant of 5_ps, as expected f o r 
the formation of the r a d i c a l p a i r s P +BPh . The f i n a l absorbance 
change i s due to AA(P +) and AA(BPh"). From a numerical f i t of 
the measured absorbance changes we estimate AA(P +) to be 80% of 
AA(BPh). The value AA(P +) determined by using AA(BPh") i s shown 
as füll c i r c l e i n Fig.3. I t i s i n t e r e s t i n g to note t h a t the ab­
sorbance change induced by o x i d a t i o n of the s p e c i a l p a i r AA(P +) 
i s nearly constant i n the observed s p e c t r a l ränge. 

A comment should be made concerning the in t r a m o l e c u l a r energy 
r e l a x a t i o n between the Q x State and the lower l y i n g Q v State of 
the s p e c i a l p a i r . There e x i s t s strong evidence i n the l i t e r a t u r e 
t h a t i n large polyatomic molecules i n t r a m o l e c u l a r energy r e l a x a ­
t i o n i n the e l e c t r o n i c e x c i t e d State proceeds very f a s t , w i t h i n 
10"13 seconds /!/. I t i s very l i k e l y that the intr a m o l e c u l a r 
energy r e l a x a t i o n i n the s p e c i a l p a i r occurs during the f i r s t 
hundred femtoseconds p r i o r to the formation of the P +" State. 

In summary we wish to say that experiments with the improved 
time r e s o l u t i o n of 100 f s give new Information not v i s i b l e i n 
previous picosecond experiments /8/. The proposed time sequence 
of C h a r g e Separation and e l e c t r o n t r a n s f e r 

hv * <0. 1 ps . 0 1 D S 4- - 5 ps . _ P > P* P + ' P f P + B C h l A — > P +BPh 
i s c o n s i s t e n t with the present knowledge of the r e a c t i o n center 
and with our femtosecond and picosecond experiments. 
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