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number of available observations, and misspecification errors 
multiply. We can only look at the aggregative consequences of 
these microeconomic models, and this involves aggregation. The 
problem will, I think, remain with us for a long time even if our 
computers become increasingly faster. To describe any state of the 
world in complete microeconomic detail is even more difficult 
technically than drawing a map on a 1 : 1 scale - and probably 
equally useless.) 

The first approaches to the aggregation problem in the context 
of economic theory (going back to a famous exchange between 
Lawrence Klein and Kenneth May in the forties) tried to establish 
exact aggregation procedures but it became clear quite soon that 
this will not lead to practically useful results. As a consequence, 
the aggregation problem was posed in a different vein; it was 
conceived as a problem of optimal approximation: how to devise a 
macro system such that its behavior approximates the behavior of 
the underlying micro system as well as possible. This approach has 
been initiated by F i ~ h e r . ~  The present paper pursues this line of 
argument and looks for approximate rather than exact aggregation. 

Fisher was basically concerned with the problem of describing 
a high-dimensional linear system, say y =A x, in terms of a lower- 
dimensional macro system Y = C -X, where the vectors X and Yare 
conceived as macro descriptions of the corresponding micro vari- 
ables x and y and where the true micro system matrix A leads to 
the system matrix Cin the aggregate model. This may be described 
as a static aggregation problem. 

A quite different set of issues arise, however, if we look at the 
aggregation of dynamical systems, and this is the topic of the 
present paper. We shall consider a linear differential equations 
system 

1 = A.  (x - Z), x, A E Rn: (s) 

A of order n x n and rank n; 

and an aggregation rule 

B of order m x n and rank m; 

and ask how this may be described by means of a differential 
equations system 

x =  c q x - X ) , X , X  E Rm; (MI 

C of order n x n and rank n, X= B . 2; 

in the sense that the true movement of X, which is B( f )=  
B {A (x - Z)) is correctly described by the macro system (M). 

The dynamic setting changes the aggregation problem because 
it adds restrictions: the aggregation matrix which associates x 
with f must be the same as that which associates X with x, namely 
B from (A). In contrast, Fisher's aggregation problem would allow 
for different aggregators linking the members of the pairs (X, x) 
and (Y, y). The main point is, however, that the true micro model 
describes the movements of the microeconomic state vector x E Rn 
over time. If it tends to a subspace of Rn sufficiently fast, it will be 
sufficient to restrict the aggregation problem to this subspace 
rather than being compelled to assume a certain distribution of x 
over Rn, like in the Fisherian approach. The distribution of x over 
Rn is, so to speak, endogenous here. 

Further, if (S) stands for an economic model, it should be stnrc- 
turally stable, i. e. small changes of the model should not change its 
qualitative behavior. This implies the following assumption 
(Markus, 1961, Theorem 4): 

Assumption: All eigenvalues of A are distinct. 

This assumption will turn out to be most convenient analyti- 
cally. 

The paper is organized as follows: Sect. 2 introduces the notion 
of the aggregation set, Sect. 3 discusses exact aggregation, Sect. 4 
discusses approximate aggregation, starting either from an aggre- 
gation set (Sect. 4.1) or from selected eigenvalues (Sects. 4.2-4.4). 
The paper concludes with a discussion of the intuition underlying 
the present approach and the interpretation of macro relations in 
general. The appendix gives a numerical example which is 
intended to illustrate how the procedure works from a more tech- 
nical viewpoint. 

This analogy is, I think, due to Joan Robinson. 
See Fisher (1962, 1969), Ijiri (1971) and SchneeweiB (1965). The 

excellent paper by Sondermann (1973) contains a lucid account of 
Fisher's approach. 
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2. The Aggregation Set 

Consider first the case of a given microeconomic system (S), a 
given aggregation rule (A) and a given macroeconomic system (M). 
A first question to ask is in which sense the macroeconomic system 
(M) may describe the behavior of the underlying microeconomic 
system. This is the SAM P r ~ b l e m . ~  

Look first at the set of microeconomic states where the macro 
system describes the movement of the macro variables exactly. The 
true movement of the macro state is x = B  - 1 and hence 

On the other hand, the macro model would give X =  C .  (X - m. In 
conjunction with the aggregation rule this leads to 

The set of micro states x where (1) and (2) give the same result is 
this set of states where the macro system describes the movement 
of the macro state exactly. Denote this the aggregation set Z:6 

Two problems may be stated now. The first is: under which condi- 
tions will the aggregation set coincide with the entire state space 
Rn? If these conditions are met, the macro system will describe the 
movement of the macro variables always exactly. Within the 
present context, we may term this the problem of exact aggre- 
gation. Sect. 3 will deal with this problem. 

The second problem - the problem of approximate aggre- 
gation - arises if exact aggregation is impossible. In this case, we 
may ask how the macro model should be devised such that the 
micro state approaches the aggregation set as quickly as possible. 
This would minimize the aggregation error in the following sense. 
If the microeconomic state is close to the aggregation set, the 
macro model will offer a good description of the behavior of the 
macro variables. On the aggregation set, exact aggregation will be 
obtained. If the micro state approaches the aggregation set fast, 
aggregation will be approximately correct most of the time and the 
transitory phases where the micro states are far away from the 

Cf. Schlicht (1977, p. 56; 1985 a, p. 66). 
Cf. Schlicht (1985a, p. 66). The notion of the aggregation set in 

Schlicht (1977, p. 57) is slightly different. 
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aggregation set and aggregation is poor are minimized. This issue 
is dealt with in Sect. 4 below. 

3. Exact Aggregation 

Exact aggregation is obtained if the aggregation set coincides 
with the state space Rn. This implies the following equality which 
links the macro model with the aggregation rule and the micro 
model : 

B - A = C . B .  (4) 

This leads to the following propo~ition.~ 

Proposition 1: Exact local aggregation is possible if and only if 
the aggregation matrix B  is a nonsingular transformation 
of m left-hand eigenvectors of the micro system matrix A. The 
macro model is then given by 

Each eigenvalue of Cis  also an eigenvalue of A. 

Proof: 
1. Assume first that B  is a nonsingular transformation T of m of 
the left-hand eigenvector of A  which make up the m x n-matrix L. 
We show that this implies Eq. (4). Since 

we may choose T without loss of generality such that LIL= I 
obtains. Denote the m eigenvalues of A  which are associated with 
L by Am= diag (&,& . . . , A,). This leads to 

L .  A  =A; L. (7) 

The matrix B A  can be evaluated now by means of (6) and (7) as 

On the other hand, C B  can be evaluated from (5), (6), and (7) as 

Eqs. (8) and (9) imply Eq. (4). 

2. Assume next that (4) holds true. Since A  and B  are of full rank, 
we can solve for C  and obtain (5). 

The idea to use eigenvectors as aggregators is due to Loch (1985). 
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3. The last part of the proposition is covered by the more general 
Prop. 3 which will be stated and proved in Sect. 4 below. Q. E. D. 

It is thus always possible to aggregate exactly by means of 
some of the left-hand eigenvectors of the micro system matrix A, 
but often this will not be particularly useful for the following 
reasons: first, we often want to determine the aggregation rule, say 
a certain index - without reference to and independently of the 
micro system, and secondly, aggregation by means of eigenvectors 
might be quite problematic if these turn out to comprise negative 
or complex components. If the aggregation matrix B is fixed in 
advance without reference to the micro system A and happens to 
be unattainable as a transformation of some left-hand eigenvectors 
of A, Prop. 1 tells us that exact aggregation cannot be obtained. 
This leads us to the problem of approximate aggregation. 

4. Approximate Aggregation 

4.1 S e l e c t i n g  a n  A g g r e g a t i o n  S e t  

Consider the aggregation problem for an arbitrarily given 
aggregation matrix B and a given micro system A. The following 
proposition provides a starting point for the consideration of this 
problem. 

Proposition 2: Let N be a real or complex n x m-matrix of full rank. 
For the aggregate model defined by 

all x with the representation 

are contained in the aggregation set.8 

Proofi For any x satisfying (11) we have 

C denotes the set of complex numbers. 

This proposition establishes that we can define an appropriate 
macro model for any subspace of Rm given by (11). The aggre- 
gation set may be larger, however, than the set with representation 
(11), e. g. in the cases studied in Sect. 3 above when B happens to 
be a transformation of some left-hand eigenvectors of A. 

According to Prop. 2, the aggregation problem can be viewed 
as a problem of selecting an appropriate aggregation set. 

4.2 S e l e c t i n g  E i g e n v a l u e s  

The micro dynamics are characterized by the eigenvalues of A 
and the macro dynamics are characterized by the eigenvalues of C. 
So the question arises of how the "micro eigenvalues" and the 
"macro eigenvalues" are interlinked. This question gives rise to the 
following proposition. 

Proposition 3: All eigenvalues of Care also eigenvalues of A. 

Proof: Let A be an eigenvalue of C. This implies det (C - A I )  = 0 
and hence det [BAN(BN)-'-AI]=O, det (BAN-ABN)=O, 
det B (A- A I )  N=O. If (A- A I )  were of full rank, B (A- A I )  N 
would be of full rank, too, and the last equation could not be true. 
Hence A must be an eigenvalue of A. Q. E. D. 

The macro model reflects thus the dynamics of the micro 
model in so far as both models have common eigenvalues, but the 
macro model can take account only of m out of the n eigenvalues 
of the micro model. This gives rise to the question whether we can 
define a macro model by selecting some eigenvalues of A rather 
than by selecting an aggregation set. 

In a sense, the problem is easy: we may select some eigenvalues 
of A and pick an arbitrary matrix C with just these eigenvalues. 
The corresponding aggregation set can then be determined. The 
macro model C determined in such an arbitrary fashion will, 
however, have only a loose connection with the underlying micro 
model, and the associated aggregation set may contain only the 
equilibrium. 

We should approach the problem more carefully, therefore, 
and select the eigenvalues and the macro model such that it 
describes the macro dynamics as correctly as possible and leads to 
an appropriate aggregation set. We should start from more explicit 
dynamic considerations. 

Denote the eigenvalues of A by (4, A, . . . , A,) and select m of 
them, say (A, A,.  . .,A,), as eigenvalues of the macro model. 
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Consider now the micro model and its solutions 

Since we have assumed all eigenvalues of A to be distinct, A has 
the representation 

A = T - ' A T  (15) 

with T as the n x n-matrix of the n left-hand eigenvectors of A 
and T-I as the n x n-matrix of the n right-hand eigenvectors of A.9 
Eqs. (13)-(15) imply 

x ( t )  = 2 + T-I [exp ( A ,  t )  . exp (A, - t ) ]  T -  ( x  (0) - 2 ) .  (16) 

Since the macro model will neglect all solutions governed by A,, 
A is to be splitted into A, and A2 in such a way that A, is not 
dominant in (16). A straightforward assumption is 

i. e. that the movements governed by A2 are damped. This implies 

Define now the idempotent matrixlo 

and associate with each x ( t )  the approximation 

Since x"(t) satisfies 

it gives a class of solutions to the micro model evolving in the 
space spanned by D. 

Cf. e. g. Bellmann (1960, p. 188). 
l o  Note that D is unique since (PZT)-' JI (PZT)= T J, T for any 

diagonal matrix Z and any permutation matrix P. 

.ocal Aggregation in a Dynamic Setting 

Furthermore, x"(t) satisfies 

i ( t )  = T -  A ,  T(x"(0) - 2: 

and has the general solution 

x " ( t ) = T - ' e A l ' T ( 2 ( 0 )  % ) = T -  T ( x  (0) - 2) 

The error 
x ( t )  - x"(t) = T-' eA2 * T ( x ( 0 )  - 2 )  

tends to zero. Hence x"(t) can be viewed as an approximation to 
x ( t )  involving only the first m eigenvalues. 

Since D is of rank m, it can be decomposed as 

with N of order (n x m), E of order (m x n) and r ( N )  = r ( E )  = m. 
By taking /3 = E ( x  - 2), all x" can be represented by 

and Prop. 2 can be applied, leading to the macro model charac- 
terized by the matrix 

C =  B A N ( B N ) -  (27) 

The decomposition (25) is not unique, but this does not matter: 

Proposition 4: All N satisfying (25) lead to the same macro matrix C 
, I \  defined in (27). 

Pro08 Take any pair N, E satisfying D = NE. Eq. (27) implies 

C B N E =  B A N E  (28) 
and hence 

CBDB' = BADB' .  (29) 

Since B D B ' = ( B  T -  I,) ( I ,  T B  ') = (H,  0 )  ( K, - H K  with H and \o - 
K of full rank, B D B' has full rank and C satisfies 

C = B A D B  B D B  (3 0)  

and is, hence, independent of the choice of N. Q. E. D. 

The representation (30) can be used to characterize C in a perhaps 
more transparent way. Write 

T = (i) , T-I = (R, Y), Am = diag (A,, . . . , Am) (31) 
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with L and R as comprising the left-hand and right-hand eigen- 
vectors of A associated with the eigenvalues il,, &, . . . , A,, respec- 
tively. 

Then 
D = R L ,  A D = R A , L  (32) 

and we obtain 

Proposition 5: The macro matrix is determined by 

C =  BRA, LB1(BRLB1)- '  (33) 

with A, comprising the eigenvalues selected for the macro model 
and L and R comprising the associated left-hand and right-hand 
eigenvectors of A, respectively. 

The associated aggregation set is given by 

Z = { x  E R n I x = . f +  RL(x-2 ) ) .  (34) 

Proof: Eqs. (33) and (34) are obtained by inserting Eqs. (32) into 
(30) and (20), respectively. Eq. (28) implies CB R = B R A,. Hence 
BR is the matrix of right-hand eigenvectors of C and A, is the 
matrix of the eigenvalues of the macro model. Q. E. D. 

4.3 T h e  A g g r e g a t i o n  P r o c e d u r e  

The aggregation set given in Prop. 5 is asymptotically stable if 
the neglected roots A,,,, . . . , A, have negative real parts. Hence the 
macro model describes a set of particular solutions of the micro 
model exactly towards which all other solutions are tending, and 
in this sense we have obtained an approximate macro description 
of the micro flow. 

The absolute size of the real parts of the neglected eigenvalues 
A,,,, Am+2,. . .,A, thus govern the speed of convergency towards 
the aggregation set (34). This suggests the following procedure for 
selecting eigenvalues for the macro model. 

Renumber the eigenvalues of A according to the size of their 
real parts in descending order: 

If the micro model is to be reduced to m dimensions, keep the first 
m eigenvalues for the macro model and neglect the rest. Check, 
however, whether re (A,,,) is negative - otherwise the macro 
model would not make sense and m is to be increased. 

Write A, = diag (A,, A,, . . . , A,) and determine the matrices L 
and R from L . A= A, . A and A R = R - A,. The macro model is 

then computed from Eq. (33) and the associated aggregation set is 
determined by Eq. (34). 

This procedure makes sure that the aggregation set is 
approached as fast as possible, and in this sense, the above 
procedure leads to an optimal macro approximation of the under- 
lying micro model. 

4.4 I s  t h e  M a c r o  M o d e l  R e a l ?  

The aggregation procedure described above may lead, 
however, to a complex macro matrix C, and this is unwarranted. 
Take for instance the case n > 1, m = l  and il, complex. Then 
C=(il,) is complex according to (33). A macro model operating in 
the complex domain seems however to make not very much sense 
both economically and in terms of reduction in dimensions of the 
real underlying model which is, after all, the purpose of aggre- 
gation. 

We have thus to make sure that C is real. This may happen 
even if A, is complex. Take, for instance, the case that all 
suppressed roots (i. e. A,) are real and denote the associated eigen- 
vectors by Q and V as in (31). Then 

RL=I -VQ.  (36) 

If A, is real, Vand Q are real and (36) implies that D = R L is real, 
and (30) implies that C is real. 

More generally, the following proposition holds true. 

Proposition 6: The macro matrix Cis real if and only if A, has only 
real and/or conjugate complex components. 

Proof: 
1. If C is real, all eigenvalues of C are either real or conjugate 
complex. According to Prop. 5, A, is the matrix of eigenvalues of C 
and has, hence, only real and conjugate complex components. 

2. Assume that A, has only real or conjugate complex com- 
ponents. Arrange the eigenvalues such that the first k eigenvalues 
are real and that the remaining pairs (Ak+ Ak+ 2), 

(A, + ,, A, + ,), . . . , (A, - ,, A,) are conjugate complex. Split the 
matrices L and R as defined in (31) into their real and imaginary 
parts and write 

L = L* + iL**, R = R* + iR** (37) 

with L*, L** , R* , R** real. Since the eigenvectors belonging to 



298 E. Schlicht: .ocal Aggregation in a Dynamic Setting 299 

conjugate complex eigenvalues are conjugate complex, too, we can 
generate the matrices L*, L**, R*, R** as follows. Define the 
matrix i *  as comprising the rows nos. 1,2, . . . , k and k + 1, k + 3, 
. . . , m - 1 of L*, define the matrix i **  as comprising the rows nos. 
k + l ,  k+3,  . .  ., m-1 of L**. Then 

of order m x (m + k)/2 and 

of order m x (m - k)/2. 
Similarly, R can be decomposed as 

Since (Z*)' Z** and (Z**)' Z* are zero, D  is real. Eq. (30) implies 
that Cis real. Q. E. D. 

As a corollary of the above proof we obtain furthermore 

Proposition 7: If the macro matrix Cis  real, the aggregation set is 
given by 

with D. The macro image of the aggregation set is the entire macro 
state space Rm. 

Pro08 If Cis real, (41) implies that D  is real. Since D  is idempotent, 
all x = 2 + D p  satisfy x - 2 = D  (x - 2). This proves (42). The 
macro image of Cis  defined by the condition X= X + B D p  in the 
neighborhood of X. B D  is of full rank which proves the second 
part of the proposition. Q. E. D. 

Props. 6 and 7 make clear that the proposed aggregation 
procedure will lead to a real macro matrix C under the weakest 
possible condition, namely that the selected eigenvalues are 
conjugate complex and that the domain of the macro model 
comprises the entire Rm. 

5. Conclusion 

The view of aggregation expounded here is the following. 
Although it is not possible in general to give a macro description 
of a micro model over the entire state space of the micro model, it 
is possible to aggregate exactly over a subspace. This set of micro 
states where aggregation is possible forms the aggregation set. The 
macro model can be chosen now in such a way that it gives rise to 
an aggregation set which is approached by the micro movements 
as fast as possible. This is done technically by selecting appro- 
priate eigenvalues of the micro model and deriving a macro model 
based on these eigenvalues. As a result, the macro model so 
derived will describe trajectories of the aggregate quantities 
towards which the "true" trajectories of these quantities, as 
generated by the micro model, are tending. 

This general view of aggregation is by no means confined to 
the linear case explored in this paper. It may be understood as a 
simple generalization of the well-known moving equilibrium 
method (Schlicht, 1985 a, pp. 32,67 f.). The present paper amplifies 
on the formal aspects of this view in the linear case. The spirit of 
the results will hopefully carry over to the nonlinear case (Mak, 
1988). 

We should, however, keep aware that the issue of aggregating a 
given micro theory into a macro version is actually not the main 
point in aggregation theory. The aggregation problem is most bla- 
tantly present when we have a macro theory but not the underlying 
micro theory, and this condition is met by almost the entire body of 
macroeconomics, if not microeconomics (Schlicht, 1985 a, pp. 12, 
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93-100). Aggregation theory should, I think, expound the 
meaning of macroeconomic theorizing and give us a guide for 
devising reasonable macro theories. 

The interpretation of macroeconomic relations underlying the 
present approach is not a new one. It is, in fact, quite orthodox. 
Macro theorists have always been aware that macro relations built 
on a certain micro structure of the economy. These relations may 
be affected by "structural effects". John Maynard Keynes was 
quite explicit about that. When introducing the notion of effective 
demand, he wrote for instance: ". . . we assume that a given 
volume of effective demand has a particular distribution of this 
demand between different products uniquely associated with it." l1 

The understanding was that the economic system generates a 
certain structure - a particular distribution of demand between 
different products - which we may presuppose when building 
aggregative theories. The idea may be expressed in terms of the 
present analysis by saying that there are strong micro forces which 
push the micro states towards the aggregation set such that we can 
confine our attention to the states in the aggregation set. This 
permits aggregative analysis. The approach proposed here pro- 
vides, in this sense, a defense of orthodox thinking. 

Appendix : An Example 

In order to give some flesh to the above considerations I 
consider the following example. I take a nonlinear model, namely 
a variant of Stiglitz' (1969) distribution model and consider a local 
linear approximation around equilibrium. For ease of compu- 
tation, and also in order to illustrate how I would implement the 
method in practice, I consider the discrete time case, but I take a 
sufficiently small step width to assure that the qualitative behavior 
will not differ from the continuous time case discussed in the 
paper. 

The population is divided into n groups with savings ratios si, 
i = 1, . . . , n. Each group grows with rate g and comprises a fraction 
ai ,  i = 1,2, . . . , n of the population. Per capita wealth of group i is 
denoted by ci, and all individuals receive the same wage rate w. 

Denote by r the rate of profit. Per capita wealth holdings increase 
by si (w + rei) through savings and decrease by g . c, through popu- 
lation growth. This leads to 

Capital intensity id2 

k = x a i c i =  a c  
i 

(44) 

with 
a = (al, . . . , a,), c = (c,, . . . , c,). 

Wages and profits are determined according to marginal produc- 
tivity theory from a neoclassical production function 

y = f(k), f(0) = 0, f'(0) = w, f'(w) = 0, f '>O, f " < O  (45) 

relating average per capita income y to capital intensity k, 

Hence (43) can be rewritten as 

ii = si (f(ac) + f' (ac)  (ci - ac)) - g ci. (47) 

This is a differential equations system with unique locally stable 
equilibrium E=(El, . . . , 2,) and associated equilibrium capital in- 
tensity E = a E  (see Schlicht, 1985 a, p. 89). 

Our aim is to describe the movement of (47) around equi- 
librium by means of the Solow-type differential equation 

by using the aggregation rule (44). 
The function s(k) gives the aggregate savings ratio, and we 

have to determine this function around equilibrium along the lines 
described in the last section. 

In order to obtain a correct equilibrium solution, we require 

in equilibrium, i. e. for i= a E .  This implies the equilibrium savings 
ratio 

S: = s(E) = g -  E/f(&) (50) 

l 1  Keynes (1936, p. 43). For more references to Keynes' view of aggre- 
gation, see Schlicht (1977, p. 104). Note, however, that Keynes' notion of 
effective demand is different from current usage. It refers to the inter- 
section of aggregate supply and aggregate demand; see Schlicht (1979). 

l2 In the following I use the apostroph to indicate derivatives of a 
function rather than transposition of a matrix as has been the under- 
standing in the main part of the paper. In this appendix, the vector 
product a!. c is always to be understood as an inner product. 
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Linearizing (48) around equilibrium leads to 

k = {sl(E) - f(E) + s(E) .f'(E) - g)  (k - E). (51) 
Hence 

a = s l (E) .  f(E) + g .  E.f'(E)/f(k) - g (52) 

is the eigenvalue of the macro system which is to be equated to the 
smallest eigenvalue of the true system (47). This determines the 
macro savings function around equilibrium as 

Note that the macro savings function is dependent upon k, g and 
the shape of the production function whereas the individual 
savings ratios are constant.13 

As a numerical example take f as CES with 0 = 0.5, a = 0.6, 
y = l .  Take g=0.07, n=5,  s=(0.05, 0.1, 0.2, 0.25, 0.3), a=(0.1, 
0.3, 0.35, 0.2, 0.05). The resulting equilibrium of (39) has 
E = 4.8922, f (E) = 1.9134, f '  (k) = 0.0918 and the minimal eigen- 
value - 0.0654. Hence we obtain 

s (k) = 0.1790 - 0.0086 (k - E) (55) 

as the macro savings function. Inserting this into (48) and rewriting 
it as a difference equation gives the macro model 

The behavior of this model can be compared with the behavior of 
the discrete-time version of (47) which is 

This is done as follows: each Zi is disturbed by a uniformely 
distribution random disturbance vi E (- 0.5, + 0.5). The resulting c 
is normalized to ac = k +  1 and taken as the initial value for (57). 
The time path of the corresponding k, = act  is computed for alter- 
native starting values generated as described above. Furthermore 
the solution of the macro model (56) is computed with b= E +  1. 
Differences between the various micro solutions and the macro 

l 3  This phenomenon has been termed "context dependency of macro 
relations" in Schlicht (1976, p. 75 f.; 1985 a, p. 78 f.). 

t 
Fig. 1 Fig. 2 

solution turn out to be rather small but can be depicted under the 
"microscopic" view presented in Fig. 1, where the dotted curves 
give exact solutions for alternative initial values c, with ac, = k + 1 
generated as described above, and the unbroken curve depicts the 
solution of the macro equation starting with b= E+ 1. In Fig. 2, 
the macro curve is shifted to the right. It can be seen that it coin- 
cides with the slowest true trajectory. This is not surprising, since 
the construction of the macro model is based on the smallest eigen- 
value. 

Since the eigenvalues of A are very close in size, ranging in the 
interval 0.0654 < Jill < 0.0704, the approach to the slowest trajectory 
is not pronounced. But this should not lead to the conclusion that 
the proposed aggregation procedure makes sense only if the eigen- 
values neglected in the macro model are considerably larger in size 
than the eigenvalues of the macro model: if the neglected roots are 
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close to the eigenvalues of the macro model, the approximation 
will be rather good precisely because the speeds depicted in the 
macro model are very close to the true speeds of adaption of the 
true model, and it is no coincidence, therefore, that the approxi- 
mation in Fig. 1 is rather good. 

Fig. 3 Fig. 4 

In order to illustrate this point, take s = (0,0,0.0, 1) and leave every- 
thing else unchanged. The eigenvalues of the Jacobian are now 
- 0.1484 and - 0.0654, and Fig. 3 depicts the result.14 Fig. 3 seems 

l4 The scale of Fig. 3 is the same as that of Figs. 1 and 2, but the origin 
is shifted downward. Furthermore, the smaller eigenvalue is of multi- 
plicity 4 now, in deviation of what has been postulated in the paper, but 
the choice of savings ratios produces a maximal difference in eigenvalues, 
and this is the point which is to be illustrated here. 

not very convincing, but note that we are dealing with the local 
aggregation problem: we look for a macro model which describes 
the micro flow approximately around equilibrium, but we do not 
require that the micro and the macro initial values correspond to 
each other. Choosing appropriate initial values for the macro 
model (k,= k-5 and &=ki0.7)  in Fig. 4 leads to an almost 
perfect fit. The reason is that the approximation is improving with 
an increasing dominance of one eigenvalue, i. e. if the eigenvalues 
differ in size. 
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