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DYNAMIC PHOSPHORYLATION OF A SMALL CHLOROPLAST PROTEIN
EXHIBITING SO FAR UNDESCRIBED LABELLING PROPERTIES

J. Soll, A. Steidl, I. Schréder
Fachrichtung Botanik der Universit&dt des Saarlandes
D-6600 Saarbriicken

A 19 kDa phosphoprotein from mixed envelope membranes of spin-
ach chloroplasts with extreme labelling kinetics has been
characterized. Its localization between the inner and the
outer envelope membrane can be deduced by the differential
labelling between intact and broken chloroplasts (Table 1),
(Soll and Bennett 1988, Soll et al. 1989).

Table 1
Differential labelling of proteins from intact and lysed
chloroplasts. Phosphorylation was done at 10 nM ATP at 4 °C

for 30_sec. Values are expressed in dpm pg chlorophyll™
X min~

intact lysed ratio
chloroplasts chloroplasts

thylakoid/LHCP 53 125 0.424
stroma a 12 110 0.109
stroma b 11 100 0.11
outer envelope

(86 kDa) 63 16 3.9
intermembrane space

(64 kDa) 98 54 1.8
19 kDa protein 2340 375 6.24

If the 19 kDa protein is indeed localized in the envelope lu-
men, intact and broken chloroplasts should differ in their la-
belling kinetics. Intact chloroplasts still contain residual,
endogenous ATP, this means that during labelling of intact
chloroplasts two ATP pools exist, with different specific ac-
tivity which is encountered by envelope membrane proteins and
another with low specific activity which is encountered by
proteins inside the chloroplast. In intact chloroplasts the
outer envelope 86 kDa protein, the 64 kDa and the 19 kDa pro-
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tein were labelled much earlier and stronger than the stromal
and thylakoid phosphoproteins.

The function of the interenvelope space is unknown; the dyna-
mically phosphorylated 19 kDa protein has been purified from
mixed envelope membranes (Table 2) and characterized. It seems
reasonable that it participates in a signal transduction pro-
cess. The first purification step was a mild sonication fol-
lowed by anion exchange chromatography on DEAE cellulose of
the supernatant (Table 2). Most of the protein eluted at 125
mM NaCl. Active protein fractions were pooled and purified
further on a hydroxylapatite column from which it could be
eluted at 60 mM phosphate buffer pH 7.6.

Table 2
Purification of spinach envelope 19 kDa protein

Step Volume Protein Total Specific Reco- Purifi-
activity very cation

ml ug units units/mg % fold

Envelope

membranes 1 6950 63.2 9.1 100 1

Sonication

supernatant 0.89 1510 55 36.4 87 4.6

DEAE

chromato-

graphy 5.6 8.9 28.5 3200 45 352

Hydroxyl-

apatite 4.5 0.54 4.4 8161 7 897

1 unit eggals 1 fmol 32

P incorporated into the 19 kDa protein
from [y-"“P]-ATP x min~

The 19 kDa protein shows an extreme affinity for ATP and GTP
as demonstrated by the low K, values of 8 nM and 5 nM for ATP
and GTP respectively (Fig. 1 A). The phosphorylation, that is
trichloracetic acid or acetone precipitable, is dependent on
the presence of divalent cations (Mg2+ and Mn2+) (Fig. 1 B).
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The cation Ca?’ has no effect. ADP and GDP inhibit phospho-
rylation (Fig. 1 D). The optimal pH for phosphorylation is in
the range between pH 7 and pH 9 (Fig. 1 C). The pI of the
phosphorylated enzyme has the value 6.2, whereas the pI of the
non phosphorylated enzyme is 6.3.
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Fig. 1) Characterization of the phosphorylation reaction of
the partially purified 19 kDa protein. A) Determination of the
Km value for ATP. B) Influence of divalent cations. C) pH
dependence. D) The phosphorylation is inhibited by ADP.

The molecular weight of the phosphorylated protein was estima-
ted by SDS gel electrophoresis and found to be 18.8 kDa (Fig.
2 A). The phosphoryl turnover is extremely rapid, as deduced
from a pulse-chase experiment. If the protein was labelled in
the presence of 8 nM [7-32P]-ATP for 60 sec and 10 uM cold ATP
was added at this time point, 90 % of the labelled phosphoryl-
groups in the protein are turned over within 15 sec.

The determination of the phosphorylated amino acid residue de-
monstrated that no hydroxylated amino acid was phosphorylated,
firstly the phosphate bond was labile to acidic conditions;
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secondly after acid hydrolysis of the protein and high voltage
electrophoresis no radioactivity was detectable in P-Ser, P-
Thr or P-Tyr (Soll et al. 1989). Extraction of the phospho-
rylated protein by chloroform methanol at pH 1 resulted in no
detectable label in the organic solvent phase, but the total
radioactivity was still bound to the protein. Exposure of the
phosphoprotein to hydroxylamine or pyridine buffered in ace-
tate showed a concentration dependent base catalyzed enhance-
ment of the hydrolysis rate (Fig. 2 B) and excluded most like-
ly aspartate and glutamate as phosphorylgroup acceptor, as
those are not susceptible to pyridine treatment (Sabato and
Jencks 1961,Hokin et al. 1965). The label was also labile at
alkaline pH (Stelte and Witzel 1986). At the moment it seems
most likely that we deal with a lysine or histidine phosphate.
The phosphorylation of the 19 kDa protein is inhibited by TNP-
ATP and by erythrosin (Fig. 2 C,D).
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Fig. 2) A. Determination of the molecular weight of the
phosphorylated form of the purified 19 kDa protein by SDS-PAGE
B. Time course of hydrolysis of the phosphate bond in 1 M
acetate buffer pH 5.5 in the pgssence of 0.1 M hydroxylamin or
pyridin. C. Inhibition of the P-incorporation by TNP-ATP.

D. Inhibition of 19 kDa protein phosphorylation by erythrosine
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The purified 19 kDa protein did not show significant ATPase
activity (not shown). These findings are corroborated by re-
sults (Table 3), which demonstrate the effect of various
ATPase inhibitors on the phosphorylation of the 19 kDa protein
(Sze et al. 1987, Serrano 1988, Sze and Randall 1987). From
further experiments it seems likely that 32p—incorporation
into the 19 kDa protein is due to autophosphorylation.

Table 3

Inhibition of 19 kDa protein phosphorylation by various sub-
strates. The purified protein was phosphorylated by [7-3 P]-
ATP in the presence of different effectors. A minimum of five
different effector concentrations was used in every case.

effector max.concentration % inhibition
NaN, 10 mM 0
NaF 20 mM 0
NaF/AlCl, 10 mM/50 uM )
ortho vanadate 0.5 mM 29
molybdate 2.0 mM 0
nitrate 10 mM 0
olig?Tycin 0.5 mM 0
DCCD 0.5 mM 0
ouabain 125 uM 0
dihydroxyacetonephohate 2 mM 60
NacCl 150 mM 50

1) The purified protein was preincubated with DCCD for to 2h.
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