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SYNTHESLS OF PLASTOQUINONE-9, «-TOCOPHEROL AND PHYLLOQUINONE (VITAMIN K1)

#
AND ITS INTEGRATION IN CHLOROPLAST CARBON METABOLISM OF HIGHER PLANTS

D. Schulze-Siebert, U. Homeyer, J. Soll and G. Schultz

Botanisches Institut
Tierdrztliche Hochschule Hannover
D 3000 Hannover 71, F.R.G.

INTRODOCT LON

Plastoquinone-9, a-tocopherol and phylloquinone are known as plastidic
prenylquinones fulfilling important functions: Plastoquinone-9 acts as mobile
electron and proton carrier in photosynthetic electron traasport and is in-
volved 1n building up the electrochemical proton potential at the chloroplast
cytochrom b6/f complex /1,2/. a=-Tocopherol is involved in inactivating
energized oxygen species, formed 1n the light, by scavenging radicals and
quenching singlett oxygen /3/. Phylloquinone is known as obligatory
constituent of PS I (K1/cnlorophyll of PS I ratio about 1:100 /4/).

This report deals with the synthesis of a-tocopherol and plastogquinone-9
from homogentisate and of phylloquinone from 1,4-dihydroxy-2-naphthoate in
chloroplasts. Furthermore, experimental data are presented to support earlier
findings on the autonomic role of chloroplast carbon metabolism in forming
plastidic isoprenoids. - The methods applied are described in /5,6,7,8,9/.

RESULTS AND DISCUSSION

Synthesis of a-Tocopherol and Plastoquinone-9 from Homogentisate at the
Chloroplast Envelope Membrane

Homogentisate represents the aromatic intermediate in the formation of
aT and PQ /10/ (Fig. 1). It is formed from Tyr via 4-hydroxyphenylpyruvate by

Abbreviations: DAHP, deoxy-D-arabinoheptulosonate-7-phoshate; DHAP,
dihyd;BQJEEEtone phosphate; E ase, 2-phosphoglycerate hydrolyase, enolase;
rev. NADP GAPDH, reversible NADP glyceraldehyde 3-phosphate dehydrogenase;
GG, geranylgeraniol; GGPP, geranylgeranyl-pyrophosphate; GK, glycerate
kinase; HPP, 4-hydroxyphenylpyruvate; IPP, isopentenyl pyrophosphate; KGA,
2-oxoglutarate; Me-6-PhQ(H._) and isomers, 2-methyl-6-phytylquinone (quinol)
and isomers; 2,3-Me.-PhQ(H_ ), 2,3-dimethyl-5-phytylquinone (quinol); MITO,
mitochondrion; PDC, pyruva%e dehydrogenase complex; PEP, phosphoenolpyruvate;
PER, peroxysome; 3-PGA and 2-PGA, 3- and 2-phospho-D-glycerate; PK, pyruvate
kinase; PGM, phosphoglycerate mutase; PQ(H,), plastoquinone-9 (quinol-9); PS
I, PS II, photosystem I and II; SAM, S-a%enosylmethionine; SkA, shikimate;
SORase, shikimate oxidor:ductase; «, 8, j and §T, a-, 8-, y- and d-tocopherol

The author”s work was supported by the Deutsche Forschungsgemeinschaft.
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Fig. 1 . Incorporation of /3- C/tyrosine into plastoquinol
and «-tocopnerol in1§igner Plant /10/ cnloroplasts /5,6,8/.
Asterisks iandicate C label.

oxidases at the stromal face of chloroplast membranes /11/. All the following
reactions of prenylquinone synthesis occur solely at the inner chloroplast
envelope membrane /8/ (Fig. 4); chloroplast stroma or thylakoids are inactive
/6,12/ (Fig. 4). In the prenyltransferase reaction, the carboxyl group of
homogentisate is eliminated and a methylquinol is formed which is prenyl-
ated specifically at position 6 /6/. The prenyl side chain is always in trans
configuration /13/. In this and the following methylation reaction only the
quinol and not the quinone stage of the aromatic compound is active /5/.
Phytyl-PP is the only prenyl-PP suited for T synthesis in chloroplasts and
nonaprenyl- (solanesyl-) PP in PQ synthesis /6/. Consequently, the intro-
ductory step of prenylquinone synthesis is strictly specific in respect to
substrate and position of attack, and the following reactions are strongly
directed to a homogenous pattern of products.

As can be seen from the methylation step by SAM in Fig. 2, 2-methyl-6-
phytylquinol is strongly preferred to its isomers. Thus, the main product is
2 ,3-dimethyl-5-phytylquinol which undergoes ringclosure (only verified in
intact chloroplasts /5/) to form )T which is methylated by SAM to formaT.
The chromanol stage is prerequisite for the second methylation reaction; no
trimethylphytylquinol was formed from dimethylphytylquinols /5,14/. The
J-tocopherol methyltransferase of Capsicum annuum was purified to homogeneity
by d"Harlingue and Camara 1985 /15/. M_ has been determined to 33 kbDa, K
for T to 13.7 uM and for SAM 2.5 uM. Thus the main sequence for aT synthesis
in spinach is: Homogentisate — 2-Methyl-6-phytylquinol -—~ 2 ,3-Dimethyl-5-
phytylquinol — )T — aT (Fig. 3). Another sequence caused by changing
methylation and cyclization reaction may occur additionally but at lower
rates /16/: Homogentisate —* 2-Methyl-6-phytylquinol ——= ST -—= )T —= aT.

Fig. 2 Substrate specificity

of the first (upper series) E;rﬂkv J:IA}V

and second methylation reaction ‘/////// Me 6 PhaH, I MeS PnOH,  C-Methylation
(lower series) of a-tocopherol ot
synthesis in ?Rlnach chloro- E;TA}¢ on R J:];W\, J:];ﬂ\/k
plastg /5/. / "C/-Methyl from @ 23_,4,259,,0,..2 ;

/Me- 'C/SAM was incorporated ®

for labelling the substrates. Cyclisation
The products were purified by

co-chromatography adding mﬁijﬁl;
reference substances and identi-

fied by ra ioscan. Asterisks

indicate C-label; the encir- "gz I N

cled figures indicate the ratio ™Y °®
of products formed from different C) =T

quinols (upper series) and toco-
pherols (lower series).
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Phytyl-PP is formed from GGPP by hydrogenation at the envelope membrane
/7/ (Fig. 3). Another pathway is the stepwise hydrogenation of GG-chloro-
phyllide a to form chlorophyll a at thylakoid membranes /17/ (Fig. 3). NADPH
functions as electron donor in both reactions. A kinase which forms phytyl-PP
from phytol plus ATP is localized in the stroma /6/. GGPP itself is formed
from IPP by a recombinated system of envelope or thylakoid membranes plus
stroma protein /18/.

/@.
Chlorophyll a

Stroma
plus membranes Geranylgeranylchlorophyllid a

{envelope or thylakoids)
= g ‘
= = 1 I-PP
Alky(ouon Geranylgerany A
gl é :: : Chlorophyllid a Thylakoids
CHy-0 co
N\M(:T%\A/CHz‘o'@“@ 2

gl IPP=—— CALVINCYCLE
/\N\N\,\;\,C“ 000 d

Geranylgeranyl-PP SHIKIMATE PATHWAY

HO@ p-Hydroxyphenylpyruvate
%\%rl CHy-C0-COOH
\ r
Ho %Homogentisa(e R:/L\)\}H
oH 3
CH,-COOM
_N\HO 2-Me-6 - phytylquinol
/'\(\/'\(\/\(WCH -0-®-®
HH HH o HH ‘ oH F L (Me-6-PhQH,)

%lyl PP J,
2,3-Me,-5-ph i
Prenylalnon SAM y Me,-5-phytylquinot
OH p (2,3-Me, PhQH, )

\ Methylation
\%I “
Cyclisation

——T:ZZ&H SAM H{E:fTL«T
\ Methylation 0Tg

Fig. 3 Synthesis of a-tocopherol /5,6,12/ from homogentisate /10/ and
phytyl-PP at the inner envelope membrane of chloroplasts/8/.
Plastoquinone-9 (see text and Fig. 4) is synthesized from homogentisate
and nonaprenyl-(solanesyl-)PP at the same membrane /6,8/. For synthesis of
homogentisate /11/ and phytyl-PP /7/ in chloroplasts see text.

The reaction mechanism of PQ synthesis equals that of aT synthesis. The
synthesis also occurs exclusively at the inner chloroplast envelope membrane
/8/ (Fig. 4), however, it can be assumed that either prenylquinone is formed
by its own enzyme garniture. 2-Methyl-6-nonaprenyl-(solanosyl-)quinol is
formed from homogentisate plus nonaprenyl-(solanosyl-)PP. The quinol formed
is then methylated by SAM to yield PQH2 /6/ (Fig. 4). Even if the sequence
in PQ synthesis is clarified: Homogentisate — 2-Methyl-6--nonaprenylquinol
— PQH. no data are available for the synthesis of hydroxylated quinones

QA and B acting as primary electron acceptors in PS II /19/.
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Fig. 4 Synthesis of plastoquinol-9 in spinach chloroplasts (calculated
from /6,8/). (A) Prenylation reaction: Homogentisate + Nonaprenyl-
(solanesyl-)PP —= 2-Methyl-6-nonaprenylquinol; (B) Methylation reaction:
The quinol of (A) + SAM — Plastoquinol-9. (C) Overall reaction:
Homogentisate + Nonaprenyl-PP + SAM — Plastoquinol-9. The reactions
occur at the inner membrane (C) /8/ of the chloroplast envelope (A, B)
/6/; stroma and thylakoid membranes are inactive.

Synthesis of Phylloquinone (Vitamin K1l in Higher Plants

Feeding experiments using total plants revealed that phylloquinone is
formed in leaves from shikimate /20/ and 2-succinylbenzoate /21/. Just
recently Leistner”s group provided evidence from studies on E. coli /22/
that isochorismate and not chorismate reacts with 2-oxoglutarate to form
2-succinylbenzoate. The results from studies on cell cultures /23,24/ and
chloroplasts /25,26/ are summarized in Fig. 5. The chloroplast envelope is
the site of prenylation /25/ and the thylakoid membrane of methylation
reaction /26/, however, compartmentation of the other reactions remains still
unclear. The synthesis in plants resembles the microbial one /27/ though
phytyl-PP is preferred as prenyl donor in plants /25/.

Galium mollugo

Morinda lucida
/ SkA
. cell culture
/ o Isochorismate Leistner et at. 1982,1985
:v ooqg ?_ He
: ¢
| coo® coo® coo° €00° ¢
®/ c00®— O(/( W Socea
l CO, ‘)/ CoA SH
!. KeA PP OH 2- Succmyl benzoate Al-phanc CoA ester
i

ot 2-succinyl benzoate

H H N
CoASH coo”  PP.CO [ w  Spinach
Cal
OH  Phytyl PP OH Schultz et al.,1981
1,4-Oinhydroxy - 2-Phytyl-1.4 -naphthoquinol
2-naphthoate
SAM *—\\\\\\
oH [ "
70!

( OH
Phylloquinol (K Hp)

Fig. 5 Phylloquinone (K1) synthesis in Higher Plants /23-26/.
Probably isochorismate as in E. coli /22/ and 2-oxoglutarate
(*KGA) forms 2-succinylbenzoate.
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Role of Chloroplast Carbon Metabolism in Plastidic Prenylguinone
Synthesis

The carbon flow from 3-phosphoglycerate, phosphoenolpyruvate, pyruvate
and acetyl-CoA. Even if the synthesis of aromatic amino acids by shikimate
pathway /28,29,30,31/ and also prenyl-PP synthesis via mevalonate /32,33,34/
has been established in chloroplasts by identification of respective
plastidic enzymes, it is still a matter of discussion from where PEP origins
to supply DAHP synthesis of the shikimate pathway and from where pyruvate is
delivered to supply the plastidic pyruvate dehydrogenase complex (for isola-
tion see Treede and Heise, this Conference). Because phosphoglycerate mutase
(PGM) to form 2-PGA from 3-PGA could not be detected in chloroplasts /35/ and
acetyl-CoA is preferably synthesized from added acetate by the actetyl-CoA
synthetase /36/, particularly in spinach chloroplasts, it was argued that
chloroplasts are dependent on import of these substrates from the external
site. Evidence for PEP formation from 3-PGA within the chloroplast could be
obtained by three different approaches (D. Schulze-Siebert, A. Heintze and G.
Schultz, in preparation; D. Schulze-Siebert and G. Schultz, in preparation,
for plastidic isoenzyme of PGM in Ricinus see /37/ and in Brassica /38/).

(i) The only enzyme of carbon metabolism hitherto questioned to be
present in spinach chloroplasts, PGM, could be identified by the latency
method. The enzyme thus identified exhibits an identical behaviour in
comparison to reversible NADP D-glyceraldehyde 3-phosphate dehydrogenase and
shikimate oxidoreductase as plastidic marker enzymes (Fig. 6).

A—A o—0

Fig. 6 Phosphoglycerate mutase (PGM)
=2 > 140

in spinach chloroplasts identified by L X rev.NADP-GAPDH O—0O ]
the latency method. Purified, intact L SORase H—D
chloroplasts were subjected to step- - PGM A—A
wise osmotical shock by lowering the Yy
sorbitol conc. of the medium. The
enzyme activity released from chloro-
plast was determined in the supernatant.
In the latency studies, PGM exhibits

an identical behaviour compared to
reversible NADP-GAPDH and shikimate
oxidoreductase (SORase) as marker 0.t}
enzymes for chloroplasts.

05

nkat/mg chlorophyll

1 1
00200 300
Sorbitol, mM

(ii) The carbon flow from 3-PGA to PEP and pyruvate was demonstrated
within chloroplasts by adding labelled glycerate which is known to be
phosphorylated by the glycerate kinase localized solely in the chloroplast
stroma /39/. After spunning down the chloroplasts (Fig. 7), 3-PGA, 2-PGA, PEP
and pyruvate were found at considerable amounts only in the chloroplast
pellet and thus support above findings on plastidic PGM. Only 3-PGA was
nearly equally distributed between chloroplast and suspension medium which
can be attributed to action of the phosphate translocator. To reduce the
activity of the translocator /40/ only 0.5 mM Pi was applied to the medium.

(iii) The increase of the synthesis of amino acids and prenylquinones in

chloroplasts by omission of P, and deminishing the exchange of triose-
phosphates could be demonstrated earlier /41/.
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An external site of synthesis of PEP from photosynthetically formed
3-PGA can be detected by rising the P, concentration up to 5 mM and adding
exogenously excessive amounts of rabbit PGM and enolase to intact
chloroplasts (10 and 2.5 units/50 ug chlorophyll) similar as in /42/. The
activity of the shikimate pathway (measured as nmol Phe and Tyr formed) was
considerably enhanced as a result of supply of high amounts of PEP by this
enzyme reaction and re-import by the phosphate translocator. Consequently,
this way might be considered as an additional site of supply optimized under
in vitro conditions by adding enzymes in excess. Under in vivo conditions,
the carbon flow from triosephosphates of photosynthetic carbon fixation is
preponderantly directed to sucrose synthesis /43/ and less to PEP.

The origin of acetyl-CoA for isoprenoid synthesis. As shown in Table 1,
highest amounts oE’PQ and B-carotene were formed from added bicarbonate by
spinach protoplasts in the light and only lower ones from added acetate. On
the other hand, saturation of fatty acid formation is only achieved by adding
acetate. Therefore, the hypothesis was raised that a more or less channelling
of pyruvate dehydrogenase complex and isop; noid synthesis in chloroplasts
may exist. To prove this the dilution of / C/bicarbonate by increasing
amounts of added acetate_ was studied. Inspite of increasing amounts of added
acetate no dilution of / 'C/ activity in B-carotene and PQ could be
observed. Only fatty acids formed inside and sterols formed outside the
chloroplasts were diluted as expected (Fig. 8). Also additional vice versa
experiments (data not shown) pointed at the same direction.

Table 1 Formation12f plastoquinone—9,12-carotene, fatt¥4acids (F.A.)
and sterols from / 'C/bicarbonate, /2- 'C/acetate and / C/-
mevalonate using spinach protoplasts at pH 7.6. Note the preference
of bicarbonate in the isoprenoid and of acetate in the fatty acid
synthesis. Plastoquinone-9 and B8-carotene are not formed if mevalonate
is applied from the external site.

nmol Acetate units formed per mg chlorophyll x h
14 Lipids Sterols F.A. Carotene PQ

NaH,  CO, 0.5 mM 5.1 0.3 0.67 1.58 1.18 1.12

/2~ C/Acetate 0.1 mM 33.3 + 6.0 2.00 28.64 0.33 0.67

/2- "C/Mevalonate 3.5 0.6 1.80 0 0.03 0.03

|+

+
.5+ .
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The scheme in Fig. 9 summarizes the above results.
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Fig. 9 Proposed scheme of carbon flow from primary photo-
synthetic products to isoprenoid compounds, fatty acids, amino
acids and other compounds in spinach chloroplasts. Based on
recent findings the scheme demonstrates the following points:
(i) A carbon flow from 3-PGA to 2-PGA, PEP, and pyruvate within
the chloroplast (and to some extent outside the chloroplast)
exists to provide substrates for the synthesis of amino acids,
isoprenoids and prenylquinones. (ii) Plastidic pyruvate dehydro-
genase complex and plastidic isoprenoid synthesis are more or
less channelled systems. (iii) The supply with acetate for fatty
acid synthesis predominantly occurs from the external site,
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