STRUCTURAL ASSIGNMENTS OF STEREOISOMERIC CYCLOBUTANONES BY SUBSTITUENT

Herbert Mayr and Rolf Huisgen

Institut für Organische Chemie der Universität, 8 München 2, Karlstr. 23, Germany

(Received in UK 3 March 1975; accepted for publication 13 March 1975)

The cycloaddition of alkylphenylketenes to cis-trans isomeric enol ethers provides cyclobutanones with three chiral centers. Thus, four diastereomeric pairs of enantiomers are conceivable.

 R^1 , $R^2 = alkyl and/or phenyl, <math>R^3 = alkyl$, $R^4 = alkyl$ or H

Ketene cycloadditions to enol ethers proceed stereospecifically with retention of the ketenophile configuration (1). Thus, the relative configuration at the positions 3 and 4 is determined by the choice of the enol ether. A distinction between A and B or C and D is based on the chemical shift of the 3-H.

It was noticed in the nmr spectra (CDCl₃, 60 MHz) of the cyclobutanones with $R^1 = R^2$ that the 3-H absorbs at higher field in the cycloadducts of <u>trans-1</u>-alkenyl ethers (R^3O and R^4 trans) (1-3). The generalization is permissible that ring protons are more strongly shielded by <u>cis-vic-</u> than by <u>trans-vic-alkyl</u>. On the other hand, cis-vic- and trans-vic-phenyl appear to be equally effective in deshielding cyclobutanone ring

protons as testified by the AA'X spectrum of the ring protons in 2,2,3-triphenylcyclobutanone (4). Therefore, one expects the 3-H of cyclobutanones A and C at higher field than in B and D for R^1 = phenyl and R^2 = alkyl; that provides a convincing argument for the assignment of all four diastereomers.

The cyclobutanones A and C as well as B and D are interconverted by epimerization at C-4 – probably <u>via</u> the enolate – in the presence of alumina (activity 4, Woelm) in benzene. Thus, even those adducts are accessible which are not directly formed from the reactants. The equilibrated mixtures contain predominantly the diastereomers with R^3O and R^4 trans located, <u>i.e.</u>, C and D.

Additivity of substituent influences on chemical shifts is assumed for the statistical analysis. For each of the 59 cyclobutanones investigated an equation of the general type

8.04 +
$$a_1T_1$$
 + a_2T_2 + ... $a_nT_n = \tau(3-H)$

is set up in which 8.04 is the $\tau(3-H)$ of the unsubstituted cyclobutanone (5), and a_i is the number of substituents with the effect T_i on $\tau(3-H)$ in ppm. The system of 59 equations with 17 unknown was solved by using the least squares subroutine LEASQ 2 (6). Table 1 shows the calculated substituent influences and their standard deviations (7).

Table 1. Substituent influences on $\tau(3-H)$ of 59 cyclobutanones in CDCl₃ in ppm ; in brackets frequency of the substituent. Base : $\tau(3-H) = 8.04$ for cyclobutanone.

	Substituent	in 3-position	in 2- or 4-position	
			<u>cis</u> -vic	<u>trans</u> -vic
	Methoxy (2)	-2,16±0,11		
	Ethoxy (40)	-2.17 ± 0.09		
	lsopropoxy (3)	-2.38±0.10		
	Butoxy (5)	-2.10 ± 0.09		
	<u>t-</u> Butoxy (9)	-2.34 ± 0.09		
	Methyl (51)		+0.37 ± 0.03	-0.01 ± 0.03
	Ethyl (20)		+0.28 ± 0.03	-0.00 ± 0.03
	Propyl (4)		+0.33 ± 0.05	+0.08 ± 0.05
	lsopropyl (16)		+0.12 ± 0.04	-0.06 ± 0.04
	tButyl (5)		+0.01 ± 0.05	-0.15 ± 0.04
	Phenyl (65)		-0.28 ± 0.03	-0.31 ± 0.03

Calculation of τ (3–H) with these parameters reproduces the experimental values with the standard deviation of ± 0.06 ppm; the deviation never exceeds 0.12 ppm (some examples in Table 2).

<u>cis</u>-vic-Methyl shifts the 3-H signal of cyclobutanones by 0.37 ppm to higher field, while <u>trans</u>-vic-CH₃ is virtually without influence. With increase of branching <u>cis</u>-vic-alkyl loses its shielding effect and <u>trans</u>-vic-alkyl becomes slightly deshielding. Weitkamp and Korte (8) observed the following methyl influences on the τ values of ring-H of cyclobutanes : <u>cis</u>-vic +0.31, trans-vic -0.19 ppm. Sustmann, Huisgen, and Huber (9) found effects of +0.28 for <u>cis</u>-vic- and +0.01 ppm for <u>trans</u>-vic-methyl in 2-pyrazolines and 2-isoxazolines. However, in 2-pyrazolines and 2-isoxazolines <u>cis</u>-vic-C₆H₅ shifts τ (ring H) by -0.11 and <u>trans</u>-vic-C₆H₅ by -0.51 ppm, while in cyclobutanones the two effects are within the error limits (Table 1). This difference might be caused, i.a., by the spreading of bond angles in four-membered rings.

The chemical shifts of the O-ethyl protons in 3-ethoxycyclobutanones confirm the above structural assignments. The O-ethyl protons of A and C are located in the diamagnetic shielding cone of the <u>cis</u>-vic-phenyl and are shifted by ~ 0.2 ppm to higher field compared with B and D (Table 2). The statistical evalution of the substituent influences furnishes $\tau = 6.51 \pm 0.16$ for OCH₂CH₃ and 8.79 \pm 0.09 for OCH₂CH₃ of the parent compound (10). Table 3 reveals that only <u>cis</u>-vic-phenyl exerts a sizable effect.

Substituent			
 in 2 or 4	Δτ in OCH2CH3	∆τ in OCH ₂ CH ₃	
 <u>cis</u> -Alkyl	+0.03 ± 0.06	+ 0.03 ± 0.03	
trans-Alkyl	-0.12 ± 0.06	-0.07 ±0.03	
<u>cis</u> -Phenyl	+0.23 ± 0.07	+0.26 ± 0.04	
trans-Phenyl	-0.11 ± 0.07	-0.05 ± 0.04	

Table 3. Substituent influences on the τ values of the ethoxy protons in 35 substituted 3-ethoxycyclobutanones

The OCH_2CH_3 protons of substituted ethoxycyclobutanones are diastereotopic and, therefore, give rise to ABX₃ spectra. Only in the presence of two <u>cis</u>-vic. substituents, of which one is phenyl, are the τ values of the CH₂ protons noticeably different. On the other hand, in <u>cis</u>- and in <u>trans</u>-substituted 3-isopropoxycyclobutanones one always observes two methyl doublets.

The coupling constants of the ring protons are less useful for the structure determination of ketene cycloadducts than the substituent influences. $J_{3.4}(cis) = 7.4 - 8.4$ Hz and $J_{3.4}(trans) = 5.9 - 6.8$ Hz are the experimental ranges. It is not recommendable to base an assignment on such small differences, the less so as even examples of $J_{cis} < J_{trans}$ in four-membered rings have been described (11,12).

REFERENCES

- R. Huisgen, L.A. Feiler, and G. Binsch, <u>Angew.Chem.</u>, <u>Int.Ed.Engl.</u>, <u>3</u>, 753 (1964);
 <u>Chem. Ber.</u>, <u>102</u>, 3460 (1969).
- (2) F. Effenberger, G. Prossel, and P. Fischer, Chem. Ber., 104, 2002 (1971).
- (3) H. Mayr, Ph.D. Thesis Univ. München 1974.
- (4) R. Huisgen and L.A. Feiler, Chem. Ber., <u>102</u>, 3391 (1969).
- (5) K.B. Wiberg and B. Nist, J. Amer. Chem. Soc., 83, 1226 (1961).
- (6) K.B. Wiberg, Computer Programming for Chemists, p.47, W.A. Benjamin New York 1965.
- (7) R. Zurmühl, Praktische Mathematik für Ingenieure und Physiker, 3. Aufl., Springer Verlag, Berlin 1961.
- (8) H. Weitkamp and F. Korte, Tetrahedron, Suppl., 7, 75 (1966).
- (9) R. Sustmann, R. Huisgen, and H. Huber, Chem. Ber., 100, 1802 (1967).
- (10) J.B. Sieja, <u>J.Amer.Chem.Soc.</u>, <u>93</u>, 130 (1971), described $\tau(OCH_2) = 6.51$ and $\tau(OCH_2CH_3) = 8.83$ for the neat liquid.
- (11) J. Fleming and D.H. Williams, Tetrahedron, 23, 2747 (1967).
- (12) G. Steiner, Ph.D. Thesis Univ. München 1973.