Springer Series in Biophysics

Volume 1	Structure, Dynamics and Function of Biomolecules Edited by A. Ehrenberg, R. Rigler, A. Gräslund and L. Nilsson (1987)
Volume 2	Biophysics and Synchrotron Radiation Edited by A. Bianconi and A. Congiu Castellano (1987)
Volume 3	Cytoskeletal and Extracellular Proteins Edited by U. Aebi and J. Engel (1989)
Volume 4	Electron Probe Microanalysis Edited by K. Zierold and H. K. Hagler (1989)
Volume 5	Biophysics of the Cell Surface Edited by R. Glaser and D. Gingell (1990)
Volume 6	Reaction Centers of Photosynthetic Bacteria Edited by ME. Michel-Beyerle (1990)

M.-E. Michel-Beyerle (Editor)

Reaction Centers of Photosynthetic Bacteria

Feldafing-II-Meeting

With 165 Figures

Springer-Verlag Berlin Heidelberg NewYork London Paris Tokyo HongKong Barcelona Professor Dr. MARIA-ELISABETH MICHEL-BEYERLE Institut für Physikalische und Theoretische Chemie Technische Universität München Lichtenbergstraße 4 W 8046 Garching, FRG

ISBN 3-540-53420-2 Springer-Verlag Berlin Heidelberg NewYork ISBN 0-387-53420-2 Springer-Verlag NewYork Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication of this publication or parts thereof is only permitted under the provisions of the German Copyright Law of September 9, 1965, in its current version and a copyright Law.

© Springer-Verlag Berlin Heidelberg 1990 Printed in Germany

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

2131/3020-543210 - Printed on acid-free paper

Contents

PART I	Native Reaction Centers: Structure and Spectroscopy
F. REISS-HU	SSON, B. ARNOUX, A. DUCRUIX, M. ROTH, M. PICAUD
and C. ASTIE	CR:
Reactio	n Center from Wild Type Y <i>Rhodobacter sphaeroides</i> :
Primary	v Structure of the L and M Subunits;
Caroten	oid and Detergent Structures in the Three-Dimensional Crystals
Q. ZHOU, T.	A. MATTIOLI and B. ROBERT
Probing	5 Reaction Center Asymmetry Using Low Temperature
Absorp	tion Spectroscopy of <i>Rhodobacter sphaeroides</i>
Reactio	n Centers Containing Bacteriopheophytin Anions
A. VERMEG	LIO, D. GARCIA and J. BRETON
Cytoch	rome Arrangement in Reaction Centers of Different Species
of Phot	osynthetic Bacteria
W. MÄNTEL	E, M. LEONHARD, M. BAUSCHER, E. NABEDRYK,
J. BRETON a	and D.A. MOSS
Infrare	d Difference Spectroscopy of Electrochemically Generated
Redox	States in Bacterial Reaction Centers
E.J. LOUS, M EPR an Crystal	M. HUBER, R.A. ISAACSON and G. FEHER ad ENDOR Studies of the Oxidized Primary Donor in Single s of Reaction Centers of <i>Rhodobacter sphaeroides</i> R-26
F. LENDZIA	N, B. ENDEWARD, M. PLATO, D. BUMANN, W. LUBITZ
and K. MÖB	IUS
ENDO	R and TRIPLE Resonance Investigation of the Primary Donor
Cation	Radical P ⁺ 865 in Single Crystals of <i>Rhodobacter sphaeroides</i>
R-26 F	Reaction Centers
A. ANGERH	IOFER, J. GREIS, V. AUST, J.U. VON SCHÜTZ and H.C. WOLF
Triplet	State ADMR of Bacterial Reaction Centers at Low Transition
Freque	ncies
S. BUCHAN	AN and H. MICHEL
Investi	gation of Quinone Reduction in <i>Rhodopseudomonas viridis</i> by
FTIR	Difference Spectroscopy and X-Ray Diffraction Analysis
D.L. THIBO	DEAU, J. BRETON, C. BERTHOMIEU, K.A. BAGLEY,
W. MÄNTEI	JE and E. NABEDRYK
Steady	-State and Time-Resolved FTIR Spectroscopy of Quinones in
Bacter	al Reaction Centers

PART II	Native Reaction Centers: Electron Transfer Dynamics
G.J. SMAL	L, R. JANKOWIAK, M. SEIBERT, C.F. YOCUM and D. TANG
Spect	ral Hole Burning Studies of Photosystem II Reaction Centers:
Excit	ed State Structure, Charge Separation and Energy Transfer Dynamics 101
C. KIRMA	IER and D. HOLTEN
Evide	ence for an Inhomogeneous Distribution of Reaction Centers
on th	e Timescale of the Primary Electron Transfer Events
U. FINKEI	LE, K. DRESSLER, C. LAUTERWASSER and W. ZINTH
Analy	ysis of Transient Absorption Data from Reaction Centers of
Purpl	le Bacteria
K. DRESSL	LER, U. FINKELE, C. LAUTERWASSER, P. HAMM,
W. HOLZA	PFEL, S. BUCHANAN, W. KAISER, H. MICHEL, D. OESTERHELT,
H. SCHEEF	R, H.U. STILZ and W. ZINTH
Simila	arities of the Primary Charge Separation Process in the
Photo	osynthesis of <i>Rhodobacter sphaeroides</i> and <i>Rhodopseudomonas viridis</i>
G.H. ATKI	INSON, H. HAYASHI, M. TASUMI and S. KOLACZKOWSKI
Picose	econd Resonance Raman Spectroscopy of <i>Rhodobacter sphaeroides</i>
React	tion Centers
S.G. BOXE	R, D.J. LOCKHART, S. FRANZEN and S.H. HAMMES
Electi	ric Field Modulation of the Fluorescence Lineshape for
Photo	synthetic Reaction Centers: A New Probe of the Primary
Electi	ron Transfer Mechanism
A. OGROD	DNIK, U. EBERL, R. HECKMANN, M. KAPPL, R. FEICK
and M.E. M	AICHEL-BEYERLE
One S	Step Electron Transfer to P ⁺ H ⁻ in Reaction Centers of
<i>Rhod</i>	<i>obacter sphaeroides</i> Derived from Dichroic Excitation Spectra of
Electr	ric Field Modulated Fluorescence Yield
M.G. MÜL	LER, K. GRIEBENOW and A.R. HOLZWARTH
Energ	gy Transfer and Charge Separation Kinetics in the Reaction Center
of <i>Ch</i>	<i>sloroflexus aurantiacus</i> Studied by Picosecond Time-Resolved
Fluor	escence Spectroscopy
R. FEICK,	J.L. MARTIN, J. BRETON, M. VOLK, G. SCHEIDEL,
T. LANGEI	NBACHER, C. URBANO, A. OGRODNIK
and M.E. M	IICHEL-BEYERLE
Biexp	ponential Charge Separation and Monoexponential Decay
of P ⁺	H ⁻ in Reaction Centers of <i>Chloroflexus aurantiacus</i>
P. SEBBAN	R, P. PAROT, L. BACIOU, P. MATHIS and A. VERMEGLIO
Analo	og Effects of Low Temperature and Lipid Rigidity on the
Distri	abution of Two Conformational States of the Reaction Centers

VIII

v
А

PART III	Modified Reaction Centers:
E	ffects of Mutagenic and Chemical Modifications
I. SINNING, J. KOEPKE an	nd H. MICHEL
Recent Advances in th	ne Structure Analysis of <i>Rhodopseudomonas</i>
<i>viridis</i> Reaction Cente	r Mutants
M.M. YANG, W.J. COLEM	AN and D.C. YOUVAN
Genetic Coding Algor	ithms for Engineering Membrane Proteins
M. HUBER, E.J. LOUS, R. and C.C. SCHENCK EPR and ENDOR Stu of <i>Rhodobacter sphaee</i> Mutants in which His	A. ISAACSON, G. FEHER, D. GAUL Idies of the Oxidized Donor in Reaction Centers <i>roides</i> Strain R-26 and two Heterodimer tidine M202 or L173 was Replaced by Leucine
C.C. SCHENCK, D. GAUL	, M. STEFFEN, S.G. BOXER, L. McDOWELL,
C. KIRMAIER and D. HOI	LTEN
Site-Directed Mutatio	ns Affecting Primary Photochemistry in
Reaction Centers: Eff	ects of Dissymmetry in the Special Pair
W.W. PARSON, V. NAGAH	RAJAN, D. GAUL, C.C. SCHENCK,
ZT. CHU and A. WARSH	IEL
Electrostatic Effects of	on the Speed and Directionality of Electron
Transfer in Bacterial	Reaction Centers: The Special Role
of Tyrosine M-208	
K.A. GRAY, J.W. FARCH	AUS, J. WACHTVEITL, J. BRETON,
U. FINKELE, C. LAUTER	WASSER, W. ZINTH and D. OESTERHELT
The Role of Tyrosine	M210 in the Initial Charge Separation in the
Reaction Center of R	hodobacter sphaeroides
H.U. STILZ, U. FINKELE	, W. HOLZAPFEL, C. LAUTERWASSER,
W. ZINTH and D. OESTER	RHELT
Site-Directed Mutage	nesis of Threonine M222 and Tryptophan M252
in the Photosynthetic	Reaction Center of <i>Rhodobacter sphaeroides</i>
W.J. COLEMAN, E.J. BYL	INA, W. AUMEIER, J. SIEGL, U. EBERL,
R. HECKMANN, A. OGR	ODNIK, M.E. MICHEL-BEYERLE and D.C. YOUVAN
Influence of Mutagen	the Replacement of Tryptophan M250 on
Electron Transfer Ra	tes Involving Primary Quinone in
Reaction Centers of J	Rhodobacter capsulatus
S.J. ROBLES, J. BRETON	and D.C. YOUVAN
Transmembrane Heliz	x Exchanges Between Quasi-Symmetric Subunits
of the Photosynthetic	Reaction Center
J. BRETON, JL. MARTI	N, JC. LAMBRY, S.J. ROBLES and D.C. YOUVAN
Ground State and Fe	mtosecond Transient Absorption Spectroscopy
of a Mutant of <i>Rhod</i>	obacter capsulatus which Lacks the
Initial Electron Accep	otor Bacteriopheophytin

-

N.W. WOODBURY, A.K. TAGUCHI, J.W. STOCKER and S.G. BOXER Preliminary Characterization of pAT-3, a Symmetry Enhanced Reaction Center Mutant of <i>Rhodobacter capsulatus</i>				
 A. STRUCK, D. BEESE, E. CMIEL, M. FISCHER, A. MÜLLER, W. SCHÄFER and H. SCHEER Modified Bacterial Reaction Centers: 3. Chemically Modified Chromophores at Sites B_A, B_B and H_A, H_B				
 K. WARNCKE and P.L. DUTTON Effect of Cofactor Structure on Control of Electron Transfer Rates at the Q_A Site of the Reaction Center Protein				
PART IV Reaction Centers: Modelling of Structure/Function-Relationship				
A. FREIBERG and T. PULLERITS Energy Transfer and Trapping in Spectrally Disordered Photosynthetic Membranes				
 M.R. WASIELEWSKI, G.L. GAINES, III, M.P. O'NEIL, W.A. SVEC, M.P. NIEMCZYK and D. M. TIEDE Multi-Step Electron Transfer in Rigid Photosynthetic Models at Low Temperature: Requirements for Charge Separation and Spin-Polarized Radical Ion Pair Formation				
P.O.J. SCHERER, W. THALLINGER and S.F. FISCHER Electronic Couplings for Light Induced Charge Transfer in Covalently Bonded Donor-Acceptor Systems				
J. FAJER, K.M. BARKIGIA, K.M. SMITH, E. ZHONG, E. GUDOWSKA-NOWAK and M.D. NEWTON Micro-Environmental Effects on Photosynthetic Chromophores				
A. SCHERZ, J.R.E. FISHER and P. BRAUN Simulation of the Absorption and Circular Dichroism Spectra for the Primary Electron Donor in Reaction Centers of Purple Bacteria and Photosystem II				
M. BIXON, J. JORTNER and M.E. MICHEL-BEYERLE On the Primary Charge Separation in Bacterial Photosynthesis				
P.O.J. SCHERER Multiple Excited States of Photosynthetic Reaction Centers				
J. VRIEZE and A.J. HOFF Exciton Band Mixing in <i>Rhodopseudomonas viridis</i>				

A.L.	MORRIS, J.R. NORRIS and M.C. THURNAUER An Extended Model for Electron Spin Polarization in Photosynthetic Bacteria
E.W.	KNAPP and L. NILSSON Can Electron Transfer be Influenced by Protein Dynamics: The Transfer from Cytochrome C to the Special Pair in Photosynthetic Reaction Centers
	Concluding Remarks
M.E.	MICHEL-BEYERLE and H. SCHEER Beyond Native Reaction Centers

Subject Index		464
---------------	--	-----

Part II Native Reaction Centers: Electron Transfer Dynamics

Similarities of the Primary Change Separation Process in the Photosynthesis of *Rhodobacter sphaeroides* and *Rodopseudomanas viridis*

K. Dressler¹, U. Finkele¹, C. Lauterwasser¹, P. Hamm¹, W. Holzapfel¹, S. Buchanan², W. Kaiser¹, H. Michel², D. Oesterhelt³, H. Scheer⁴, H. U. Stilz³, and W. Zinth¹

¹ Physik Department Ell, Technische Universität München, W 8000 München 2, FRG

² Max-Planck-Institut für Biophysik, W 6000 Frankfurt a. M., FRG

³ Max-Planck-Institut für Biochemie, W 8033 Martinsried, FRG

⁴ Botanisches Institut der Ludwig-Maximilians-Universität, W 8000 München 19, FRG

Photosynthetic conversion of light into chemical energy starts via a series of electron transfer reactions in pigment-protein complexes called reaction centers (RC's). The most direct access to the primary reaction dynamics offers time resolved optical spectroscopy. During the past few years, this technique has been continuously improved permitting advanced experiments with high temporal and amplitude resolution. In this paper, we show, that RC's from Rhodobacter(Rb.) sphaeroides and Rhodopseudomonas (Rps.) viridis exhibit common features in the absorption transients. This points to a substantial similarity of the elementary molecular processes. This fact is not self-evident, since different polypeptides and different types of bacteriochlorophylls (BChl) and bacteriopheophytins (BPh) are present in various reaction centers, e.g. BChl a and BPh a are essential pigments in the reaction centers of Rb. sphaeroides while BChl b and BPh b are active in the RC's of Rps. viridis. For both reaction centers x-ray structures are now available /1-3/. It was shown that the prosthetic groups and neighbouring amino acids are in a very similar arrangement: most importantly are two BChl molecules in close contact which act as the primary electron donor P. The other pigments are arranged in two branches, A and B. Starting from the primary donor, the special pair P, one finds a monomeric bacteriochlorophyll (B), a bacteriopheophytin (H), and a quinone (Q) on each branch. It was shown that the electron transfer occurs via the A-branch and that after about 3 - 4 ps a radical pair $P^{T}H_{\lambda}^{-}$ is formed. Approximately 200 ps later the electron reaches the quinone Q_A building the intermediate $P^{\dagger}Q_{A}^{-}$. The role of the monomeric bacteriochlorophyll B, is still in debate /4,5/. Recent experiments on Rb. sphaeroides have proven the existence of a previously undetected

Fig.1 Transient absorption data for reaction centers from Rb.sphaeroides (a,b) and Rps. viridis (c,d). The filled circles represent the experimental data, the solid lines correspond to model calculations with time constants given in the text. The broken lines are calculated without the fast (0.9 ps or 0.65 ps, respectively) kinetic. The excitation wavelengths are 860 nm and 955 nm for Rb. sphaeroides and Rps. viridis, respectively.

0.9 ps kinetic. A straightforward interpretation relates the corresponding transient to the radical pair $P^{+}B_{A}^{-}$, a real intermediate formed prior to $P^{+}H_{A}^{-}$ /6,7/.

The experiments presented here were performed using the excite and probe technique with weak subpicosecond pulses (pulse duration below 150 fs) generated by two different laser-amplifier systems with repetition rates of 10 Hz. The samples were excited in the lowest energy band of P (at 860 nm for <u>Rb.sphaeroides</u> and at 955 nm for <u>Rps. viridis</u>). Probing was performed by a 5 nm to 20 nm wide fraction of a femtosecond white light continuum. Exciting and probing pulses were parallel polarized. The reaction centers were prepared as described in Ref. /6/ and /8/. They were kept at room temperature under stirring.

Time-resolved absorption data for both types of bacteria are shown in Fig.1 for different probing wavelengths. The decay of the excited electronic state of the special pair is studied at $\lambda_{\rm nr} = 920 \, \rm nm$ for <u>Rb.</u> sphaeroides (Fig.1a) and $\lambda_{pr} = 1050$ nm for <u>Rps. viridis</u> (Fig.1c). Both probing wavelengths are located on the long-wavelength side of the P absorption band (see Fig.2a and 2b), where the population of the first excited electronic state is readily detected via its stimulated emission. As shown in Fig.1a and 1c the rapidly appearing gain decays with a time constant around 3.5 ps. Quite different is the situation at wavelengths close to the absorption band of the monomeric bacteriochlorophylls. Here an adevident (Fig.1b, ditional fast kinetic component becomes 1d). In Rb. sphaeroides at 785 nm (Fig.1b) a very fast first absorption increase at time zero is followed by a brief relative absorption decrease before the absorption rises again with 3.5 ps. For Rps. viridis one finds the additional fast kinetic component quite clearly at 820 nm near the peak of the BChl absorption band (Fig.1d). Extensive studies at more than twenty different wavelengths gave the following numbers for the time constants for both RC's: the fastest process occurs with 0.9 ps +/- 0.4 ps in Rb. sphaeroides and with 0.65 ps +/- 0.3 ps in Rps. viridis. The other time constants are 3.5 ps +/- 0.4 ps, 220 ps +/- 50 ps and infinity in both RC's. The transient absorption measurements also supply amplitudes of the various kinetic components which allow to calculate difference spectra of the cross-sections of the intermediate states for specific sequential reaction models /7,9/.

The experiments clearly show, that the absorption curves can be described well by a multiexponential function with a minimum of four time constants. As a consequence, the reaction model comprises at least four intermediate states. However, the reaction scheme cannot be deduced uniquely from the transient absorption data. A certain reaction model can only be accepted if the deduced spectra of all intermediate states are not in contradiction with any other information. In the following, we discuss two linear models, which are distinguished by their different order of the early intermediates:

$$P \xrightarrow{h\nu} I_{1} \xrightarrow{3.5ps} I_{2} \xrightarrow{0.9ps} I_{3} \xrightarrow{220ps} I_{4} \xrightarrow{\infty} \dots \pmod{A}$$

$$P^{*} \xrightarrow{P^{+}B_{A}^{-}} \xrightarrow{P^{+}H_{A}^{-}} \xrightarrow{P^{+}Q_{A}^{-}}$$

The difference cross-section spectra of intermediates I_1 , I_3 and I_4 do not depend on the specific model A or B. The spectrum of intermediate I_1 is depicted in Fig. 2c (<u>Rb. sphaeroides</u>) and Fig. 2d (<u>Rps. viridis</u>). Intermediate I_1 exhibits a pronounced absorption decrease on the long-wavelength

Fig.2 Spectral data for Rb. sphaeroides (a,c,e) and Rps. viridis (b,d,f). (a,b) give the absorption spectra, (c,d,e,f) show difference spectra calculated according to model A for the intermediates $I_1 (\sigma_1 - \sigma_0)$ and $I_2 (\sigma_2 - \sigma_0)$.

138

side of the P absorption band, which is due to optical gain from the electronically excited special pair P*. Excited state absorption is strong around 800 nm. The spectra of the intermediate I_2 differ significantly for the two reaction models. In model B the intermediate I_2 displays the same salient spectral features (not shown here) as I_1 . However, its gain is reduced by 30%, a relative absorption decrease occurs in the Q_y band of the BChl and an increased absorption is found around 660 nm (in the anion band of the tetrapyrols). These observations indicate, that intermediate I_2 (in model B) contains an electronically excited special pair. The spectral difference between I_1 and I_2 may be explained by an excited state relaxation process or by a mixing of P* with a charge-transfer state P⁺B_A⁻. According to model B the bacteriopheophytin H_A would be the primary electron acceptor.

Quite different is the situation in model A where the 3.5 ps decay precedes the 0.9 ps (0.65 ps) process. Fig. 2e, 2f show the difference spectra of intermediate I_2 for model A. The salient features are: (i) disappearance of the absorption of the special pair P , (ii) absorption changes characteristic for P⁺, (iii) strong absorption decrease in the Q_y band of the monomeric bacteriochlorophylls (at 800 nm for <u>Rb. sphaeroides</u>, at 820 nm for <u>Rps. viridis</u>), (iv) pronounced absorption increase around 660 nm in the BChl and BPh anion bands. (v) Furthermore transient dichroism experiments for <u>Rb. sphaeroides</u> indicate that the transition moment of the 660 nm band of I_2 is parallel to the direction expected for the BChl anion B⁻/6/. It is remarkable that all five points support the assignment of I_2 being the radical pair P⁺B⁻_A. Thus the monomeric bacteriochlorophyll B_A should be the primary electron acceptor.

In conclusion: We have shown that the primary electron transfer in the bacterial reaction centers from <u>Rb. sphaeroides</u> and <u>Rps. viridis</u> proceeds according to a common reaction scheme, where a subpicosecond reaction is involved. We discussed two linear reaction models. So far the experiments cannot decide conclusively between the two. Model B leads to an additional excited electronic state (I₂) of which the functional relevance is unknown. On the other hand the structural arrangement of the chromophors in the RC's and all the spectral features (i) to (v) of intermediate I₂ in model A favour the radical pair $P^+B^-_A$ as a real transient in the electron transfer proceedes as follows: From the excited electronic state of the special pair P^* an electron moves to the monomeric bacteriochlorophyll B_A within 3.5 ps for-

140

ming the radical pair state $P^+B_{\underline{A}}^-$, which decays more rapidly with 0.9 ps (0.65 ps) to the radical pair state $P^+H_{A}^-$.

References

- J. Deisenhofer, H. Michel: EMBO J. 8, 2149 (1989) 1
- G.Feher, J. P. Allen, M. Y. Okamura, D. C. Rees: Nature 339, 111 2 (1989)
- C.-H. Chang, D. Tiede, J. Tang, U. Smith, J. Norris, M. Schiffer: 3 FEBS Lett. 205, 82 (1986)
- 4 J.L. Martin, J. Breton, A.J. Hoff, A. Migus, A. Antonetti: Proc. Natl. Acad. Sci. USA 83, 957 (1986)
- J. Breton, J.L. Martin, A. Migus, A. Antonetti, A. Orszag: Proc. 5 Natl. Acad. Sci. USA 83, 5121 (1986)
- W. Holzapfel, U. Finkele, W. Kaiser, D. Oesterhelt, H. Scheer, H.U. 6
- Stilz, W. Zinth: Chem. Phys. Lett. 160, 1 (1989)
 W. Holzapfel, U. Finkele, W. Kaiser, D. Oesterhelt, H. Scheer, H.U.
 Stilz, W. Zinth: Proc. Natl. Acad. Sci. USA <u>87</u>, 5168 (1990) 7
- H. Michel: J. Mol. Biol. 158, 567 (1982) 8
- 9 U. Finkele, K. Dressler, C. Lauterwasser, W. Zinth: this volume