(15) Identification of the 3,14-diacetate as the minor component was based on a ¹H NMR examination of the mixture.

(16) H. Rapoport, D. R. Baker, and H. N. Reist, J. Org. Chem., 22, 1489 (1957).

- (17) All of the acetate derivatives were purified by preparative chromatography on silica gel plates and were analyzed initially by infrared (CHCl₃ solution) on a Perkin-Elmer 467 spectrometer. The carbonyl bands of the 3-acetoxyl groups appeared in the 1754–1758-cm⁻¹ region while those of the 6- and 14-acetoxyl groups appeared at 1725–1730 cm⁻¹.
 (18) S. Okuda, S. Yamaguchi, Y. Kawazoe, and K. Tsuda, *Chem. Pharm. Bull.*
- 12, 104 (1964).
- (19) L. M. Jackman and S. Sternhell, "Applications of Nuclear Magnetic Res-onance Spectroscopy in Organic Chemistry", 2d ed, Pergamon Press, Oxford 1969, p 176
- (20) We also observed that two of the methyl chemical shifts reported by Hahn and Fishman¹¹ differed significantly from our values, a fact which could indicate sample deterioration. In addition, we have observed that most of the acetate derivatives which we prepared would slowly decompose if left

in solution.

- (21) The theoretical 5 β -6 values referred to were actually derived¹⁸ for the 7,8-dihydroisomorphine and the 7,8-dihydromorphine ring systems. However, an examination of Dreiding models indicated that introduction of a 14-hydroxyl group should have little effect on these values. J. B. Stothers, "Carbon-13 NMR Spectroscopy", Academic Press, New
- (22) J. B. Stothers, "Carbon-York, N.Y., 1972, p 167.
- (23) See, for example, the spectrum of cyclohexyl acetate (no. 311) in L. F. Johnson and W. C. Jankowski, "Carbon-13 NMR Spectra", Wiley-Interscience, New York, N.Y., 1972.
- Reference 23, p 169.
- Cone and co-workers⁹ have reported that the 6-hydroxyl group of 3a is (25)incompletely acylated with this reagent. (26) S. H. Grover, J. P. Guthrie, J. B. Stothers and C. T. Tan, *J. Magn. Reson.*,
- 10, 227 (1973).
- (27) S. H. Grover and J. B. Stothers, *Can. J. Chem.*, **52**, 870 (1974).
 (28) H. Eggert, C. L. VanAntwerp, N. S. Bhacca, and C. Djerassi, *J. Org. Chem.*, 41, 71 (1976).

Carbanions. 2.1 Carbon-13 Nuclear Magnetic Resonance Study of **Meisenheimer Complexes and Their Charge Distribution Pattern**

George A. Olah* and Herbert Mayr

Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106

Received April 26, 1976

A series of 6-X,2,4-dinitroanisoles and their carbanionic methoxide addition products (Meisenheimer complexes) have been examined by ¹³C NMR spectroscopy. Variation of X (CF₃, H, Cl, F, CH₃) does not affect the charge distribution pattern in the complexes as reflected by their 13 C NMR shifts. Only in the case where X is NO₂ can a change be observed. The ¹³C NMR studies indicate that the cyclohexadienylic carbons carry about 0.3-0.4 e more negative charge than the corresponding carbons in their aromatic precursors. The additional charge is located on C_2 , C_4 , and C_6 .

Intensive studies on the interaction of electron-deficient aromatic compounds with alkoxides culminated in 1902 with Meisenheimer's evidence that these complexes could be described by the structural formula 1.² These complexes, how-

ever, attracted little attention until 1964 when Crampton and Gold reported the first ¹H NMR spectrum of a Meisenheimer complex.^{3a} Since then, numerous papers on the ¹H NMR studies of these complexes have been published,^{3b} some of which also discussed aspects of their charge distribution pattern.⁴ However, electron-withdrawing groups must occupy at least two and often three of the positions ortho and para (i.e., 2, 4, and 6) to the aliphatic center 1 in order to obtain stable complexes. As a result, the ortho and para positions, which are expected to carry most of the negative charge in cyclohexadienyl anions, cannot be studied by ¹H NMR spectroscopy, and the limitations of the ¹H NMR method of investigating charge distributions become evident.

We now wish to report the first ¹³C NMR spectroscopic study of Meisenheimer complexes, in which the obvious limitations of the ¹H NMR method are absent.

Results⁵

Substituted Anisoles. All ¹³C NMR spectra showed a high-field absorption close to $\delta_{\rm C}$ 65 (Table I), which was assigned to the methoxyl carbon based on the chemical shift and its quartet splitting in off-resonance spectra. Furthermore, off-resonance experiments allowed the separation of the C_3 and C_5 shifts from the other carbon shifts. δC_3 and C_5 were found to be identical in anisoles 2 and 3. In 6 these carbon shifts were characterized on the basis of the C-F couplings $(J_{C_5F} = 14, J_{C_3F} = 8 \text{ Hz})$. In all other cases C_3 and C_5 were separated by more than 10 ppm, and their assignments were made possible by comparison of the observed shifts with calculated shifts.⁶ The observed shifts showed a maximum deviation of 3.1 ppm from those which were determined from the substituent increments in monosubstituted benzenes.⁶

In accord with the calculations the most deshielded peaks were always ascribed to C_1 . The only exception was 6 where C_6 was most deshielded, as indicated by the calculations and experimentally proved by its CF coupling of 231 Hz. The resonance at $\delta_{\rm C}$ 127.6 was the only sp² carbon absorption of 3 showing CF coupling (6 Hz) and therefore could be assigned to C_6 . Though the similarity between the calculated and observed C_1 and C_6 shifts in 5 and 7 is not outstanding, comparison with the resonances of the other singlets shows that no other assignment is possible.

In general, the nitro-substituted positions C_2 and C_4 show only slightly different chemical shifts. Though their assignments were not crucial to our present study, it was attempted on the basis of their intensities. If C_6 , C_2 , and C_4 in 2 had the

Table I.	¹³ C NMR Shifts of 2,4-Dinitro-6-X-anisoles at 15.1 MHz in CDCl ₃ with Me ₄ Si as External Standard, Calo	lculated
	Shifts' in Parentheses	

Compd ^a	X	C ₁	C ₂	C ₃	C ₄	C ₅	C ₆	OCH ₃	Other
2	NO,	153.1	145.6	125.3	142.5	125.3	145.6	66.4	
	-	(156.1)	(135.9)	(125.7)	(142.6)	(125.7)	(135.9)		
3	CF ,	158.1	144.1	126.2	142.6	126.2	127.6	65.4	122.5
	5	(158.7)	(135.3)	(123.1)	(142.0)	(128.3)	(114.9)	(J = 2	74 Hz)
4	н	158.5	`139 ,5	122.6	141.7	130.4	115.2	58.7	
		(160.9)	(135.0)	(119.9)	(141.7)	(130.5)	(106.9)		
5	Cl	`155.8 ´	145.4	120.3	143.4	130.2	132.6	64.2	
		(161.3)	(136.3)	(118.0)	(143.0)	(130.9)	(122.1)		
6	F	147.3^{\prime}	141.8	117.0	144.1	117.9	156.2	64.0	
		(148.0)	(136.4)	(115.4)	(143.1)	(117.6)	(150.7)		
7	CH,	`157.5 ´	144.0	`119 .7 [´]	143.1	`130.5 ´	`137.6 ´	63.4	17.5
	3	(161.6)	(134.9)	(117.0)	(141.6)	(131.2)	(124.8)		

^a Respective registry numbers are 606-35-9, 320-16-1, 119-27-7, 23789-10-8, 344-78-5, 29027-13-2.

Table II. ¹³C NMR Shifts of 1,1-Dimethoxy-2,4-dinitro-6-X-cyclohexadienyl Anions at 25.16 MHz in Me_2SO-d_6 with Me_4Si as External Standard^a

$Compd^b$	X	C ₁	C ₂	C ₃	C ₄	C ₅	C ₆	OCH ₃	Other
2 a	NO ₂ NO ₂ ^C	104.3 (s) 103.9	129.2 (s) 129.2	131.2 (d) 130.0	119.3 (s)	131.2 (d) 130.0	129.2 (s) 129.2	53.2 (q) 52.8	
3a	CF_3^2	104.8 (s)	$123.5 (s)^d$	131.8 (d)	$119.8 (s)^d$	129.7 (dq)	111.3 (q)	52.6 (q)	125.7 (q)
4a 5a	H Cl	104.1 (s) 104.9 (s)	122.9 (s) 121.2 (s) ^d	131.1 (d) 130.5 (d)	121.7 (s) 120.6 (s) ^d	125.4 (d) 126.0 (d)	118.5 (d) 120.7 (s) ^d	52.0 (q) 52.5 (q)	
6a 7a	$_{\rm CH_3}^{ m F}$	103.7 (d) 106.0 (s)	121.2 (d) 120.7 (s)	128.8 (d) 130.9 (d)	118.4 (d) 122.6 (s)	107.8 (dd) 123.9 (d)	148.3 (d) 125.4 (s)	52.8 (q) 52.0 (q)	16.7 (q)

^a Multiplicities refer to one-bond CH couplings and all fluorine couplings. ^b Respective registry numbers are 12128-30-2, 33516-46-0; 12128-33-5, 25230-80-2, 33542-12-0, 59906-98-8. ^c 1:1 complex with 18-crown-6 ether dissolved in THF. ^d Assignments uncertain; see text.

same relaxation time, a 2:1 intensity ratio should have been observed. We detected, however, two signals of equal intensity and concluded that C_4 was relaxing faster. Using a lower pulse width resulted in an increase of intensity of the δ_C 145.6 peak relative to that at δ_C 142.5 and the latter was identified as C_4 . Generalizing this observation to the anisoles 3–7 we ascribed the less intensive resonance of the nitro-substituted carbons to C_2 .

Meisenheimer Complexes. All spectra were characterized by a quartet absorption around δ_C 52 and a singlet around δ_C 104, which were assigned to the methoxy carbon and C_1 , respectively (Table II).

The trinitro compound **2a** with C_{2v} symmetry showed a doublet at δ_C 131.2 (C₃, C₅) and two singlets at δ_C 129.2 (C₂, C₆) and 119.3 (C₄), which could be assigned due to their 2:1 ratio of intensities.

In 3a the quartet at $\delta_C 111.3$ ($J_{CF} = 27.6$ Hz) was ascribed to C₆. A smaller CF coupling ($J_{CF} = 6$ Hz) was also detected in the signal at $\delta_C 129.7$ which, in addition to the off-resonance experiments, allowed attribution to C₅. While the off-resonance splitting of the $\delta_C 131.8$ resonance also revealed C₃, the assignment of C₂ and C₄ was not directly possible. As shown below, the C₄ shift was found to be almost constant in all systems. Therefore, C₄ was tentatively ascribed to the resonance at $\delta_C 119.8$ and C₂ to that at $\delta_C 123.5$.

4a showed three carbons attached to hydrogen at $\delta_{\rm C}$ 118.5, 125.4, and 131.1; the highest field signal was attributed to C₆. A trace of CH₃O⁻, added to the solution of 4a in Me₂SO-d₆, caused a slow decrease of the signal at $\delta_{\rm C}$ 131.1 while all other peaks remained unchanged. This observation was interpreted as an exchange of 3-H by deuterium.⁷ The fact that no change in the NMR spectrum was observed in Me₂SO/CH₃O⁻ solution emphasizes the above explanation. The doublets at $\delta_{\rm C}$ 125.4 and 131.1, therefore, could be assigned to C₅ and C₃, respectively. In the proton-coupled spectra the signal at $\delta_{\rm C}$ 122.9 was split into a doublet and was assigned to C₂, since a different splitting pattern had to be expected for C₄. The observation of the proton coupled C_4 was not possible because its signal overlapped with C_6 and $C_5.$

The three singlets assigned to C_2 , C_4 , and C_6 of **5a** were in such close proximity that they could not be ascribed specifically. Since the C_3 shielding is relatively constant in all systems, it was assigned to the doublet at δ_C 130.5 and the remaining doublet at δ_C 126.0 to C_5 .

In 6a the signal at $\delta_{\rm C}$ 128.8 was the only ring carbon that did not show fluorine coupling and therefore was assigned to C₃. C₆ was coupled to fluorine with a coupling constant of 258 Hz while C₁ and C₅ displayed coupling constants of 23 Hz. Since the signals of C₂ and C₄ were doublets with the same CF coupling constant of 11 Hz, the proton-coupled carbon spectrum was necessary for their assignments. The resonance at $\delta_{\rm C}$ 121.2 was then split by one hydrogen ($J_{\rm CH}$ = 4 Hz) and assigned to C₂ while the resonance at $\delta_{\rm C}$ 118.4 was coupled to two hydrogens ($J_{\rm CH}$ = 4 Hz) and assigned to C₄.

In 7a long distance couplings allowed the assignment of the resonances at $\delta_{\rm C}$ 123.9 and 130.9 to C₅ and C₃, respectively. The C₃ resonance at $\delta_{\rm C}$ 130.9 was split by its adjacent hydrogen with a coupling of 164 Hz, and by H₅ with a coupling constant of 4 Hz. In addition to the corresponding couplings, C₅ was also split by the methyl group resulting in a pair of quintets, one of which coincided with C₂. In the coupled spectrum the resonance at $\delta_{\rm C}$ 125.4 appeared as a distorted quintet in which both CH₃ and H₅ were coupled similarly to C₆. Finally the doublet of 5 Hz at $\delta_{\rm C}$ 120.7 was ascribed to C₂. The expected triplet splitting of C₄ by H₃ and H₅ was only observed as a broad line.

Discussion

Substituted Anisoles. Table I shows an excellent agreement between calculated and observed shifts of the positions C_3 , C_4 , and C_5 . Since the maximum deviation found is 3.1 ppm, the additivity of the substituent effects⁶ is well demonstrated. In the case of C_1 the maximum deviation becomes 5.5 ppm. The correspondence between the calculated and observed

Figure 1. Calculated π -electron charges.⁹

shifts, however, is poor for C_2 and C_6 . A difference of 10 ppm is frequently observed. Since C_6 as well as C_2 are more deshielded than expected from the calculations, the reason might be the steric inhibition of resonance of the methoxyl group.

This is stressed by the fact that the calculated and observed values agree very well in the case of the hydrogen substituted compound 4, in which a planar conformation of the methoxyl group can be achieved. On the other hand, it is not clear why the agreement is so close for C_4 , as the distorted coplanarity of the methoxyl group should also affect that position.

Meisenheimer Complexes. In structurally similar molecules a linear correlation between ¹³C NMR shifts and charge densities can be expected, particularly if relatively small charges are considered.⁸ In the complexes **2a-7a**, therefore, the chemical shifts of C_2 , C_3 , and C_4 should reflect the relative electron density as they are separated from the substituent X by three or four bonds.

MO and resonance theory predict that C_3 will not carry any significant charge in cyclohexadienyl ions and the constancy of this shift (Table II) thus is not surprising. On the other hand the C_4 shielding also remains unchanged while C_2 experiences a deshielding as the electron-withdrawing ability of X increases. These results support SCF MO calculations by Wennerström⁹ (Figure 1). While a π -electron charge of +0.01 was calculated for C_4 of both the 2,4-dinitrocyclohexadienyl anion and the 2,4,6-trinitrocyclohexadienyl anion, the positive charge of +0.08 at C_2 of the trinitrocyclohexadienyl anion decreases to +0.04 in the dinitro compound. The difference of 0.04 ppm corresponds to 6.4 ppm if the slope of the correlation line is accepted to be 160 ppm per electron charge.⁸ The coincidence of this value with the observed difference between the C_2 resonances of **2a** and **4a** is regarded to be accidental.

Data of Table II furthermore show that, disregarding a small effect of CF_3 , only NO_2 exerts a considerable deshielding of C_2 . The ¹³C NMR data, therefore, demonstrate that NO_2 stabilizes the negative charge much better than CF_3 . This conclusion is supported by the fact that neither 2-methoxy-5-nitrobenzotrifluoride nor 4-methoxy-3-nitrobenzotrifluoride show a color change when treated with $-OCH_3$ (indicative of formation of Meisenheimer complex), while 2,4-dinitroanisole (4) yielded the crystalline complex 4a.

To ascertain that the observed chemical shifts of the anions are not influenced by a significant ion pairing effect,¹⁰ the ¹³C NMR spectrum of **3a** was also recorded in the presence of 18-crown-6 ether. Table II shows that the deviations are less than 1.2 ppm and can be thus neglected.

Comparison between Meisenheimer Complexes and Their Precursors. HMO calculation led to the conclusion that the addition of alkoxides to polynitrobenzenes causes a decrease of negative charge on the ring carbons.¹¹ Because this conclusion contradicted more elaborate quantum mechanical calculations,^{9,12} we compared the ¹³C shifts of the studied Meisenheimer complexes with their precursors (Table III).

First it is necessary to evaluate the importance of factors other than charge densities that might influence the chemical shifts.

Comparing the shieldings of the sp^2 carbons in benzene, 1,3-cyclohexadiene, and cyclohexene,¹³ it becomes obvious that the replacement of a CH group in benzene by CH₂ does not significantly affect the shifts of the other olefinic carbons.

Table III. Differences between the ²³C NMR Shifts of the Meisenheimer Complexes 2a-7a and the Anisoles 2-7

		-				
x	C_2	C ₃	C ₄	C ₅	C ₆	Sum
NO,	-16.4	+5.9	-23.2	+5.9	-16.4	-44.2
CF	-20.6	+5.6	-22.8	+3.5	-16.3	-50.6
НĴ	-16.6	+8.5	-20.0	-5.0	+3.2	-29.9
Cl	-24.2	+10.2	-22.8	-4.2	-11.9	-52.9
F	-20.6	+11.8	-25.7	-10.1	-7.9	-52.5
CH_3	-23.3	+11.2	-20.5	-6.6	-12.2	-51.4

Table IV.¹³C NMR Shifts of the Compounds8, 8a, 9, and 9a

 a Reference 13, p 95. b In NH3 at -70 °C. c In CDCl3. d In Me2SO/CH3OH.

Therefore, it is concluded that the change in carbon shifts between benzene and the cyclohexadienyl anion is almost entirely due to charge effects (Table IV). In fact, the observed shielding of 150 ppm is very close to that predicted by the Spiesecke–Schneider relationship for the shielding of aromatic carbons by one electron (160 ppm).⁸

The comparison of 2a with 9a furthermore shows that the replacement of OCH₃ by H at C_1 results in a deshielding for C_2 , C_6 (+3.4 ppm), and C_4 (+2.9 ppm) and a shielding for C_3 and C_5 (-4.2 ppm). These effects sum up to 1.3 ppm for all carbons C_2 to C_6 and can be thus neglected. Consequently it is possible to compare the total shieldings of the olefinic carbons in different cyclohexadienyl anions irregardless of their substitution at C_1 by H or OCH₃.

In contrast to the 150-ppm shielding which accompanies the formation of the cyclohexadienyl anion from benzene,¹⁴ the addition of methoxide to trinitrobenzene results in an additional shielding of only 57 ppm. Since it is improbable that the approximations made during this derivation influence this large difference significantly, we can conclude that the electron density of the olefinic carbons in **9a** is increased by ~0.4 e relative to the precursor **9**, while ~0.6 e is absorbed by the nitro groups. This value is similar to the 0.48 e increase of negative ring charge predicted by SCF MO calculations (Figure 1). On the other hand, the inability of the HMO method¹¹ to treat problems of this kind is demonstrated.

The formation of the σ complexes from 5, 6, and 7 results in an additional shielding of 52 ppm (Table III). Almost the same result is observed in the CF₃ system and a noteworthy difference is found only for the trinitro compound 2 (44 ppm). The smaller increase of electron density on the carbon atoms of 2a again demonstrates the exceptional ability of NO₂ to attract electrons. As discussed earlier, the electron density released by the coplanar methoxyl group is more effective in dinitroanisole (4) than in the other trisubstituted anisoles 3-7. Since the mesomeric effect of the OCH₃ group is lost in the σ complexes, the relatively small increase of shielding from 4 to 4a can be explained.

The difference between the pairs 2/2a (44 ppm) and 9/9a(57 ppm) can be interpreted analogously. While the average shifts of the complexes 2a and 9a are identical, the carbons 2-6 carry more negative charge in the trinitroanisole 2 than in trinitrobenzene 9, in which the electron-releasing OCH_3 group is missing.

Disregarding 4 because of its special properties, the data of Table III reveal some other systematic trends. It is obvious that in all systems, C_2 and C_4 and to a minor degree also C_6 experience the increase of electron density as a consequence of the added methoxide ion forming the Meisenheimer complex. The deshielding which is observed for C₃ is also reflected by SCF MO calculations (Figure 1). The effects in C_5 are not yet clearly understood.

Conclusion

In 6-X,2,4-dinitrocyclohexadienyl anions ($X = CH_3$, Cl, F, H, CF_3) the variation of substituent X has almost no effect on the overall charge distribution. Only in the case of $X = NO_2$ is a difference observed, demonstrating the superior ability of the NO₂ group in stabilizing negative charge.

The ¹³C NMR data do not allow a conclusion about the absolute charge distribution in anionic σ complexes. They do demonstrate, however, that the cyclohexadienylic carbons carry about 0.3-0.4 e more negative charge than the corresponding positions in their aromatic precursors. The additional charge is located on C₂, C₄, and C₆, while the other positions remain unchanged or even experience a small deshielding effect.

Experimental Section

Anisoles. Trinitroanisole (2) and 2-methoxy-3,5-dinitrobenzo-trifluoride (3)¹⁵ (bp 128-130 °C, 0.25 Torr) were readily prepared in the usual manner by treating picryl chloride and 2-chloro-3,5-dinitrobenzotrifluoride with NaOCH₃. The anisoles 5¹⁶ (bp 128–131 °C, 0.05 Torr), 6¹⁷ (bp 118-120 °C, 0.025 Torr), and 7¹⁸ (mp 68-70 °C) were prepared by nitration of the O-substituted anisoles according to literature procedures. All other compounds were commercially available.

Preparation of Meisenheimer Complexes. 2a-7a were prepared as crystalline compounds in analogy to the procedure described for the preparation of 4a.^{4c} In contrast to the other complexes 2a-7a. 4a was not stable in Me₂SO solution. However, addition of a trace of CH_3O^-/CH_3OH to the Me₂SO stabilized the ion and allowed its NMR spectra to be obtained. A stable solution of 9a was prepared by adding

a solution of $KOCH_3$ (2.1 mmol) in CH_3OH to trinitrobenzene (2.0 mmol) dissolved in Me₂SO. Addition of 18-crown-6 ether to a solution of 2a in Me₂SO yielded a crystalline precipitate, identified as a 1:1 complex of 2a and 18-crown-6 ether by integration of its ¹H NMR spectrum. Since the solubility of the complex in Me₂SO was bad, it was dissolved in tetrahydrofuran for the examination of the NMR spectra. The reaction of 1,4-cyclohexadiene with KNH_2 in NH_3 at -78°C yielded a solution of the cyclohexadienyl anion, contaminated by a trace of benzene.¹⁹ The solution was stable at -70 °C, at which temperature the spectrum was taken.

Carbon-13 Magnetic Resonance Spectra. The spectrometers used were Varian Associates Model XL-100 and a modified HA-60 equipped with a broad-band decoupler and a variable temperature probe.

Acknowledgment. Support of our work by the National Science Foundation, the National Institutes of Health, and a stipend of the Deutsche Forschungsgemeinschaft to H. M. is gratefully acknowledged.

Registry No.-8, 110-82-7; 8a, 27900-34-1; 9, 99-35-4; 9a, 12244-65-4.

References and Notes

- (1) For part 1, see R. Waack, M. A. Doran, E. B. Baker, and G. A. Olah, J. Am. Chem. Soc., 88, 1272 (1966).
- J. Meisenheimer, Justus Liebigs Ann. Chem., 323, 205 (1902).
- (a) M. R. Crampton and V. Gold, *J. Chem. Soc.*, 3293 (1964). (b) For a review see M. J. Strauss, *Chem. Rev.*, 70, 667 (1970).
 (4) (a) F. Terrier, J-C. Halle, and M-P. Simonnin, *Org. Magn. Reson.*, 3, 361 (1971); (b) M. P. Simonnin, M. J. Lecourt, F. Terrier, and C. A. Dearing, *Can. J. Chem.*, 50, 3558 (1972); (c) W. E. Byrne, E. J. Fendler, J. H. Fendler, and C. C. W. E. Byrne, E. J. Fendler, J. H. Fendler, and C. C. W. C. Byrne, E. J. Fendler, J. H. Fendler, and C. C. Byrne, Stranger 100, 2007 (1972). C. E. Griffin, J. Org. Chem., 32, 2506 (1967).
- (5) If not otherwise mentioned, multiplicities refer to one-bond hydrogen and all fluorine couplings.
- G. C. Levy and G. L. Nelson, "Carbon-13 Nuclear Magnetic Resonance for Organic Chemists, Wiley-Interscience, New York, N.Y., 1972, p 81.
 R. J. Pollit and B. C. Saunders, *Proc. Chem. Soc., London*, 176 (1962); E.
- Buncel and E. A. Symons, Can. J. Chem., 44, 771 (1966); M. R. Crampton and V. Gold, *J. Chem. Soc. B*, 498 (1966). D. G. Farnum, *Adv. Phys. Org. Chem.*, **11**, 123 (1975). H. Wennerström and O. Wennerström, *Acta Chem. Scand.*, **26**, 2883
- (1972)
- (10) M. R. Crampton, J. Chem. Soc., Perkin Trans. 2, 825 (1975).
- (11) P. Caveng, P. B. Fischer, E. Heilbronner, A. L. Miller, and H. Zollinger, Helv. Chim. Acta, 50, 848 (1967).
- (12) H. Hosoya, S. Hosoya, and S. Nagakura, Theor. Chim. Acta, 12, 117 (1968)
- (13) J. B. Stothers, "Carbon-13 NMR Spectroscopy", Academic Press, New York, N.Y., 1972, p 77.
- (14) There is some evidence that the resonances of 8a are somewhat shifted to high field because of homoaromatic C_1C_5 overlap. As this effect is not expected to exceed 10 ppm, we will neglect this influence during these considerations.
- (15) M. E. Friedrich and L. E. Schniepp, U.S. Patent 2 257 093 (1941).
- (16) F. Reverdin and K. Philipp, Ber. Dtsch. Chem. Ges., 38, 3774 (1905).
 (17) G. Schiemann and T.-B. Miau, Ber. Dtsch. Chem. Ges., 66, 1179 (1933)
- (18) M. S. Carpenter, W. M. Easter, and T. F. Wood, J. Org. Chem., 16, 586 (1951).
 (1951).
 (19) H. Kloosterziel and J. A. A. van Drunen, *Recl. Trav. Chim. Pays-Bas*, 89,
- 368 (1970).