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In Kirby and Paris [5] it was shown that a certain combinatorial statement 
(conceming finite trees) is independent of Peano Arithmetic. Here we present a 
not too complicated extension of tbis statement and prove its independence from 
the riluch stronger theory (II~-CA) + BI. This is done by refining the methods 
which we have developed in [2, Ch. IV, §1-§4]. 

Using the terminology of Kirby and Paris our result can be described as 
follows. A hydra is a finite labeled tree A which has the following properties: 

(i) the root of A has label +, 
(ii) any other node of A is labeled by some ordinal v ~ ro, 

(iü) all nodes immediately above the root of A have label 0 (zero). 
If Hereules chops off a head (i.e. top node) a of a given hydra A, the hydra will 
choose an arbitrary number n E N and transform itself into a new hydra A( a, n) 
as follows. Let T denote that node of A wbich is immediately below a, and let A -
denote that part of A which remains after a has been chopped off. The definition 
of A( a, n) depends on the label of a: 

Case 1: label (a) =0. H T is the root of A, we set A(a, n):=A-. Otherwise 
A( a, n) results from A - by sprouting n replicas of A; from the node immediately 
below T. Here A; denotes the subtree of A - determined by T. 

n 

> 
A A(U,n) 

Case 2: label (a) = u + 1. Let E be the first node below a with label v ~ u. Let 
B be that tree wbich results from the subtree A e by changing the label of E to u 
and the label of a to O. A( a, n) is obtained from A by replacing a by B. In tbis 
case A(a, n) does not depend on n. 
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A A(u,n) 

Example (u = 3, v = 1): 

> 
A A(u,n) 

Case 3: label (0') = w. A( 0', n) is obtained from A simply by changing the label 
of 0': w is replaced by n + 1. 

Notation. If 0' is the rightmost head of A (as in the pictures above) we write A(n) 
instead of A( 0', n). In the following we consider only the operation A ~ A(n). By 
ES we denote the hydra which consists only of one node, namely its root. 

The main results of the present paper are: 

Theorem I. By always chopping off the rightmost head, Hercules is able to kill 
every hydra in a finite number of steps, i.e., for each hydra A and any sequence 
(ni)ieN of natural numbers there exists k E N such that A(nO)(nl) ... (nk) = ES. 

Theorem ll. For every fixed hydra A the statement '1(ni)ieN 3k 
A(nO)(nl) ... (nk) = EB is provable in (fIt-CA) + BI. 

Theorem m. Let 

Q 
n nodes with label w A"=) 

Then the m-sentence 'In 3k A"(1)(2) ... (k) = EB is not provable in (nt-CA) + 
BI. 



An independence result 

Contents 

§ 1. Infinitary wellfounded trees and collapsing functions 
§2. The term structure (T, .[.]) 
§3. The relations «k and the functions Ha: N~ N 
§4. The infinitary system ID: 
Appendix. The proof-theoretic ordinal of IDv 

133 

In Section 1 we prove Theorem I. In Section 2 we prove Theorem 11. Section 3 
contains some technical lemmata which will be used in Section 4 for the proof of 
Theorem III. In the appendix we characterize the proof-theoretic ordinals of the 
theories IDv (v ~ ro) for v-times iterated inductive definitions by means of the 
term structure (T, . [')). 

1. Infinitary weDfounded trees and coDapsing functions 

In tbis section we introduce certain sets ffv (v ~ ro) of infinitary wellfounded 
trees together with a system of socalled collapsing functions g;v: ffw ~ ffv 
(v ~ ro). These functions are then used to associate with every hydra A an 
element IIAII of ffo in such a way that, for each n E~, IIA(n)1I is an immediate 
subtree of IIA 11. This yields Theorem I. 

Definition 0/ the tree classes ffv (v ~ ro) 

Suppose that ffu for u < v is already defined. Then we define ffv to be the least 
set which contains 0 (the empty set) and is c10sed under the following rule: 

(ffv ) If a:1 ~ ffv is a function with 1 E {{O}, N} U {ffu : u < v}, then a E ffv . 

According to the inductive definition of ffv we have the following principle of 
transfinite induction over ffv : 

Va E ffv (Vx E domain(a) tJI(a(x»~ Ip(a»~ Va E ffv tJI{a). 

Proposition. u < v ~ ffu ~ ffv • 

Notations. (aX)xel: = {(x, ax) : x E 1}, l.e., (ax)xel denotes the function a with 
domain 1 and a(x) = ax for all x E 1. 

a+:= (a)xe{o}:= {(O, a)} (the successor of a). 

In the following a, ß, y denote elements of ffw • 

Definition 0/ + : ff w X fJ w ~ ff w 

We define a + ß by transfinite induction on ß: 
(i) a + 0:= a, 
(ii) a + (ßx)xel:= (a + ßx)xel' 
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Proposition. (a) a + (ß+) = (a + ßt· 
(b) (ll' + ß) + y = ll' + (ß + y). 
(c) ll', ß E ffu :::;> a + ß E ffu • 

Definition. ll" 0: = 0, a· (n + 1):= a . n + ll'. 

Definition o/!?lJu : ffCJ) ~ ffv 

!?lJv(a) is defined by transfinite induction on a E ffCJ) simultaneously for all 
v ~ w. 

(!?lJl) filJo(O):=O+, !?lJn +1(O):=(z)ze.o/n ' 

(!?lJ2) filJu«ll'x)xel):= 

{
(~u(ao) . (n + l»neN, if I = {O}, 

(~U(aX»XEb ~f I E {N} U {ffu : u < v}, 

(~v(az»neN wlth z:= 9lJu (ll'o+), if 1= ffu with v ~ u < W. 

Remark. If domain( a) E { ffu : v ~ u < w }, then 9lJv ( a) is a constant function with 
domain N. 

Definition 0/ IIA II 
For every finite labeled tree A (with labels ~w) we define IIAII E ffCJ) by 

induction on the length (i.e. number of nodes) of A: 

I\@ 11 : = ~v (0), 

Ao " ·Ak 
H A = ~ is a hydra, we set IIAII:= IIAolI + ... + IIAk ll. For a E ffo with 

domain(ll')= {O} we set a(n):=ll'(O). 

1.1. Theorem. For every hydra A =1= (B and all n E N the /ollowing holtis: 
IIA 11 E ffo antI IIA(n)1I = IIA 11 (n). 

Proof. Easy exercise. 

From 1.1 we obtain Theorem I by transfinite induction over ffo. 

2. 'lbe term stmdore (T, . [ . ]) 

In this section we prove Theorem 11. To this purpose we introduce the 
following set T of terms, where Do, •.• , DCJ) is a sequence of formal symbols. 



Inductive definition 0/ the set T 

(Tl) OE T. 
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(T2) If a E T and v::::; ro, then Dva E T; we call Dva a principal term. 
(TI) If ao, ... , ak E T are principal terms and k ~ 1, then (ao, ... , ak) E T. 

For each term a E T we define its value ä E fT(J) by 

Ö:=o, 
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This interpretation of terms as infinitary wellfounded trees will not be used in the 
proof of Theorem 11. lt serves only as a motivation for the following definitions of 
a + b, 4, dom(a) and a[z]. 

The letters a, b, c, z now always denote elements of T. 
For principal terms ao, ... , ak and k E {-1, O} we set 

{
O, if k = -1, 

(ao, ... , ak):= k = ° ao, . 

Definition of a + band a . n E T 

a+O:=O+a:=a, 

(ao, ... , ak) + (bo, ... , bm ):= (ao, ... , ab bo, ... , bm ) 

a ·0:=0, a . (n + 1) :=a . n + a. 

Proposition. (a + b) + C = a + (b + c). 

Definition 0/ 4 for v ::::; ro 

Remark. To * 11 * ... ~ T(J) = T. 

Abbreviation. 1: = DoO. 

(k, m ~O), 

Convention. We identify ~ with the subset {O, 1, 1 + 1, 1 + 1 + 1, ... } of To. 

Now we define, for every a E T, a subset dom(a) of T and a function z ~a[z] 
from dom(a) into T. This will be done in such a way that i E domain(ä) and 
a[z] = ä(z), for all z E dom(a). 

Definition ofdom(a) and a[z]for a E T, z E dom(a) 

([ ].0) dom(O):= 0. 
([ ].1) dom(1):= {O}; 1[0]:= 0. 
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([ ].2) dom(Du +10):= Tu; (Du+10)[z]:= z. 
([ ].3) dom(DroO):=N; (DroO)[n]:=Dn +10. 
([ ].4) Let a = Dvb with b * 0: 

(i) dom(b) = {O} :dom(a) = N, a[n):= (Dvb[O])· (n + 1). 
(ii) dom(b) = Tu with v ~ u < m: dom(a):=~, a[n]:= Dvb[Dub[I]]. 

(iii) dom(b) E {N} U {Tu: u < v}: dom(a):= dom(b), a[z]:= Dvb[z]. 
([ ].5) a = (ao, ... , ak)(k ~ 1): dom(a):= dom(ak)' 

a[z]:= (ao, ... , ak-l) + ak[z]. 

Definition. O[n]:=O, a[n]:=a[O] for a E Twith dom(a) = {O}. 

Proposition. (a) a *O~dom(a) *0. 
(b) dom(a) = {O} ~a = a[O] + l. 
(e) O*a E Tv ~dom(a) E {{O}, N} U {Tu:u < v}, and a[z] E Tv tor all z E 

dom(a). 

Now we are going to compare terms and hydras. It will turn out that the term 
strueture (10, .[.]) is isomorphie to the strueture (.~e, .(.», where 1f denotes the 
set of all hydras. 

In faet (1f, .(.» is nothing else than a geometrie representation of (10, -[-]). 
(1f, . (. » has been defined just in sueh a way that it becomes isomorphie to 
(10, .[.]). 

Definition 0/ IA I 
Ao ·• ·Ak 

If A = 'W (k ~ -1) is a hydra or any finite labeled tree with labels ~m 

we define IA I to be that term a E T whieh implicitely is given by the definition of 
IIA 11 in Seetion 1, namely: 

IAI:= {Ds(IAol, ... ,IAkl}, ~f; ~ m, 
{lAol, ... , IAk !}, if; - +. 

2.1. Theorem. (a) The operation A ~ IA I yields a 1-1 correspondence between 
the set 0/ all hydras and the set 10. 

(b) IA(n)\ = lAI [n], tor each hydra A and all n E N. 

Proof. (a) Obvious. 
(b) Definition (for c, z E T, c * 0) 

{

z, ifc=DvO, 
c(*/z]:= Dvb[*/z], ifc=Dvbwithb=FO, 

(co, ... , Ck-l) + ck[*Iz], if c = (co, ... , Ck), k ~ l. 

Now the reader can easily verify the following propositions and then also part 
(b) of the theorem. 
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Proposition 1. If z is a principal term, then c[*/z] results from c by replacing the 
rightmost subterm Dv 0 of c by z. 

Proposition 2. If z E Tu = dom(a), then a[z] = a[*/z]. 

Proposition 3. If dom(a) E {{O}, N}, then one of the following cases holds: 
(i) a = (ao, ... , ak-l, 1) and a[n] = (ao, ... , ak-l). 

(ii) a = c[*/ Dv(ao, ... , ak-V 1)] and a[n] = c[*/ Dv(ao, ... , ak-l) . (n + 1)]. 
(iii) a = c[*/DeoO] and a[n] = c[*/Dn+10]. 
(iv) a = c[*/Dvb], dom(b) = Tu, v ~u and a[n] = c[*/Dvb[Dub[l]]]. 

Let Wo denote the least subset of 1'0 which contains 0 and is closed under the 
following rule: 

a E To and Vn E N(a[n] E Wo) :;> a E Wo. 

Since every a E 1'0 corresponds to an infinitary wellfounded tree ä E ffo with 
ä(n) =a[n] (for all nE N), it follows that Wo= 1'0 and consequently Va E 

To V(ni)ieN 3k a[nO][nl] ... [nk] = O. 
Now we want to give a proof of "a E Wo" which, for every fixed term a E 1'0, 

can be formalized in IDeo , the formal theory of w-times iterated inductive 
definitions. There we have to use methods which do not depend on the 
nonconstructive tree classes ffv • In fact, we will establish a more general result: 

2.2. Theorem. Let 0 < v ~ w. If a E To contains no symbol Dv with v < v, then 
"a E Wo" is provable in IDv • 

Since IDeo is contained in (IT~-CA) + BI and since (ITt-CA) + BI proves 
"a E Wo~ V(nj)ieN 3k a[no] ... [nk] = 0", we obtain from 2.2: 

2.3. Theorem. (lI~-CA) + BI ~ V(ni)ieN 3k a[no] ... [ak] = 0, for each a E To. 

This theorem together with 2.1 yields Theorem 11. 
In the following let v ~ w be fixed. We use u, v to denote numbers ~v. 

Iterated inductive definition of sets Wv (v < v) 

(W1) 0 E Wv. 
(W2) a E 7;" dom(a) E {{O}, N}, Vn (a[n] E Wv):;>a E Wv. 
(W3) a E Tu, dom(a) = Tu with u < v, Vz E Wu (a[z] E Wv)~a E Wv. 

Abbreviations. Let X range over subsets of T which are definable in the language 
of IDv • 
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1. By Au (X, a) we denote the following statement: 

a = 0 v [dom(a) E {{O}, N} /\ Vn (a[n] EX)] 

v 3u < v [dom(a) = Tu /\ Vz E Wu(a[z] EX). 

2. Au (X) := {x E T :Au(X, x)}. 
3. x<a): = {y E T : a + Y EX}. 
4. X:= {y E T:Vx(x EX~X + DyY EX)}. 
5. W*:= {x E T:Vu < v(Dux E Wu)}. 

By the definition of Wv, for all v< v we have: 
(Al) Au(Wv) = Wv, 
(A2) Au(X) eX=> Wv ~X. 

2.4. Lemma. (a) Au (X) eX and a EX=> Au (x<a» e x(a) (v ::;; v). 
(b) a, bEWv=>a+bEWu (v<v). 

Proof. (a) Suppose Au (X) ~ X, a EX, Au(x<a), b). We have to prove a + bE X: 
1. b = 0: Then a + b = a EX. 
2. dom(b) E {{O}, N} and Vn (b[n] Ex<a»: Then we have dom(a + b) = 

dom(b) and (a+b)[n]=a+b[n]EX, for all nEN. It follows that a+bE 
Au (X) ~X. 

3. dom(b)= Tu with u<v: similar to 2. 
(b) From (a) together with (Al), (A2) we obtain, for v< v, a E Wv ~ Wv e 

w~a), Le., a E Wv~ (b E Wv~a + bE Wv). 

Proof. Assumptions: Ay(X) ~ X, Ay(X, b), a EX. 
We have to prove a + Dyb EX. First we prove: (1) Vu < v (a + Du+10 EX). 
We have dom(a + Du+10) = Tu and (a + Du+ 10)[z] = a + z. By 2.4 we obtain 

Ay(x<a» ex<a). Since Au(x<a» eAy(x<a», it follows by (A2) that Wu ~x<a), Le., 
Vz E Wu(a + z EX). Hence Ay(X, a + Du+10) and therefore a + Du+10 E X, since 
Ay(X)~X. 

Proo/ 0/ a + Dyb EX: 
1. b = 0 and v = 0: Then a + Dyb = a + 1; and a + 1 EX follows from Ay(X) e 

X /\ a EX. 
2. b = 0 and v = u + 1: In this case we are done by (1). 
3. b = 0 and v = w: Then dom(a + Dyb) = N and (a + Dyb)[n] = a + Dn + 10. By 

(1) we obtain Ay(X, a + Dyb). Hence a + Dyb EX. 
4. b = bo + 1 with bo E X: Then we have Vx E X (x + Dybo E X). Using this and 

the assumption a EX we obtain Vn E N (a + (Dybo) . (n + 1) EX) by complete 
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induction. Since dom(a + Dvb) = 1\1 and (a + Dvb)[n] = a + (Dvbo)· (n + 1) it 
follows that a + Dvb e Av(X) s;;; X. 

5. dom(b) = N and 'In (b[n] e X): Then we have dom(a + Dvb) = 1\1 and 
(a + Dvb )[n] = a + Dvb[n] e X, for all n e 1\1. Hence a + Dvb e Av(X). 

6. dom(b) = Tu, U < v and '1z e Wu(b[z] e X): similar to 5. 

2.6. Lemma. Av(W*) c W*. 

Proof. Suppose b EAv(W*) and v< v. We have to show Dvb e Wu. 
1. b = 0 and v = 0: From 0 e Wv we get DoO = 1 E Wu by (W2). 
2. b = 0 and v = U + 1: Then dom(Dvb) = Tu, (Dvb)[z] = z and Wu c Wv. 

Hence Dvb E Wv by (W3). 
3. b = bo + 1 and bo E W*: Then we have dom(Dvb) = 1\1, (Dvb)[n] = 

(Dvbo)·(n+1) and DvboEWu. Using 2.4(b) we obtain 'In (Dvb)[n]eWv by 
induction on n. Hence Dv b E Wv • 

4. dom(b) = Tu, U < v and b[z] E W* for all z E Wu: 
4.1. u < v: Then we have dome Dv b ) = Tu and (Dv b )[ z] = Dv b [z] e Wv for all 

z E wu, i.e., Dvb E Wv. 
4.2. v ~ U < v: Then we have dom(Dvb) = 1\1 and (Dvb )[n] = Dvb[z] with 

z:= Dub[1]. Obviously 1 E Wu and therefore b[1] E W*. It follows that z E Wu. 
From this we obtain b[z] E W* and then Dvb[z] E wv, i.e., 'In (Dvb)[n] E Wu. 
HenceDvb E Wv. 

5. dom(b) = N and b[n] E W* for all n E 1\1: similar to 4.1. 

2.7. Lemma. 1/ a E T contains no symbol Dv with v> v, then Av(X) c X ~ 
aEX. 

Proof. By induction on the length of a: suppose Av(X) ~ X. 
1. a = 0: In this case a E Av(X) c X. 
2. a = (ao, ... , ak)(k ~ 1): Let c:= (ao, ... , ak-l). Then we have: 

(1) CE X ~ Aix<c» s;;; x<c) (by 2.4(a». 
(2) CE X (by induction hypothesis). 
(3) Av(x<c» c x<c) ~ ak E x<c) (by induction hypothesis ). 

From this we get a = C + ak E X. 
3. a = Dvb: From Av(X) s;;;X we get 0 EX and Av(X) cX by 2.5. By I.H. 

(induction hypothesis) we have Av(X) c X ~ bE X. By definition of X we have 
b EX~(OEX~Dvb EX). Hence Dvb EX. 

4. a = Dvb with v< v: By I.H. we have Av(W*) c W*~ bE W*. Using 2.6 we 
obtain be W*. Hence a = Dvb e Wv. From Av(X) cX we get Av(X) cX and 
then Wv s;X. 

2.8. Lemma. 1/ a e To contains no symbol Dv with v> v, then a E Wo. 
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Proof. Let a =1= O. Then a = Doao + ... + DOak with ao, ... , ak E T, and by 
Lemmata 2.6, 2.7 we have ao, ... , ak E W*. Hence Doao, ... , DOak E Wo. From 
this we obtain a E Wo by 2.4(b). 

By formalizing in IDv the definition of Wv (v< v) and the proofs of 2.4-2.8 we 
obtain Theorem 2.2. 

3. The relations «k and the functions Ha: N -,)- N 

In Section 4 we will use terms a E T instead of ordinals to measure the lengths 
of infinitary derivations. In this context we need certain relations «k on T which 
we introduce now. We also introduce a hierarchy (Ha)aeTo of number-theoretic 
functions which is closely related to the so called Hardy hierarchy. The relation 
«0 restricted to 1'0 is just the step-down relation of Schmidt [6]; cf. also Ketonen 
and Solovay [4] where similar relations are studied. 

As before the letters a, b, c, d, e, z will always denote elements of T. As 
mentioned in Section 2 every a E T can be considered as a notation for a 
wellfounded tree ä E ff Cl) in such a way that Z E domain( ä) and ä (z) = a [z] holds 
for all z E dom(a). Consequently we have the following principle of transfinite 
induction over T: 

Va E T [Vz E dom(a) lJI(a[z])-,)- tJI(a)]-,)- Va E T tJI(a). 

Definition 0/ c «k a by transfinite induction on a E T 

C«ka :~ a=l=O and VZEdk(a)(c«ka[Z]) 

where 

dk(a):= {{k}, ~f dom(a) E {{O}, N} 
{Due :0=1= e E T}, if dom(a) = Tu 

and 
C «k a :~ C «k a or C = a. 

3.1. Lemma. (a) C «k a and a «k b => C «k b. 
(b) C «k b ~ a + C «k a + b. 
(c) b=l=O=>a«ka+b. 

Proof by transfinite induction on b. 

3.2. Lemma. (a) n ~k + l=>(Dva)· n «k Dv(a + 1). 
(b) C «k a => Dvc «k Dva. 

Proof. (a) By 3.1(c) we have (Dva) . n «k (Dva)· (k + 1) = Dv(a + 1)[k]. Hence 
(Dva)· n «k Dv(a + 1), since dk(Dv(a + 1» = {klo 
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(b) Transfinite induction on a: Suppose a *0 and Vz E dk(a)(c «k atz]). 
1. a = ao + 1: By I.H. and 3.2(a) we have Dvc «k Dvao «k Dva. 
2. dom(a) E {N} U {Tu: u < v}: Then dk(Dva) = dk(a) and Vz E dk(a) 

«Dtia)[z] = Dva[z]). By l.H. we have Vz E dk(a)(Dvc «k Dva[z]). Hence 
Dvc «k Dva. 

3. dom(a) = Tu with v ~ u: Then dk(Dva) = {k} and (Dva)[k] = Dva[z] with 
z:= Dua[l] E dk(a). By l.H. we have Dvc «k Dva[z]. Hence Dvc «k Dva. 

3.3. Lemma. dom(a) = N ~a[n] «k a[n + 1]. 

Proof. By induction on the length of a: 
1. a = DCI.l0: Then we have a[n + 1] = Dn +20 and therefore dk(a[n + 1]) = 

{Dn + 1e:0 *e E T}, a[n + l][z] = z. Using 3.1(c) and 3.2(b) we obtain Vz E 

dk(a[n + 1])(Dn +10 «k z). Hence a[n] «k a[n + 1]. 
2. For a = b + c or a = Dvb with dom(b) = N the assertion follows immediately 

from I.H. and 3.1(b), 3.2(b). 
3. For a = Dv b with dome b ) E {Tu: v ~ u} we hi\ve a [n] = a[ n + 1]. 
4. For a = Du(bo+ 1) we have a[n] = (Dvbo)(n + 1) «k (Dvbo)(n + 2) = 

a[n + 1] by 3.1(c). 

3.4. Lemma. (a) a «k band k ~m ~a «m b. 
(b) dom{a) = N and n ~k~a[n] «ka. 

Proof. Ca) Transfinite induction on b: Suppose b *0 and Vz E dk{b){a «k b[z]). 
For dom{b) = {O} or dom(b) = Tu the assertion follows immediately from I.H. 
Otherwise the I.H. and 3.3 yield a «m b[k] «m b[m]. Hence a «m b. 

(b) By 3.3 we get a[n] «k alk]. Hence a[n] «k a. 

3.S. Lemma. Ca) a *O~ 1 «0 a. 
(b) Dva + 1 «1 Dv(a + 1). 
(c) Du l «0 Du +10 and Dol «0 DCI.lO. 
Cd) a *0 OT v *O~k + 1 «k Dva and fOT k *0, Dva + k + 1 «k Dv(a + 1). 

Proof. (a) For a, {O, I} we have Vz E do(a)(a[z] *0). From this the assertion 
follows by transfinite induction on a. 

(b) We have Dva + 1 «0 Dva + Dva = Dv{a + 1)[1]. 
(c) By 3.5(a) and 3.2{b) we have Du1 «0 z = (Du+10)[z] for all z E do(Du +10). 

Hence Du l «0 Du+ 10. Especially D01 «0 D10 = (DCI.lO)[O] and thus D01 «0 DCI.lO. 
Cd) We have k + 1 = (Dol)[k] and therefore k + 1 «k Dol. By (c) it follows 

that k + 1 «k DvO for all v * O. If a * 0, then we have k + 1 «k Dv 1 ~o Dva by 
(a) and 3.2(b). Using k + 1 «k Dva we get Dva + k + 1 «k (Dt/a)· 2 «1 Dv(a + 
1). 
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Definition of Ha: N ~ N for a E 10 

Ho(n) :=n, 

w. Buchholz 

Ha(n):=Ha[n](n + 1), if a 1=0. 

3.6. Lemma. Let a, b, CE 10. 
(a) Ha(n) == min{k > n :a[n][n + 1] ... [k -1] = O}, if a 1= 0. 
(b) Ha+b =HaoHb 
(c) Ha(n) < Ha(n + 1). 
(d) C «k a ::;> Hc{n) < Ha{n), for all n ~ k. 

Jroof. (a) Let m :=min{k > n :a[n][n + 1] ... [k -1] = O}. Then we have 

Hin) = Ha[nJ{n + 1) = ... = Ha[n) ... [m-l]{m) = Ho{m) = m. 

(b) Let b1=O and m:=Hb{n). Then (a+b)[n]"'[m-1]==a+ 
(b[n)' .. [m -1]) = a + 0= a and thus Ha+b{n) = Ha{m) = Ha{Hb{n». 

(c) and (d) are proved simultaneously by transfinite induction on a: Let a 1= 0. 
(c) By 3.3 we have a[n] ~o a[n + 1], and therefore by I.H. 

Hin) = Ha[nJ(n + 1) ~ Ha[n+l){n + 1) < Ha[n+l]{n + 2) = Ha{n + 1). 

(d) Suppose C «k a[k] and n ~ k: By 3.3 we get C «k a[n] and then by I.H. 
Lfc{n) ~ Ha[n]{n) < Ha[n]{n + 1) = Ha{n). 

Definition. 

Dm+la '=D Dma v • u v , C':) : = DoD':)O. 

7. Lemma. (a) (D':)a)' n «k D':)(a + 1), for n ~ k + 1. 
(b) (D':)O)' n «k D':)+10, for n ~ k + 1. 

Proof. (a) From 3.1(c) and 3.2{b) we obtain D':)a «0 D':){a + 1). For k:#O we 
proceed by induction on m: 

1. m = 0: (D':)a)' n = (Dua) . n «k Dv(a + 1) = D':){a + 1) by 3.2. 
2. m =1= 0: Using 3.2(a), 3.5(a) and the I.H. we obtain 

(D':)a) . n = Dv(D':)-la) . n «k Dv{D':)-la + 1) 

and 

D':)-la + 1 «0 (D':)-la) . 2 «1 D':)-I(a + 1). 

From this the assertion follows by 3 .2{b ). 
(b) (D':)O)· n «k D':)1 ~o D':)DvO = D':)+10 by 3.7{a), 3.5(a), 3.2(b). 

3.8. Lemma. (a) m~1andn~1~Hc:,{4n+6)<Hc:'+1{n). 
(b) n~m+1~Hc:,(n)<Hc~{l). 
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Proof. (a) Let a :=D~O. Obviously H;(n) = i + n and therefore H Do1(n) = 

Hn +1(n + 1) = 2n + 2. By 3.6(b) we obtain HDoa(4n + 6) = HDoa+Do1+Dol(n). By 
3.5( d) we have 2 «1 a (since m =1= 0) and thus 

Doa + (Do1) ·2 «1 Doa + D02 «1 Doa + Doa «1 Do(a + 1) 

and a + 1 «0 a + a = (D~O) . 2 «1 D~+10. From this together with 3.2(b) we get 
Doa + (Do1) ·2 «1 DoD~+10 = C,:;,+I. Hence H Doa(4n + 6) < He:;'+l(n) for n ~ 1. 

(b) By 3.7(b) and 3.2(b) we have c~ «0 C~+I. Hence n ~He~(O) and n + 1 ~ 
Hen(l) by 3.6(c, d). For n ~ m + 1 we have 

v 

C
n - 1 + cn - 1 = (D D n - 10) ·2« D (D n

-
10 + 1) v v Ov 10 v 

« D (Dn- 10 + Dn- 10)« D DnO = C
n 

=0 0 v v 1 0 v v 

and thus 
Her:;(n) ~ He~-l(n) ~ He~-l(He~-l(l» = He~-l+c~-l(1) < Hc~(1)· 

4. The infinitary system ID~ 

In this section we prove the following theorem: 

4.0. Theorem. If a m-sentence 't/x 3y q;(x, y) (q; E I~) is provable in IDv 

(v ~ w), then there exists p E ~ such that 't/n ~ p 3k < HDoD~O(l) q;(n, k). 

CoroUary. IDv ~ 't/n 3k (DoD~0)[l][2] ... [k] = O. 

Proof. Suppose IDv r- 't/n 3k (DoD~)[l] ... [k] = O. Then also IDv r- 't/n 3k 
(DoD~O)[l] ... [k -1] = 0 and therefore by 4.0 there exists pE N such 
that 't/n ~ p 3k < HDoD~O(l) (DoD~O)[l]· .. [k -1] = O. Hence min{k E 

N: (DoD~O)[l] ... [k -1] = O} < HDoD~O(l), which is a contradiction to 3.6(a). 

From this corollary together with 2.1 and the fact that IDw proves the same 
arithmetic sentences as (II~-CA) + BI we obtain Theorem 111, i.e., 

(IIt-CA) + BI ~ 't/n 3kA"(1)· .. (k) = EB. 

Theorem 4.0 is obtained by embedding IDv into an infinitary proof system ID~ 
which allows cut elimination. 

Preliminaries. Let L denote the first-order language consisting of the following 
symbols: 

(i) the logical constants .. , /\, v, 't/, 3, 
(ii) number variables (indicated by x, y), 

(iii) a constant 0 (zero) and a unary function symbol' (successor), 
(iv) constants for primitive recursive predicates (among them the symbol< for 

the arithmetic 'less' relation). 
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By s, t, to, ... we denote arbitrary L-terms. The constant terms 0, 0', 0", ... 
are called numerals; we identify numerals and natural numbers and denote them 
by i, j, k, m, n, u, v, w. A formula of the shape Rtl ••• tn or -,Rtl ••• tn, where R 
is a n-ary predicate symbol of L, is called an arithmetic prime formula 
(abbreviated by a.p.f.). 

Let X be a unary and Y a binary predicate variable. A positive operator form is 
a formula 21 (X, Y, y, x) of L(X, Y) in which only X, Y, y, x occur free and all 
occurrences of X are positive. The language LID is obtained from L by adding a 
binary predicate constant p'il and a 3-ary predicate constant P~ for each positive 
operator form 21. 

Abbreviations 

t E p~:= P~t:= p'ilst, 

P~totl :=P~stotl' 

t ~ P~ :=-,(t E P~), 

21s (X, x):=21(X, P~, s, x). 

The formal theory ID", is an extension of Peano Arithmetic, formulated in the 
language LID, by the following axioms: 

(P'il.l) Vy Vx (21y(P;, x)~x E P~). 

(P'2t.2) Vy (Vx (21y(F, x)~ F(x»~ Vx (x E P~~ F(x»), 

for every LID-formula F(x). 

(P~) Vy VXo VXI (P~yXoXl ~xo<y AXI E p~J 

The infinitary system ID: will be formulated in the language LID(N) which 
arises from LID by adding a new unary predicate symbol N. This is a technical 
tool which shall help us to keep control over the numerials n occurring in 
3-inferences A(n) ~ 3x A(x) of ID:-derivations. Following Tait [8] we assume aß 
formulas to be in negation normal form, i.e., the formulas are built up from 
atomic and negated atomic formulas by means of A, v, V 3 If A is a complex 
formula we consider -,A as a notation for the corresponding negation normal 
form. 

Definition of the length lAI of a LID(N)-formula A 

1. INt!: = I..,Nt! : = O. 
2. IAI:= 1, if Ais an a.p.f. or a formula ("')P~t. 
3. IP~otll:= I"'P~otll :=2. 
4. IA ABI:= IA v BI :=max{IAI, IBI} + 1. 
5. IVx AI:= 13x AI:= lAI + 1. 

Proposition. !..,A! = lAI, for each LID(N)-formula A. 

As before we use the letters u, v to denote numbers :s:; m. 
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Inductive definition of formula sets PoSv (v < 0) ) 

1. All L(N)-formulas belong to PoSv. 
2. All fOrDmlas P~t, (-')P~utOtl with u ~ v belong to PoSu. 
3. All formulas -,P~t with u < v belong to PoSv. 
4. If A and B belong to P0Sv, then the formulas A /\ B, A v B, \/x A, 3x A 

also belong to PoSu. 

Remark. If P~t E PoSv, then also 2lu(P~, t) E PoSv. 

Notations 

- In the following A, B, C always denote closed Lm(N)-formulas. 
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- T, T', ..1 denote finite sets of closed Lm(N)-formulas; we write, e.g., T, ..1, A 
for TU..1 U {A}. 
- AN denotes the result of restricting all quantifiers in A to N. 
- teN:=Nt, tfN:=-,Nt. 
- As before we use the letters a, b, c, d, z to denote elements of T. 

Definition 

c «r a :~ C «k a, where k:= max( {2} U {3n :-,Nn E T}). 

4.1. Proposition. (a) C «r a and T c ..1 ~ C «11 a (cf. 3.4(a». 
(b) C «rU{OfN}a ~ C «r a. 

Basic inference rules 

(/\) A o, All- A o /\ Al' 
(v) AI-AvB; BI-AvB. 

(\I"") (A(n) )neN I- \/x A(x). 

(3) A(n)1-3xA(x). 

(N) nE NI-n' E N. 

(p\1I) p\1I L p\1l. if . < < <u j n I <uln, 1 u 0). 

(-,p!) -,P?n I- -'P~ujn, if j < u < 0). 

Every instance (A;}ierl- A of these rules is called a basic inference. If (A;)ier I- A 
is a basic inference with A E PoSu, then Ai E PoSv for all i E 1. This property will 
be used in the proof of 4.6. 

The system ID: consists of the language Lm(N) and a certain derivabiüty 
relation I-:.r (" r is derivable with order a E T and cutdegree m E N") which we 
introduce below by an iterated inductive definition similar to that of the tree 
classes f!f'v in Section 1. The main feature in the definition of l-:.ris the QU+I-rule 
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which we have developed in Buchholz [1], [2]. We try to give a short explanation 
of this inference rule. To this purpose let us consider "1-1A" as a notion of 
realizability similar to modified realizability. So we read "1-1A" as "a realizes A". 
Now suppose that I-iris already defined for all Z E Tu. Then, according to the fact 
that 

f°-+1: mr A ~ B iff Vg O (gO mr A ~ fo-+1:(gO) mr B), 

it seems reasonable to define: 

a realizes (P~n~B) {dOm(a) = Tu and 
:~ Vz E Tu (z realizes P~n ~a[z] realizes B). 

This motivates the following inference rule: 

(.Qu+l)' dom(a) = Tu and } ~ 
Vz E Tu(l-f P~n ~ I-~z] B) ~ I-~ P un ~ B. 

The next step is a straightforward modification of this rule: 

(.Qu+l)" dom(a) = Tu and } ~ a ~ 
~ [] -;l-mPun~B. 

Vz E Tu VA E Posu (l-fA v Pun ~ I-~z A vB) 

For technical reasons we combine every application of (.Qu+l)" with a cut 
B v P~n, P~n~ BI- B. This gives the final version of the Qu+l-ru1e. 

Inductive definition o{ I-~ r (a E T, m E N) 

(Ax1) 

(Ax2) 

(Bas) 

(P~) 

(Cut) 

(.Qu+l) 

«<) 

I-~ r, A, if A is a true a.p.f. or A == 0 E N or A ==-'P~,jn with u ~j. 

I-~ r, -,A, A, if A == n E N or A == P~n. 

If (Ai)iE11- A is a basic inference with A Er and Vi E I (I-~ r, Ai), then 
1-~+1 r. 

I-~r, n EN A ~~(P~, n) andP~n Er~I-~+3 r. 
I-~ r, -'C and I-~ r, C and I cl < m ~ I-~+ 1 r. 

dom(a) = Tu and 1-:!I] r, P~n and } a 

Vz E Tu V Li c Posu (I-f ..1, P~n ~ I-:!z] ..1, r) ~ I-m r. 

1-:' rand b «r a ~ I-~ r. 

4.2. Lemma. (a) I-~ rand m ~ k, r c ..1 ~ 1-% ..1. 
(b) I-~ r ~ I-~+a r. 
( c) I-~ r, 0 f N ~ I-~ r. 

Proof. By transfinite induction on a using 3.1(b) and 4.1 and the fact that 
(c + a)[z] = c + a[z] for all z E dom(a). 
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4.3. Lemma (Inversion). Let (Ai)iel ~ A be a basic inference (,,), (VX
), (P~u), 

(-'P~u)' Then r~ r, A implies Vi E I (r~ r, A;). 

Proof. By transfinite induction on a. 

4.4. Lemma (Reduction). Suppose r~ IQ, -'C and ICI ~ m, where C is a formula 
of the shape A y B or 3x A(x) or P~ujn or -'P~n or a false a.p.j. Then ~~ r, C 
. I' Lo+b Fr r. lmp les r m 0, . 

Proof. By transfinite induction on b: 
(AxI) If r~ r, C holds by (AxI), then also r~+b r by (AxI). 
(Ax2) If r~ r, C holds by (Ax2), then either r~+b r by (Ax2) or -'C E r. In the 

latter case ~~+b JO, r fo11ows from r~ IQ, -,c. 
(Bas) Suppose b = bo + 1, A E ru {C} and Vi E I (r~ r, c, Ai) where 

(Ai)iel rA is a basic inference (~). Then by I.H. we have (1) Vi E 
I (I-~+bo IQ, r, A;). 

Case 1: A Er. Then the assertion fo11ows immediately from (1). 
Case 2: A == C. Then, according to the assumption we have made on C, (~) is 

an inference (Y), (3), (P~u) with 1= {O}. By 4.3, 4.2(a) and «<) from I-~ IQ, -'C 
we get (2) I-~+bo IQ, r, -,Ao. From (1), (2) and IAol < ICI ~ m we obtain I-~+b JO, r 
by a cut with cutformula A o. 

«<) Suppose I-~ r, C with bo «r,c b. Since Cis not a formula n f N, it follows 
that a + bo «ro,r a + b. By I.H. we have I-~+bo JO, r. Hence I-~+b JO, r by (<<). 

In a11 other cases the assertion fo11ows immediately from I.H. 

4.5. Theorem (Cutelimination). r~+l rand a E Tp , P ~ W, m > O~ I-~a r. 

Proof. By transfinite induction on a: 
1. If 1-~+1 r holds by (AxI) or (Ax2), then the assertion is trivial. 
2. Suppose a = ao + 1, A E rand Vi E I (1-~+1 r, A;), where (Aj);ell- A is a basic 

inference (~). Then by I.H. we have Vi EI (I-:?!ao r, A;). By (~) we obtain 
I-~ao+l rand then I-~ r by «<) and 3.5(a). 

3. Suppose a = ao + 3, P~n Er and 1-~+1 r, B with B == nE N " ~~(P~, n). 
Then by I.H. and «<) we have 1-:?!(ao+2) r, B. By (P~) we get 1-~(ao+2)+3 rand 
then r~a rby (<<) and 3.5(d). 

4. Suppose dom(a) = Tu, 1-:!~1 r, P~n and r:!~I~' r for a11 Z E Tu, .:1 c Posu 
with l-i.:1, P~n. Since a E 7;" we have u < p and thus dom(Dpa) = Tu and 
(Dpa)[z] = Dpa[z]. By I.H. we have l-~a[11 r, P~n and 1-~[zl.:1, r for a11 z E Tu, 
.:1 ~ Posu with ri .:1, P~n. From this we obtain r~ r by an application of (.ou+l)' 

5. Suppose 1-~+1 rand ao «r a. Then by I.H. and 3.2(b) we have I-~oo rand 
Dpao «r Dpa. Hence I-~a r. 

6. Suppose a = ao + 1, r~+1 r, -'C, r~+1 r, C and ICI < m + 1. Then by I.H. 
we have I-~ao r, -'C and I-~ao r, c. 
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6.1. ICI < m: In this case we obtain I-~o+l r by a cut with cutformula C. 
The assertion follows by «<) and 3.5(b). 

6.2. ICI = m: Since m > 0, we may assume that C fulfills the condition of 
4.4. Then by 4.4 we obtain l-~pao+DpOo r, and from this I-~a r by «<) and 3.2(a). 

The following theorem shows that if r c PoSv is derivable with cutdegree 1, 
then one can eliminate all QU+l-inferences with u ~ v from the derivation of r. 

4.6 Theorem (Collapsing). I-i rand r c PoSv ~ I-pva r. 

Proof. By transfinite induction on a: 
1. Suppose dom(a) = Tu, I-i[l) r, P~n and l-i(z].1, r for all z E Tu, .1 c Posu 

with I-~ .1, P~n. 
Case 1: u < v. Then by I.H. we have I-pva(l) r, P~n and I-pva(z).1, r for all 

Z E Tu, .1 c Posu with l-i.1, P~n. Moreover, dom(Dva) = Tu and (Dva)[z] = 
Dva[z]. The assertion follows by (Du+1)' 

Case 2: u~v. Then ru {P~n} !;POSu and therefore by I.H. I-p.,a[llr, P~n. 
Since z:= Dua[l] E Tu, we get I-i[z) r. Now we apply the I.H. again and obtain 
I-pvalz] r. But Dva[z] = (Dva)[O] «r Dva, and therefore I-fva r. 

2. In all other cases the assertion follows immediately from the I.H. by 
3.5(b, d), 3.4(a), «<). 

Definition 

L(N)+:= {A:A is a sentence of L(N) in which N occurs only positively}. 

For r = {Al' ... , An} !; L(N)+ we define: 

r( k)' {A 1 V ••• V An is true in the standard model 
~ . ~ when N is interpreted as {i E N : 3i < k}. 

4.7. Lemma. 

I-i i l ft N, ... , im ft N, r and } 
~ ~r(HD()fl(n». 

r c L(N)+, n ~ max{2, 3i11 ••• ,3im} 

Proof. By transfinite induction on a: Let 

To:= {i l ft N, ... , im ft N}, k: = max{2, 3i11 ••• , 3im } ~ n. 

1. If I-i To, r holds by (Axl), then the assertion is trivial. 
2. If I-i To, rholds by (Ax2), then the assertion follows from n <H~(n). 
3. If I-i To, r is the conclusion of a basic inference *(N), then the assertion 

follows immediately from the I.H. and the relation HDob(n) <HDo(b+l)(n). 
4. Suppose a = b + 1, NU + 1) Er, I-t To, r, Nj. By I.H. we obtain ~r u 
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{Nj}(HlJob(n ». By 3.1(c), 3.2(a), 3.6(d) we have HlJob(n) < H(lJob).2(n) < 
H(lJob)o3(n) < HDoa(n) and therefore HlJob(n) + 3 ~HDoa(n). Hence t:T(HDoa(n». 

5. Suppose ~t IQ, T with b «roura. Then we have Dob «k Doa and therefore 
H lJob( n ) < H Doa(n ), since n ~ k. Now the assertion follows immediately from the 
I.H. 

6. Suppose a = b + 1, ~t 10, T, io E N and ~~ io ~ N, 10, T. Let n :=HlJob(n). 
Then we have 

n <n < HlJob(n) = H(lJob)o2(n)<HDoa(n). 

6.1. n < 3io: From ~t 10, T, io E N we obtain by the I.H. t:T U {io E N}(n) 
and then t:r(n), since 3io -t. n. Using n < HDoa(n) we get the assertion. 

6.2. 3io ~ n: From ~t io ~ N, IQ, T and max {k, 3io} :;:;; n we obtain by the I.H. 
t:T(HlJob(n» and thus t:T(HDoa(n». 

7. Suppose dom(a) = Tu, ~1(1) IQ, T, P~j and ~1lz].1, IQ, r for all Z E Tu, .1 c 

Posu with ~f.1, P~j. By 4.6 we obtain ~f JO, T, P~j with z :=Dua[1] E Tu. From 
this we get ~ilzl IQ, T. Now we apply the I.H. and obtain t:T(HDoalz)(n». Hence 
t:T(HDoa(n», since Doa[z] = (Doa)[O]. 

4.8. Theorem. If~f~oVx E N 3y E N fPN(X, y), where v ~ (J), m =1=0 and fP(x, y) a 
I~-formula of the language L, then there exists P E N such that Vn ~ p 3k < 
HDoD~O(1) fP(n, k). 

Proof. Let a: = D':O. From the premise we obtain ~1 n ~ N, 3y E N cpN (n, y) for 
all nE N. Then by 4.7 we get t:3y E N fPN(n, y) (HDoa(n» for all nE N and all 
n ~max{2, 3n}. Hence Vn 3k <HDoa(3n + 2) fP(n, k). By 3.8 we have H Doa(3n + 
2) < HDoD~O(l) for all n ~ m + 2. 

In the remaining part of this section we show that ID" (v ~ (J) can be 
embedded into ID: and finally we prove Theorem 4.0. Let v ~ (J) be fixed. 

Abbreviations 

k:=D!+ZO, 

a -~n b :(:::> 3ao,···, an(ao = a A an = b A Vi< n (ai + 1 «2 ai+1». 

- ~ - ~ 
4.9. Lemma. (a) k «1 k + 1, (b) k-~6 F+ 1. 

Proof. (a) follows from 3.7(b). - - --...- -(b) By 3.5(d) and 3.7(b) we have 3 «2 k and k· 3 «2 k + 1. Hence k + 3 «2 -- - --.... - - ~ k . 2, k . 2 + 3 «2 k . 3 «2 k + 1 and consequently k -~3 k . 2 --+3 k + 1. 

4.10. Lemma. ~~ ,A, A where k : = lAI 
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Proof. By induction on lAI: 
1. If A is atomic, then I-g ,A, A by (Ax1) or (Ax2). 
2. A=AoAA I : Then k=m+1 with m:=max{IAol, lAll}. By I.H., 4.9(a) ----and «<) we get 1-(f',Ai,Ai for i=O, 1, and then l-ö+I,Aov,AI, AoAAI by 

(v), (A), 4.9(b). 
3. A = "Ix B(x): This case is treated as 2. 

4.11. Lemma. 1-~+DoI,F(O)"VXEN(F(x)~F(x'», n~N, F(n), where k:= 

IFI· 

Proof. Let G:=Vx EN(F(x)~F(x'». By induction on n we show: 

(1) 1-~+3n,F(0), ,G, F(n). 

From (1) we obtain 1-~+DoI,F(O), ,G, F(n), n ft N, since 

k + 3n «3n k + Do1. 

Pro%/ (1). For n = 0 the assertion holds by 4.10. 
Induction step: Suppose 1-~+3n,F(0), ,G, F(n). By 4.10 we have 

1-~+3n,F(n'), F(n'). Hence 1-~+3n+I,F(0), ,G, F(n) A ,F(n'), F(n'). By (Axl) 
and n applications of (N) we get I-k+3n+1 n E N, and then by (A) I-k +3n+2 ,F(0), 
,G, n E N A (F(n) A ,F(n '», F(n '). Now we apply (3) and obtain 1-~+3.n' ,F(O), 
,G, F(n'), since ,G == 3x (x E N A (F(x) A ,F(x'»). 

The following lemma will be used to show that the induction scheme 
"Ix E N (~~(F, x)~ F(x»~ "Ix E N (P~x~ F(x» is derivable in ID:. 

4.12. Lemma. 

a E Tu, .1 f; Posu , I-~ .1, P~n } 
k = IFI, G == "Ix E N (~~(F, x)~ F(x» :;> 

I-f+a .1, ,G, F(n). 

Proof. Informal description: Let II be a derivation of .1, P~n. In II we replace 
every occurrence of P~, which is linked to the endformula P~n, by F('), Let II' 
denote the result of this transformation. n' may contain certain inferences of the 
kind JEN A ~~(F, j) I- FU), and therefore II' may fail to be an ID:-derivation. 
From II' we obtain an ID:-derivation of .1, ,G, F(n) as follows: First we adjoin 
,G to each r in II', and then we replace every inference ,G, r, JEN A 
W.~(F, j) I-,G, r, FU) by the folloWing inferences 

"""JG, r, JEN A ~~(F, j) ,FU), FU) 
,G, r, JEN A W.~(F, j) A ,FU), FU) 

,G, r, FU) 

(A) 
(3)" 
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In order to get a rigorous proof of the lemma we have to prove a more general 
proposition. 

Definition. For A E Posu let A * denote the result of replacing all occurrences of 
p~ in A by F(')' {Al' ... ,Am }*:= {A:, ... ,A!}. 

Proof. By transfinite induction on a: 
1. If f-~ JO, T holds by (Ax1) or (Ax2) , then also ~~+a JO, -,G, T* by (Ax1) , 

(Ax2), since -,p~ does not occur in JO U T. 
2. Suppose that a = ao + 1 and (Ai)iel f- A is a basic inference with A E JO U T 

and Vi E I (f-1° JO, T, Ai)' Then Vi E I (Ai E Posu ) and therefore we can apply the 
I.H. to JO, r, Ai' 

2.1. A E JO: By I.H. we get Vi E I (f-~+ao JO, -,G, r*, AJ and from this 
f-~+a JO, ,G, r* by the respective basic inference. 

2.2. A E r: Then A * E r* and (Aniel f- A * is a basic inference. By I.H. we 
have Vi E I (f-f+ao JO, -,G, r*, An. Hence f-~+a JO, -,G, r*. 

3. Suppose that dom(a) = Tw , f-1[I) JO, r, P~j and f-~[z)~, JO, r for all Z E Tw , 

Li c Posw with f-f Li, P~j. Since a E Tu, we have w < u and therefore by I.H. 
Lk+a[l) r; -,G T* pm]. and f-k+a[z) Li r; -,G r* for all Z E T. Li ePos wl'th rl 0, , 'w I ,0" w' _ w 

f-f Li, P~j. Now by an application of (Qw+l) we get the assertion. 
4. Suppose a = ao + 3, P~j E rand f-1° JO, r, JEN 1\ 91~(P~, j). Then FU) E r* 

and therefore f-f T*, -,FU) by 4.10. By I.H. and 4.3 we have f-f+ao JO, T*, 
-,G, JEN and f-f+ao JO, r*, -,G, 91~(F, j). Now we obtain f-~+ao+2 JO, r*, -,G, 
JEN 1\ (91~(F, j) 1\ -,FU» and then by (3) f-~+a JO, T*, 'G. 

5. In all other cases the assertion follows immediately from I.H. 

4.13. Lemma. f-f+Du
+I

0 -,VX E N (~~(F, x)~ F(x», -'P~n, F(n), with k:= IFI. 

Proof. Let b:= k + Du+10 and G:= Vx E N (~~(F, x)~ F(x». Then dom(b) = Tu 
and b[z] = k + z. Therefore by 4.12 we have ~t[z)~, -,G, -'P~n, F(n) for all 
Z E Tu, Li c Posu with ~f Li, P~n. By (Ax2) we also have ~t[l) -,G, -'P~n, F(n), 
P~n. Now we apply the QU+l-rule and obtain f-t -,G, -'P~n, F(n). 

Remark. The theory ID" with V< Q) is the same as IDw except that the axioms 
(P~.2) are replaced by 

(P~.2)<" Vx (2(u(F, x)~ F(x»~ Vx (P~x~ F(x», 
for each Lm-formula F(x) and each u < v. 

4.14. Theorem. If the sentence A is provable in ID" (v ~ Q), then there exists 
k E N such that ~f~o AN. 
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Proposition 1. For every mathematical axiom A(vv ... , vm) of IDy there exists 
k E N such that t-f A(ib ... ,im)N for all i 1 , ••• , im E N. (Vb V2, . .. denote 
variables of the language L.) 

Proof. We assume m = l. 
1. A(v)==B(O, v) A \:Ix (B(x, v)~B(x', v»~\:IxB(x, v). 
Let F(x) :==B(x, i)N, G :==\:Ix E N (F(x)~ F(x'» and k:= IF(x)l. By 4.11, 

3.5(c), 4.9(a) we have t-1"2....,F(O), ....,G, n f N, F(n) for all nE N. Since k . 2-~9 
~ -----
k + 2, we obtain t-t+2 A(i)N. 

2. For any other axiom of PA the assertion is trivial. 
3. A(v) == \:Ix (~iB(·, v), x)~ B(x, v»~ \:Ix (P~x~ B(x, v», u < v < m. 
Let F(x):==B(x,i)N, G:==\:IxEN(~':(F,x)~F(x», k:=IF(x)l. Then 

A(i)N ==.G v \:Ix (x fN v (....,p~x v F(x») and by 4.13 t-f+Du +10""'G, ....,P~n, F(n), 
« - - .......--...... k+2 N for a11 n E N. Since Du +10 =0 DyO «0 k and k . 2 -~9 k + 2, we get t-l A(i). 

4. A(v) == \:Iy (\:Ix (~y(B(" y, v), x)~ B(x, y, v»~ \:Ix (P~x~ B(x, y, v» and 
v= m. 

Let Fix): == B(x, u, i)N, Gu :==\:Ix E N (~':(Fu, x)~ Fix», k:= IFu(x)l. 
Then A(i)N == \:Iy (y f N v (.Gy v \:Ix (x f N v (....,p~x v Fy(x»») and by 4.13 
t-f+Du

+1
0 .Gu , ....,P~n, Fu(n), for an u, n E N. Since k + Du+10 = (k + DwO)[u] «u 

k + DwO, we obtain by (<<) t-1+ DmO u f N, ....,Gu, ....,P~n, Fu(n). From this we get 
by (v), (Y'), «<) t-~ A(i)N, since k + DroO «0 k . 2-~9 f+2. 

5. A == Vy \:Ix (~y(P~, x)~ P~x). 
Let k:=I~~(P;,x)l. By (Ax2) we have t-~nfN, nEN. By 4.10 we have 

t-~""'~':(P~, n), ~':(P!, n). Hence t-~'2 n f N, ....,~':(P~, n), nE N A ~~(P~, n). 
Now we apply (P~) and gel. t-~'2+3 n f N, .~~(P!, n), P~n. Some applications of 
(v), (Y') and «<) yield t-~"""+3 A N, since k . 2 + 3 «2 k . 3 «2 k+1-~12 W. 

6. A ==Vy \:Ixo \:lXI (P~yXoXl ~xo<y A P~oXl): Left to the reader. 

Proposition 2. By PLI we denote Tait's calculus for first-order predicate logic in 
the language LID (cf [8]). If T(vv ... , vm) is derivable in PLI, then there exists 
k E N such that t-~ i1 f N, ... , im f N, T(i1 , ••• , im)N for all i 1 , ••• , im E N. 

Proof. By induction on the derivation of T: Let m = l. 
1. T==IOU {.A, A}: cf. 4.10. 
2. If T is the conclusion of a (A)- or (v )-inference, then the assertion follows 

immediately from the I.H. 
3. T(v) == IO(v), VxA(v, x) and PLI t- T(v), A(v, x) with x ~ v: By I.H. there 

exists k such ~ t-~ i f N, n f N, T(i)N, A(i, n)N for an i, n E N. Then by (v )lind 
(V"') we get r~+l i f N, T(i)N. 

4. T(v)==IO(v), 3xA(v, x) and PLlt-T(v),A(v, t): 
4.1. t == Y ~ (y ~ v) or t == O~ : By I.H. there exists k ~ ko such that 

t-~i ft N, ° ft N, T(i)N, A(i, kO)N for an i E N. From this we get by 4.2(c) t-~i ft N, 
T(i)N, A(i, ko)N. Since k ~ ko, we have t-~ ko E N. Hence .by (A) t-~+li f N, T(i)N, 
ko E N A A(i, kO)N. An application of (3) yields t-~+1 i f N, T(i)N. 
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4.2. t == v)?: By I.H. there exists k ~ ko such that ~g i f N, T(i)N, o _ 

A(i, i7i()N for all i E N. Since k ~ ko, we have ~~ i f N, i7i! E N for all i E N. 
H2ce ~~+l i f N, T(i)N, j"'" E N A A(i, t·"')N. Now we apply (3) and get 
~~+l i f N, T(i)N. 

Proof of 4.14. Suppose IDv ~ A (A closed). Then PLI ~"(Al A •.• A An), A 
where every Ai is the universal closure of an axiom of IDv. By Propositions 1 and 
2 there exists m such that ~r (Al A ••• A An)N and ~ga"(Al A ••• A An)N, AN. By 
a cut with cut formula (Al A ••• A An)N we obtain now ~ZAN with k:= 
max{I(A l A ••• A An)NI, m} + 1. 

Condusion. By combining the Theorems 4.14, 4.5, 4.8 we obtain Theorem 4.0 
which was stated at the beginning of this section. 

Appendix: The proof-theoretic ordinal of IDv 

Definitions. 1. By transfinite induction on a we define an ordinal rk(a) for every 
a E 1'0: 

rk(a) :=sup{rk(a[n]) + l:n E dom(a)}. 

2. By transfinite induction on a E On we define the sets I; and I~a for every 
positive operator form ~: 

1;:= {n E N:~o(I~a, n) is true in the standard model}, 

l'i a := U I~. 
s<a 

3. For n EUaeOn/; we set Inl~:=min{a:n EI;}. 
4. IIDvl:=sup{lnlca:IDv~P~n}. IIDvl is called the proof-theoretic ordinal of 

IDv • 

We will prove the following result: 

IIDvl = sup{rk(DoD;»:k E N} (v~m). 

Definition. Let T = {Ab' .. , An} c: PoSo: 

aT' {A 1 V ••• V An is true in the standard model when 
1= .<:> \l[ ca· <a " Po, P <0, N are mterpreted by I ca, ,N resp. 

A.l. Lemma. ~~ T, T s;; PoSo, a E 1'0, rk(a) ~ a~ ~a T. 

Proof. By transfinite induction on a: 
1. If ~i Tholds by (Ax1), then ~a Tfor every a. 
2. Suppose that ~~ T holds by (Ax2). Then, since r c: PoSo, we have r = 10, 

n f N, nE N and thus I=a rfor every a. 
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3. If I-~ r is the conclusion of a basic inference (.1), then (.1) is an inference 
( 1\ ), (v), (V"'), (3) or (N), and the assertion follows immediately from the I. H. 

4. Suppose I-t r, nE N 1\ \]Ir:(P~, n) with a = b + 1 and r = Li, P~n. Then 
ß:=rk(b)<a. By I.H. we get "t::ß L1 or n EI~fJ or \]Io(I~fJ, n)" and from this 
"1=0: L1 or n E I~O:", i.e., 1=0: r. 

5. If 1-1 r is the conclusion of a cut, then the cut formula is of the kind nE N, 
and the assertion follows immediately from the I.H. 

6. If I-~ r with b «r a, then rk(b) < rk(a) ~ a and thus 1=0: r by I.H. 
From a E To it follows that I-~ r cannot be the conclusion of an application of 

the QU+l-rule. 

A.2. Lemma. IIDvl ~ sup{rk(DoD~): k E I\J}. 

Proof. Suppose IDv I- P~n. Then by 4.14,4.5,4.6 we obtain I-foD~o P~n, for some 
k E 1\1. By A.1 this yields n E I~O: with a:=rk(DoD!O). Hence Inl~ < rk(DoD!O). 

A.3. Lemma. Sup{rk(DoD~):k E I\I} ~ lIDvi. 

~f. Here we make use of Theorem 2.2 which claims that "a E Wo" is provable 
in IDv, for every a E To which contains no symbol Dv with v> v. From this we 
get, for all k E N, 

(1) IDv I- p~rDoD~l 

where a ~ ra 1 is any reasonable Gödel numbering of the terms in T, and \]I is a 
positive operator form which on the basis of this Gödel numbering formalizes the 
inductive definition of the sets Wv (v < v) in Section 2. Then we also have 

(2) I ra ll~ = rk(a), for all a E To. 

The assertion follows immediately from (1) and (2). 
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