AN INDEPENDENCE RESULT FOR ($\boldsymbol{\Pi}_{1}^{1}$-CA) + BI

Wilfried BUCHHOLZ
Mathematisches Institut der Universität Müchen, Müchen, Fed. Rep. Germany

Communicated by D. van Dalen
Received 27 November 1984

Introduction

In Kirby and Paris [5] it was shown that a certain combinatorial statement (concerning finite trees) is independent of Peano Arithmetic. Here we present a not too complicated extension of this statement and prove its independence from the much stronger theory $\left(\Pi_{1}^{1}-\mathrm{CA}\right)+\mathrm{BI}$. This is done by refining the methods which we have developed in [2, Ch. IV, §1-§4].

Using the terminology of Kirby and Paris our result can be described as follows. A hydra is a finite labeled tree A which has the following properties:
(i) the root of A has label + ,
(ii) any other node of A is labeled by some ordinal $v \leqslant \omega$,
(iii) all nodes immediately above the root of A have label 0 (zero).

If Hercules chops off a head (i.e. top node) σ of a given hydra A, the hydra will choose an arbitrary number $n \in \mathbb{N}$ and transform itself into a new hydra $A(\sigma, n)$ as follows. Let τ denote that node of A which is immediately below σ, and let A^{-} denote that part of A which remains after σ has been chopped off. The definition of $A(\sigma, n)$ depends on the label of σ :

Case 1: label $(\sigma)=0$. If τ is the root of A, we set $A(\sigma, n):=A^{-}$. Otherwise $A(\sigma, n)$ results from A^{-}by sprouting n replicas of A_{τ}^{-}from the node immediately below τ. Here A_{τ}^{-}denotes the subtree of A^{-}determined by τ.

Case 2: label $(\sigma)=u+1$. Let ε be the first node below σ with label $v \leqslant u$. Let B be that tree which results from the subtree A_{ε} by changing the label of ε to u and the label of σ to $0 . A(\sigma, n)$ is obtained from A by replacing σ by B. In this case $A(\sigma, n)$ does not depend on n.
0168-0072/87/\$3.50 © 1987, Elsevier Science Publishers B.V. (North Holland)

Example $(u=3, v=1)$:

Case 3: label $(\sigma)=\omega . A(\sigma, n)$ is obtained from A simply by changing the label of $\sigma: \omega$ is replaced by $n+1$.

Notation. If σ is the rightmost head of A (as in the pictures above) we write $A(n)$ instead of $A(\sigma, n)$. In the following we consider only the operation $A \mapsto A(n)$. By \oplus we denote the hydra which consists only of one node, namely its root.

The main results of the present paper are:
Theorem I. By always chopping off the rightmost head, Hercules is able to kill every hydra in a finite number of steps, i.e., for each hydra A and any sequence $\left(n_{i}\right)_{i \in \mathbb{N}}$ of natural numbers there exists $k \in \mathbb{N}$ such that $A\left(n_{0}\right)\left(n_{1}\right) \cdots\left(n_{k}\right)=\oplus$.

Theorem II. For every fixed hydra A the statement $\forall\left(n_{i}\right)_{i \in \mathbb{N}} \exists k$ $A\left(n_{0}\right)\left(n_{1}\right) \cdots\left(n_{k}\right)=\oplus$ is provable in $\left(\Pi_{1}^{1}-\mathrm{CA}\right)+\mathrm{BI}$.

Theorem III. Let

Then the Π_{2}^{0}-sentence $\forall n \exists k A^{n}(1)(2) \cdots(k)=\oplus$ is not provable in $\left(\Pi_{1}^{1}\right.$-CA) + BI.

Contents

§1. Infinitary wellfounded trees and collapsing functions
§2. The term structure ($T, \cdot[\cdot]$)
§3. The relations $\ll k_{k}$ and the functions $H_{a}: \mathbb{N} \rightarrow \mathbb{N}$
§4. The infinitary system $\mathrm{ID}_{\omega}^{\infty}$
Appendix. The proof-theoretic ordinal of ID_{v}
In Section 1 we prove Theorem I. In Section 2 we prove Theorem II. Section 3 contains some technical lemmata which will be used in Section 4 for the proof of Theorem III. In the appendix we characterize the proof-theoretic ordinals of the theories $\mathrm{ID}_{v}(v \leqslant \omega)$ for v-times iterated inductive definitions by means of the term structure ($T, \cdot[\cdot]$).

1. Infinitary wellfounded trees and collapsing functions

In this section we introduce certain sets $\mathscr{T}_{v}(v \leqslant \omega)$ of infinitary wellfounded trees together with a system of socalled collapsing functions $\mathscr{D}_{v}: \mathscr{T}_{\omega} \rightarrow \mathscr{T}_{v}$ $(v \leqslant \omega)$. These functions are then used to associate with every hydra A an element $\|A\|$ of \mathscr{T}_{0} in such a way that, for each $n \in \mathbb{N},\|A(n)\|$ is an immediate subtree of $\|A\|$. This yields Theorem I.

Definition of the tree classes $\mathscr{T}_{v}(v \leqslant \omega)$
Suppose that \mathscr{T}_{u} for $u<v$ is already defined. Then we define \mathscr{T}_{v} to be the least set which contains 0 (the empty set) and is closed under the following rule:
$\left(\mathscr{T}_{v}\right)$ If $\alpha: I \rightarrow \mathscr{T}_{v}$ is a function with $I \in\{\{0\}, \mathbb{N}\} \cup\left\{\mathscr{T}_{u}: u<v\right\}$, then $\alpha \in \mathscr{T}_{v}$.
According to the inductive definition of \mathscr{F}_{v} we have the following principle of transfinite induction over \mathscr{T}_{v} :

$$
\forall \alpha \in \mathscr{T}_{v}(\forall x \in \operatorname{domain}(\alpha) \Psi(\alpha(x)) \rightarrow \Psi(\alpha)) \rightarrow \forall \alpha \in \mathscr{T}_{v} \Psi(\alpha)
$$

Proposition. $u<v \Rightarrow \mathscr{T}_{u} \subsetneq \mathscr{T}_{v}$.
Notations. $\left(\alpha_{x}\right)_{x \in I}:=\left\{\left\langle x, \alpha_{x}\right\rangle: x \in I\right\}$, i.e., $\left(\alpha_{x}\right)_{x \in I}$ denotes the function α with domain I and $\alpha(x)=\alpha_{x}$ for all $x \in I$.

$$
\alpha^{+}:=(\alpha)_{x \in\{0\}}:=\{\langle 0, \alpha\rangle\} \quad \text { (the successor of } \alpha \text {). }
$$

In the following α, β, γ denote elements of \mathscr{T}_{ω}.
Definition of $+: \mathscr{T}_{\omega} \times \mathscr{T}_{\omega} \rightarrow \mathscr{T}_{\omega}$
We define $\alpha+\beta$ by transfinite induction on β :
(i) $\alpha+0:=\alpha$,
(ii) $\alpha+\left(\beta_{x}\right)_{x \in I}:=\left(\alpha+\beta_{x}\right)_{x \in I}$.

Proposition. (a) $\alpha+\left(\beta^{+}\right)=(\alpha+\beta)^{+}$.
(b) $(\alpha+\beta)+\gamma=\alpha+(\beta+\gamma)$.
(c) $\alpha, \beta \in \mathscr{T}_{v} \Rightarrow \alpha+\beta \in \mathscr{T}_{v}$.

Definition. $\alpha \cdot 0:=0, \alpha \cdot(n+1):=\alpha \cdot n+\alpha$.
Definition of $\mathscr{D}_{v}: \mathscr{T}_{\omega} \rightarrow \mathscr{T}_{v}$
$\mathscr{D}_{\nu}(\alpha)$ is defined by transfinite induction on $\alpha \in \mathscr{T}_{\omega}$ simultaneously for all $v \leqslant \omega$.

$$
\begin{aligned}
& (\mathscr{D} 1) \quad \mathscr{D}_{0}(0):=0^{+}, \quad \mathscr{D}_{n+1}(0):=(z)_{z \in \mathscr{T}_{n}}, \quad \mathscr{D}_{\omega}(0):=\left(\mathscr{D}_{n+1}(0)\right)_{n \in \mathbb{N} .} \\
& (\mathscr{D} 2) \quad \mathscr{D}_{v}\left(\left(\alpha_{x}\right)_{x \in I}\right):= \\
& \qquad\left\{\begin{array}{l}
\left(\mathscr{D}_{v}\left(\alpha_{0}\right) \cdot(n+1)\right)_{n \in \mathbb{N}}, \quad \text { if } I=\{0\}, \\
\left(\mathscr{D}_{v}\left(\alpha_{x}\right)\right)_{x \in I}, \quad \text { if } I \in\{\mathbb{N}\} \cup\left\{\mathscr{T}_{u}: u<v\right\}, \\
\left(\mathscr{D}_{v}\left(\alpha_{z}\right)\right)_{n \in \mathbb{N}} \text { with } z:=\mathscr{D}_{u}\left(\alpha_{0^{+}}\right), \quad \text { if } I=\mathscr{T}_{u} \text { with } v \leqslant u<\omega .
\end{array}\right.
\end{aligned}
$$

Remark. If domain $(\alpha) \in\left\{\mathscr{T}_{u}: v \leqslant u<\omega\right\}$, then $\mathscr{D}_{v}(\alpha)$ is a constant function with domain \mathbb{N}.

Definition of $\|A\|$

For every finite labeled tree A (with labels $\leqslant \omega$) we define $\|A\| \in \mathscr{T}_{\omega}$ by induction on the length (i.e. number of nodes) of A :

$$
\begin{aligned}
& \|(2)\|:=\mathscr{D}_{v}(0) \\
& \|\underbrace{A_{0} i_{i} A_{k}}_{0}\|:=\mathscr{D}_{v}\left(\left\|A_{0}\right\|+\cdots+\left\|A_{k}\right\|\right) .
\end{aligned}
$$

If $A=A_{0} \ddot{i j}^{A_{k}}$ is a hydra, we set $\|A\|:=\left\|A_{0}\right\|+\cdots+\left\|A_{k}\right\|$. For $\alpha \in \mathscr{T}_{0}$ with domain $(\alpha)=\{0\}$ we set $\alpha(n):=\alpha(0)$.
1.1. Theorem. For every hydra $A \neq \oplus$ and all $n \in \mathbb{N}$ the following holds: $\|A\| \in \mathscr{T}_{0}$ and $\|A(n)\|=\|A\|(n)$.

Proof. Easy exercise.
From 1.1 we obtain Theorem I by transfinite induction over \mathscr{T}_{0}.

2. The term structure ($T, \cdot[\cdot]$)

In this section we prove Theorem II. To this purpose we introduce the following set T of terms, where $D_{0}, \ldots, D_{\omega}$ is a sequence of formal symbols.

Inductive definition of the set T

（T1） $0 \in T$ ．
（T2）If $a \in T$ and $v \leqslant \omega$ ，then $D_{v} a \in T$ ；we call $D_{v} a$ a principal term．
（T3）If $a_{0}, \ldots, a_{k} \in T$ are principal terms and $k \geqslant 1$ ，then $\left(a_{0}, \ldots, a_{k}\right) \in T$ ．
For each term $a \in T$ we define its value $\bar{a} \in \mathscr{T}_{\omega}$ by

$$
\overline{0}:=0, \quad \overline{D_{v} a}:=\mathscr{D}_{v}(\bar{a}), \quad \overline{\left(a_{0}, \ldots, a_{k}\right)}:=\bar{a}_{0}+\cdots+\bar{a}_{k} .
$$

This interpretation of terms as infinitary wellfounded trees will not be used in the proof of Theorem II．It serves only as a motivation for the following definitions of $a+b, T_{v}, \operatorname{dom}(a)$ and $a[z]$ ．

The letters a, b, c, z now always denote elements of T ．
For principal terms a_{0}, \ldots, a_{k} and $k \in\{-1,0\}$ we set

$$
\left(a_{0}, \ldots, a_{k}\right):= \begin{cases}0, & \text { if } k=-1 \\ a_{0}, & k=0\end{cases}
$$

Definition of $a+b$ and $a \cdot n \in T$

$$
\begin{aligned}
& a+0:=0+a:=a \\
& \left(a_{0}, \ldots, a_{k}\right)+\left(b_{0}, \ldots, b_{m}\right):=\left(a_{0}, \ldots, a_{k}, b_{0}, \ldots, b_{m}\right) \quad(k, m \geqslant 0) \\
& a \cdot 0:=0, \quad a \cdot(n+1):=a \cdot n+a
\end{aligned}
$$

Proposition．$(a+b)+c=a+(b+c)$.
Definition of T_{v} for $v \leqslant \omega$

$$
T_{v}:=\{0\} \cup\left\{\left(D_{u_{0}} a_{0}, \ldots, D_{u_{k}} a_{k}\right): k \geqslant 0, a_{0}, \ldots, a_{k} \in T, u_{0}, \ldots, u_{k} \leqslant v\right\}
$$

Remark．T_{0} 〔 T_{1} 〔 \cdots 〔 $T_{\omega}=T$ ．
Abbreviation． $1:=D_{0} 0$.
Convention．We identify \mathbb{N} with the subset $\{0,1,1+1,1+1+1, \ldots\}$ of T_{0} ．
Now we define，for every $a \in T$ ，a subset $\operatorname{dom}(a)$ of T and a function $z \mapsto a[z]$ from $\operatorname{dom}(a)$ into T ．This will be done in such a way that $\bar{z} \in \operatorname{domain}(\bar{a})$ and $\overline{a[z]}=\bar{a}(\bar{z})$ ，for all $z \in \operatorname{dom}(a)$ ．

Definition of $\operatorname{dom}(a)$ and $a[z]$ for $a \in T, z \in \operatorname{dom}(a)$
（［ ］．0） $\operatorname{dom}(0):=\emptyset$ ．
$([] .1) \operatorname{dom}(1):=\{0\} ; 1[0]:=0$ ．
([].2) $\operatorname{dom}\left(D_{u+1} 0\right):=T_{u} ;\left(D_{u+1} 0\right)[z]:=z$.
([].3) $\operatorname{dom}\left(D_{\omega} 0\right):=\mathbb{N} ;\left(D_{\omega} 0\right)[n]:=D_{n+1} 0$.
([].4) Let $a=D_{v} b$ with $b \neq 0$:
(i) $\operatorname{dom}(b)=\{0\}: \operatorname{dom}(a)=\mathbb{N}, a[n]:=\left(D_{v} b[0]\right) \cdot(n+1)$.
(ii) $\operatorname{dom}(b)=T_{u}$ with $v \leqslant u<\omega: \operatorname{dom}(a):=\mathbb{N}, a[n]:=D_{v} b\left[D_{u} b[1]\right]$.
(iii) $\operatorname{dom}(b) \in\{\mathbb{N}\} \cup\left\{T_{u}: u<v\right\}: \operatorname{dom}(a):=\operatorname{dom}(b), a[z]:=D_{v} b[z]$.
([].5) $a=\left(a_{0}, \ldots, a_{k}\right)(k \geqslant 1): \operatorname{dom}(a):=\operatorname{dom}\left(a_{k}\right)$,

$$
a[z]:=\left(a_{0}, \ldots, a_{k-1}\right)+a_{k}[z] .
$$

Definition. $0[n]:=0, a[n]:=a[0]$ for $a \in T$ with $\operatorname{dom}(a)=\{0\}$.
Proposition. (a) $a \neq 0 \Leftrightarrow \operatorname{dom}(a) \neq \emptyset$.
(b) $\operatorname{dom}(a)=\{0\} \Leftrightarrow a=a[0]+1$.
(c) $0 \neq a \in T_{v} \Rightarrow \operatorname{dom}(a) \in\{\{0\}, \mathbb{N}\} \cup\left\{T_{u}: u<v\right\}$, and $a[z] \in T_{v}$ for all $z \in$ $\operatorname{dom}(a)$.

Now we are going to compare terms and hydras. It will turn out that the term structure ($T_{0}, \cdot[\cdot]$) is isomorphic to the structure $(\mathscr{H}, \cdot(\cdot)$), where \mathscr{H} denotes the set of all hydras.

In fact ($\mathscr{H}, \cdot(\cdot)$) is nothing else than a geometric representation of ($T_{0}, \cdot[\cdot]$). $(\mathscr{H}, \cdot(\cdot))$ has been defined just in such a way that it becomes isomorphic to ($T_{0}, \cdot[\cdot]$).

Definition of $|A|$

If $A=\underbrace{A_{0} 0}_{(5)} \dot{M}^{A_{k}}(k \geqslant-1)$ is a hydra or any finite labeled tree with labels $\leqslant \omega$ we define $|A|$ to be that term $a \in T$ which implicitely is given by the definition of $\|A\|$ in Section 1, namely:

$$
|A|:= \begin{cases}D_{\xi}\left(\left|A_{0}\right|, \ldots,\left|A_{k}\right|\right), & \text { if } \xi \leqslant \omega, \\ \left(\left|A_{0}\right|, \ldots,\left|A_{k}\right|\right), & \text { if } \xi=+\end{cases}
$$

2.1. Theorem. (a) The operation $A \mapsto|A|$ yields a 1-1 correspondence between the set of all hydras and the set T_{0}.
(b) $|A(n)|=|A|[n]$, for each hydra A and all $n \in \mathbb{N}$.

Proof. (a) Obvious.
(b) Definition (for $c, z \in T, c \neq 0$)

$$
c[* / z]:= \begin{cases}z, & \text { if } c=D_{v} 0, \\ D_{v} b[* / z], & \text { if } c=D_{v} b \text { with } b \neq 0, \\ \left(c_{0}, \ldots, c_{k-1}\right)+c_{k}[* / z], & \text { if } c=\left(c_{0}, \ldots, c_{k}\right), \quad k \geqslant 1 .\end{cases}
$$

Now the reader can easily verify the following propositions and then also part (b) of the theorem.

Proposition 1. If z is a principal term, then $c[* / z]$ results from c by replacing the rightmost subterm $D_{v} 0$ of c by z.

Proposition 2. If $z \in T_{u}=\operatorname{dom}(a)$, then $a[z]=a[* / z]$.
Proposition 3. If $\operatorname{dom}(a) \in\{\{0\}, \mathbb{N}\}$, then one of the following cases holds:
(i) $a=\left(a_{0}, \ldots, a_{k-1}, 1\right)$ and $a[n]=\left(a_{0}, \ldots, a_{k-1}\right)$.
(ii) $a=c\left[* / D_{v}\left(a_{0}, \ldots, a_{k-1}, 1\right)\right]$ and $a[n]=c\left[* / D_{v}\left(a_{0}, \ldots, a_{k-1}\right) \cdot(n+1)\right]$.
(iii) $a=c\left[* / D_{\omega} 0\right]$ and $a[n]=c\left[* / D_{n+1} 0\right]$.
(iv) $a=c\left[* / D_{v} b\right], \operatorname{dom}(b)=T_{u}, v \leqslant u$ and $a[n]=c\left[* / D_{v} b\left[D_{u} b[1]\right]\right]$.

Let W_{0} denote the least subset of T_{0} which contains 0 and is closed under the following rule:

$$
a \in T_{0} \quad \text { and } \quad \forall n \in \mathbb{N}\left(a[n] \in W_{0}\right) \Rightarrow a \in W_{0}
$$

Since every $a \in T_{0}$ corresponds to an infinitary wellfounded tree $\bar{a} \in \mathscr{T}_{0}$ with $\bar{a}(n)=\overline{a[n]}$ (for all $n \in \mathbb{N}$), it follows that $W_{0}=T_{0}$ and consequently $\forall a \in$ $T_{0} \forall\left(n_{i}\right)_{i \in \mathbb{N}} \exists k a\left[n_{0}\right]\left[n_{1}\right] \cdots\left[n_{k}\right]=0$.

Now we want to give a proof of " $a \in W_{0}$ " which, for every fixed term $a \in T_{0}$, can be formalized in ID_{ω}, the formal theory of ω-times iterated inductive definitions. There we have to use methods which do not depend on the nonconstructive tree classes \mathscr{T}_{v}. In fact, we will establish a more general result:
2.2. Theorem. Let $0<v \leqslant \omega$. If $a \in T_{0}$ contains no symbol D_{v} with $v<v$, then " $a \in W_{0}$ " is provable in ID_{v}.

Since ID_{ω} is contained in $\left(\Pi_{1}^{1}-\mathrm{CA}\right)+\mathrm{BI}$ and since $\left(\Pi_{1}^{1}\right.$-CA) + BI proves $" a \in W_{0} \rightarrow \forall\left(n_{i}\right)_{i \in \mathbb{N}} \exists k a\left[n_{0}\right] \cdots\left[n_{k}\right]=0$ ", we obtain from 2.2:
2.3. Theorem. $\left(\Pi_{1}^{1}-\mathrm{CA}\right)+\mathrm{BI} \vdash \forall\left(n_{i}\right)_{i \in \mathbb{N}} \exists k a\left[n_{0}\right] \cdots\left[a_{k}\right]=0$, for each $a \in T_{0}$.

This theorem together with 2.1 yields Theorem II.
In the following let $v \leqslant \omega$ be fixed. We use u, v to denote numbers $\leqslant v$.
Iterated inductive definition of sets $W_{v}(v<v)$
(W1) $0 \in W_{v}$.
(W2) $a \in T_{v}, \operatorname{dom}(a) \in\{\{0\}, \mathbb{N}\}, \forall n\left(a[n] \in W_{v}\right) \Rightarrow a \in W_{v}$.
(W3) $a \in T_{v}, \operatorname{dom}(a)=T_{u}$ with $u<v, \forall z \in W_{u}\left(a[z] \in W_{v}\right) \Rightarrow a \in W_{v}$.
Proposition. $u \leqslant v<v \Rightarrow W_{u} \subseteq W_{v} \subseteq T_{v}$
Abbreviations. Let X range over subsets of T which are definable in the language of $\mathrm{ID}_{\boldsymbol{v}}$.

1. By $A_{v}(X, a)$ we denote the following statement:

$$
\begin{aligned}
a=0 & \vee[\operatorname{dom}(a) \in\{\{0\}, \mathbb{N}\} \wedge \forall n(a[n] \in X)] \\
& \vee \exists u<v\left[\operatorname{dom}(a)=T_{u} \wedge \forall z \in W_{u}(a[z] \in X)\right.
\end{aligned}
$$

2. $A_{v}(X):=\left\{x \in T: A_{v}(X, x)\right\}$.
3. $X^{(a)}:=\{y \in T: a+y \in X\}$.
4. $\bar{X}:=\left\{y \in T: \forall x\left(x \in X \rightarrow x+D_{v} y \in X\right)\right\}$.
5. $W^{*}:=\left\{x \in T: \forall u<v\left(D_{u} x \in W_{u}\right)\right\}$.

By the definition of W_{v}, for all $v<\boldsymbol{v}$ we have:
(A1) $A_{v}\left(W_{v}\right)=W_{v}$,
(A2) $A_{v}(X) \subseteq X \Rightarrow W_{v} \subseteq X$.
2.4. Lemma. (a) $A_{v}(X) \subseteq X$ and $a \in X \Rightarrow A_{v}\left(X^{(a)}\right) \subseteq X^{(a)}(v \leqslant v)$.
(b) $a, b \in W_{v} \Rightarrow a+b \in W_{v}(v<v)$.

Proof. (a) Suppose $A_{v}(X) \subseteq X, a \in X, A_{v}\left(X^{(a)}, b\right)$. We have to prove $a+b \in X$:

1. $b=0$: Then $a+b=a \in X$.
2. $\operatorname{dom}(b) \in\{\{0\}, \mathbb{N}\}$ and $\forall n\left(b[n] \in X^{(a)}\right)$: Then we have $\operatorname{dom}(a+b)=$ $\operatorname{dom}(b)$ and $(a+b)[n]=a+b[n] \in X$, for all $n \in \mathbb{N}$. It follows that $a+b \in$ $A_{v}(X) \subseteq X$.
3. $\operatorname{dom}(b)=T_{u}$ with $u<v$: similar to 2 .
(b) From (a) together with (A1), (A2) we obtain, for $v<v, a \in W_{v} \rightarrow W_{v} \subseteq$ $W_{v}^{(a)}$, i.e., $a \in W_{v} \rightarrow\left(b \in W_{v} \rightarrow a+b \in W_{v}\right)$.
2.5. Lemma. $A_{v}(X) \subseteq X \Rightarrow A_{v}(\bar{X}) \subseteq \bar{X}$

Proof. Assumptions: $A_{v}(X) \subseteq X, A_{v}(\bar{X}, b), a \in X$.
We have to prove $a+D_{v} b \in X$. First we prove: (1) $\forall u<v\left(a+D_{u+1} 0 \in X\right)$.
We have $\operatorname{dom}\left(a+D_{u+1} 0\right)=T_{u}$ and $\left(a+D_{u+1} 0\right)[z]=a+z$. By 2.4 we obtain $A_{v}\left(X^{(a)}\right) \subseteq X^{(a)}$. Since $A_{u}\left(X^{(a)}\right) \subseteq A_{v}\left(X^{(a)}\right)$, it follows by (A2) that $W_{u} \subseteq X^{(a)}$, i.e., $\forall z \in W_{u}(a+z \in X)$. Hence $A_{v}\left(X, a+D_{u+1} 0\right)$ and therefore $a+D_{u+1} 0 \in X$, since $A_{v}(X) \subseteq X$.

Proof of $a+D_{v} b \in X$:

1. $b=0$ and $v=0$. Then $a+D_{v} b=a+1$; and $a+1 \in X$ follows from $A_{v}(X) \subseteq$ $X \wedge a \in X$.
2. $b=0$ and $v=u+1$: In this case we are done by (1).
3. $b=0$ and $v=\omega$: Then $\operatorname{dom}\left(a+D_{v} b\right)=\mathbb{N}$ and $\left(a+D_{v} b\right)[n]=a+D_{n+1} 0$. By (1) we obtain $A_{v}\left(X, a+D_{v} b\right)$. Hence $a+D_{v} b \in X$.
4. $b=b_{0}+1$ with $b_{0} \in \bar{X}$: Then we have $\forall x \in X\left(x+D_{v} b_{0} \in X\right)$. Using this and the assumption $a \in X$ we obtain $\forall n \in \mathbb{N}\left(a+\left(D_{v} b_{0}\right) \cdot(n+1) \in X\right)$ by complete
induction. Since $\operatorname{dom}\left(a+D_{v} b\right)=\mathbb{N}$ and $\left(a+D_{v} b\right)[n]=a+\left(D_{v} b_{0}\right) \cdot(n+1)$ it follows that $a+D_{v} b \in A_{v}(X) \subseteq X$.
5. $\operatorname{dom}(b)=\mathbb{N}$ and $\forall n(b[n] \in \bar{X})$: Then we have $\operatorname{dom}\left(a+D_{v} b\right)=\mathbb{N}$ and $\left(a+D_{v} b\right)[n]=a+D_{v} b[n] \in X$, for all $n \in \mathbb{N}$. Hence $a+D_{v} b \in A_{v}(X)$.
6. $\operatorname{dom}(b)=T_{u}, u<v$ and $\forall z \in W_{u}(b[z] \in \bar{X})$: similar to 5 .

2.6. Lemma. $A_{v}\left(W^{*}\right) \subseteq W^{*}$.

Proof. Suppose $b \in A_{v}\left(W^{*}\right)$ and $v<v$. We have to show $D_{v} b \in W_{v}$.

1. $b=0$ and $v=0$. From $0 \in W_{v}$ we get $D_{0} 0=1 \in W_{v}$ by (W2).
2. $b=0$ and $v=u+1$: Then $\operatorname{dom}\left(D_{v} b\right)=T_{u},\left(D_{v} b\right)[z]=z$ and $W_{u} \subseteq W_{v}$. Hence $D_{v} b \in W_{v}$ by (W3).
3. $b=b_{0}+1$ and $b_{0} \in W^{*}$: Then we have $\operatorname{dom}\left(D_{v} b\right)=\mathbb{N},\left(D_{v} b\right)[n]=$ $\left(D_{v} b_{0}\right) \cdot(n+1)$ and $D_{v} b_{0} \in W_{v}$. Using 2.4(b) we obtain $\forall n\left(D_{v} b\right)[n] \in W_{v}$ by induction on n. Hence $D_{v} b \in W_{v}$.
4. $\operatorname{dom}(b)=T_{u}, u<v$ and $b[z] \in W^{*}$ for all $z \in W_{u}$:
4.1. $u<v$: Then we have $\operatorname{dom}\left(D_{v} b\right)=T_{u}$ and $\left(D_{v} b\right)[z]=D_{v} b[z] \in W_{v}$ for all $z \in W_{u}$, i.e., $D_{v} b \in W_{v}$.
4.2. $v \leqslant u<v$: Then we have $\operatorname{dom}\left(D_{v} b\right)=\mathbb{N}$ and $\left(D_{v} b\right)[n]=D_{v} b[z]$ with $z:=D_{u} b[1]$. Obviously $1 \in W_{u}$ and therefore $b[1] \in W^{*}$. It follows that $z \in W_{u}$. From this we obtain $b[z] \in W^{*}$ and then $D_{v} b[z] \in W_{v}$, i.e., $\forall n\left(D_{v} b\right)[n] \in W_{v}$. Hence $D_{v} b \in W_{v}$.
5. $\operatorname{dom}(b)=\mathbb{N}$ and $b[n] \in W^{*}$ for all $n \in \mathbb{N}$: similar to 4.1.
2.7. Lemma. If $a \in T$ contains no symbol D_{v} with $v>v$, then $A_{v}(X) \subseteq X \rightarrow$ $a \in X$.

Proof. By induction on the length of a : suppose $A_{v}(X) \subseteq X$.

1. $a=0$: In this case $a \in A_{v}(X) \subseteq X$.
2. $a=\left(a_{0}, \ldots, a_{k}\right)(k \geqslant 1)$: Let $c:=\left(a_{0}, \ldots, a_{k-1}\right)$. Then we have:
(1) $c \in X \rightarrow A_{v}\left(X^{(c)}\right) \subseteq X^{(c)}$ (by 2.4(a)).
(2) $c \in X$ (by induction hypothesis).
(3) $A_{v}\left(X^{(c)}\right) \subseteq X^{(c)} \rightarrow a_{k} \in X^{(c)}$ (by induction hypothesis).

From this we get $a=c+a_{k} \in X$.
3. $a=D_{v} b$: From $A_{v}(X) \subseteq X$ we get $0 \in X$ and $A_{v}(\bar{X}) \subseteq \bar{X}$ by 2.5. By I.H. (induction hypothesis) we have $A_{v}(\bar{X}) \subseteq \bar{X} \rightarrow b \in \bar{X}$. By definition of \bar{X} we have $b \in \bar{X} \rightarrow\left(0 \in X \rightarrow D_{v} b \in X\right)$. Hence $D_{v} b \in X$.
4. $a=D_{v} b$ with $v<v$: By I.H. we have $A_{v}\left(W^{*}\right) \subseteq W^{*} \rightarrow b \in W^{*}$. Using 2.6 we obtain $b \in W^{*}$. Hence $a=D_{v} b \in W_{v}$. From $A_{v}(X) \subseteq X$ we get $A_{v}(X) \subseteq X$ and then $W_{v} \subseteq X$.
2.8. Lemma. If $a \in T_{0}$ contains no symbol D_{v} with $v>v$, then $a \in W_{0}$.

Proof. Let $a \neq 0$. Then $a=D_{0} a_{0}+\cdots+D_{0} a_{k}$ with $a_{0}, \ldots, a_{k} \in T$, and by Lemmata 2.6, 2.7 we have $a_{0}, \ldots, a_{k} \in W^{*}$. Hence $D_{0} a_{0}, \ldots, D_{0} a_{k} \in W_{0}$. From this we obtain $a \in W_{0}$ by 2.4(b).

By formalizing in ID_{v} the definition of $W_{v}(v<v)$ and the proofs of 2.4-2.8 we obtain Theorem 2.2.

3. The relations \ll_{k} and the functions $H_{a}: \mathbb{N} \rightarrow \mathbb{N}$

In Section 4 we will use terms $a \in T$ instead of ordinals to measure the lengths of infinitary derivations. In this context we need certain relations $<_{k}$ on T which we introduce now. We also introduce a hierarchy $\left(H_{a}\right)_{a \in T_{0}}$ of number-theoretic functions which is closely related to the so called Hardy hierarchy. The relation $<_{0}$ restricted to T_{0} is just the step-down relation of Schmidt [6]; cf. also Ketonen and Solovay [4] where similar relations are studied.

As before the letters a, b, c, d, e, z will always denote elements of T. As mentioned in Section 2 every $a \in T$ can be considered as a notation for a wellfounded tree $\bar{a} \in \mathscr{T}_{\omega}$ in such a way that $\bar{z} \in \operatorname{domain}(\bar{a})$ and $\bar{a}(\bar{z})=\overline{a[z]}$ holds for all $z \in \operatorname{dom}(a)$. Consequently we have the following principle of transfinite induction over T :

$$
\forall a \in T[\forall z \in \operatorname{dom}(a) \Psi(a[z]) \rightarrow \Psi(a)] \rightarrow \forall a \in T \Psi(a)
$$

Definition of $c \ll_{k} a$ by transfinite induction on $a \in T$

$$
c \lll k \quad: \Leftrightarrow \quad a \neq 0 \quad \text { and } \quad \forall z \in d_{k}(a)\left(c<_{k} a[z]\right)
$$

where

$$
d_{k}(a):= \begin{cases}\{k\}, & \text { if } \operatorname{dom}(a) \in\{\{0\}, \mathbb{N}\} \\ \left\{D_{u} e: 0 \neq e \in T\right\}, & \text { if } \operatorname{dom}(a)=T_{u}\end{cases}
$$

and

$$
c \leqq_{k} a \quad: \Leftrightarrow \quad c \ll_{k} a \quad \text { or } \quad c=a .
$$

3.1. Lemma. (a) $c \ll_{k} a$ and $a \ll_{k} b \Rightarrow c \ll_{k} b$.
(b) $c \lll_{k} b \Rightarrow a+c \ll_{k} a+b$.
(c) $b \neq 0 \Rightarrow a \ll_{k} a+b$.

Proof by transfinite induction on b.
3.2. Lemma. (a) $n \leqslant k+1 \Rightarrow\left(D_{v} a\right) \cdot n \ll_{k} D_{v}(a+1)$.
(b) $c \ll_{k} a \Rightarrow D_{v} c \ll_{k} D_{v} a$.

Proof. (a) By 3.1(c) we have $\left(D_{v} a\right) \cdot n<_{k}\left(D_{v} a\right) \cdot(k+1)=D_{v}(a+1)[k]$. Hence $\left(D_{v} a\right) \cdot n \ll_{k} D_{v}(a+1)$, since $d_{k}\left(D_{v}(a+1)\right)=\{k\}$.
(b) Transfinite induction on a : Suppose $a \neq 0$ and $\forall z \in d_{k}(a)\left(c \leqq_{k} a[z]\right)$.

1. $a=a_{0}+1$: By I.H. and 3.2(a) we have $D_{v} c<_{k} D_{v} a_{0} \ll_{k} D_{v} a$.
2. $\operatorname{dom}(a) \in\{\mathbb{N}\} \cup\left\{T_{u}: u<v\right\}$: Then $\quad d_{k}\left(D_{v} a\right)=d_{k}(a) \quad$ and $\quad \forall z \in d_{k}(a)$ $\left(\left(D_{v} a\right)[z]=D_{v} a[z]\right)$. By I.H. we have $\forall z \in d_{k}(a)\left(D_{v} c \leqq_{k} D_{v} a[z]\right)$. Hence $D_{v} c \ll_{k} D_{v} a$.
3. $\operatorname{dom}(a)=T_{u}$ with $v \leqslant u$: Then $d_{k}\left(D_{v} a\right)=\{k\}$ and $\left(D_{v} a\right)[k]=D_{v} a[z]$ with $z:=D_{u} a[1] \in d_{k}(a)$. By I.H. we have $D_{v} c<_{k} D_{v} a[z]$. Hence $D_{v} c \lll k_{k} D_{v} a$.
3.3. Lemma. $\operatorname{dom}(a)=\mathbb{N} \Rightarrow a[n]<_{k} a[n+1]$.

Proof. By induction on the length of a :

1. $a=D_{\omega} 0$: Then we have $a[n+1]=D_{n+2} 0$ and therefore $d_{k}(a[n+1])=$ $\left\{D_{n+1} e: 0 \neq e \in T\right\}, a[n+1][z]=z$. Using 3.1(c) and 3.2(b) we obtain $\forall z \in$ $d_{k}(a[n+1])\left(D_{n+1} 0 \ll_{k} z\right)$. Hence $a[n] \ll_{k} a[n+1]$.
2. For $a=b+c$ or $a=D_{v} b$ with $\operatorname{dom}(b)=\mathbb{N}$ the assertion follows immediately from I.H. and 3.1(b), 3.2(b).
3. For $a=D_{v} b$ with $\operatorname{dom}(b) \in\left\{T_{u}: v \leqslant u\right\}$ we have $a[n]=a[n+1]$.
4. For $a=D_{v}\left(b_{0}+1\right)$ we have $a[n]=\left(D_{v} b_{0}\right)(n+1)<_{k}\left(D_{v} b_{0}\right)(n+2)=$ $a[n+1]$ by $3.1(\mathrm{c})$.
3.4. Lemma. (a) $a \ll_{k} b$ and $k \leqslant m \Rightarrow a \ll_{m} b$.
(b) $\operatorname{dom}(a)=\mathbb{N}$ and $n \leqslant k \Rightarrow a[n] \ll_{k} a$.

Proof. (a) Transfinite induction on b : Suppose $b \neq 0$ and $\forall z \in d_{k}(b)\left(a<\bigwedge_{k} b[z]\right)$. For $\operatorname{dom}(b)=\{0\}$ or $\operatorname{dom}(b)=T_{u}$ the assertion follows immediately from I.H. Otherwise the I.H. and 3.3 yield $a \bigwedge_{m} b[k]<_{m} b[m]$. Hence $a<_{m} b$.
(b) By 3.3 we get $a[n] \leqq_{k} a[k]$. Hence $a[n] \ll_{k} a$.
3.5. Lemma. (a) $a \neq 0 \Rightarrow 1 \leqq_{0} a$.
(b) $D_{v} a+1 \ll_{1} D_{v}(a+1)$.
(c) $D_{u} 1 \ll_{0} D_{u+1} 0$ and $D_{0} 1 \ll_{0} D_{\omega} 0$.
(d) $a \neq 0$ or $v \neq 0 \Rightarrow k+1 \ll_{k} D_{v} a$ and for $k \neq 0, D_{v} a+k+1 \ll_{k} D_{v}(a+1)$.

Proof. (a) For $a \notin\{0,1\}$ we have $\forall z \in d_{0}(a)(a[z] \neq 0)$. From this the assertion follows by transfinite induction on a.
(b) We have $D_{v} a+1 \leqq_{0} D_{v} a+D_{v} a=D_{v}(a+1)[1]$.
(c) By 3.5(a) and 3.2(b) we have $D_{u} 1 \leqq_{0} z=\left(D_{u+1}\right)[z]$ for all $z \in d_{0}\left(D_{u+1} 0\right)$. Hence $D_{\mu} 1 \ll_{0} D_{\mu+1} 0$. Especially $D_{0} 1 \ll_{0} D_{1} 0=\left(D_{\omega} 0\right)[0]$ and thus $D_{0} 1 \ll_{0} D_{\omega} 0$.
(d) We have $k+1=\left(D_{0} 1\right)[k]$ and therefore $k+1 \ll_{k} D_{0} 1$. By (c) it follows that $k+1 \ll_{k} D_{v} 0$ for all $v \neq 0$. If $a \neq 0$, then we have $k+1 \ll_{k} D_{v} 1<_{0} D_{v} a$ by (a) and 3.2(b). Using $k+1 \ll_{k} D_{v} a$ we get $D_{v} a+k+1<_{k}\left(D_{v} a\right) \cdot 2 \ll_{1} D_{v}(a+$ 1).

Definition of $H_{a}: \mathbb{N} \rightarrow \mathbb{N}$ for $a \in T_{0}$

$$
\begin{aligned}
& H_{0}(n):=n, \\
& H_{a}(n):=H_{a[n]}(n+1), \quad \text { if } a \neq 0 .
\end{aligned}
$$

3.6. Lemma. Let $a, b, c \in T_{0}$.
(a) $H_{a}(n)=\min \{k>n: a[n][n+1] \cdots[k-1]=0\}$, if $a \neq 0$.
(b) $H_{a+b}=H_{a} \circ H_{b}$
(c) $H_{a}(n)<H_{a}(n+1)$.
(d) $c \ll{ }_{k} a \Rightarrow H_{c}(n)<H_{a}(n)$, for all $n \geqslant k$.

Proof. (a) Let $m:=\min \{k>n: a[n][n+1] \cdots\{k-1]=0\}$. Then we have

$$
H_{a}(n)=H_{a[n]}(n+1)=\cdots=H_{a[n] \cdots[m-1]}(m)=H_{0}(m)=m
$$

(b) Let $\quad b \neq 0 \quad$ and $\quad m:=H_{b}(n)$. Then $\quad(a+b)[n] \cdots[m-1]=a+$ $(b[n] \cdots[m-1])=a+0=a$ and thus $H_{a+b}(n)=H_{a}(m)=H_{a}\left(H_{b}(n)\right)$.
(c) and (d) are proved simultaneously by transfinite induction on a : Let $a \neq 0$.
(c) By 3.3 we have $a[n] \leqq_{0} a[n+1]$, and therefore by I.H.

$$
H_{a}(n)=H_{a[n]}(n+1) \leqslant H_{a[n+1]}(n+1)<H_{a[n+1]}(n+2)=H_{a}(n+1) .
$$

(d) Suppose $c \leqq_{k} a[k]$ and $n \geqslant k$: By 3.3 we get $c \leqq_{k} a[n]$ and then by I.H. $\Psi_{c}(n) \leqslant H_{a[n]}(n)<H_{a[n]}(n+1)=H_{a}(n)$.

Definition.

$$
D_{v}^{0} a:=D_{v} a, \quad D_{v}^{m+1} a:=D_{v} D_{v}^{m} a, \quad c_{v}^{m}:=D_{0} D_{v}^{m} 0
$$

7. Lemma. (a) $\left(D_{v}^{m} a\right) \cdot n \ll{ }_{k} D_{v}^{m}(a+1)$, for $n \leqslant k+1$.
(b) $\left(D_{v}^{m} 0\right) \cdot n \ll_{k} D_{v}^{m+1} 0$, for $n \leqslant k+1$.

Proof. (a) From 3.1(c) and 3.2(b) we obtain $D_{v}^{m} a \ll{ }_{0} D_{v}^{m}(a+1)$. For $k \neq 0$ we proceed by induction on m :

1. $m=0:\left(D_{v}^{m} a\right) \cdot n=\left(D_{v} a\right) \cdot n \ll_{k} D_{v}(a+1)=D_{v}^{m}(a+1)$ by 3.2.
2. $m \neq 0$: Using 3.2(a), 3.5(a) and the I.H. we obtain

$$
\left(D_{v}^{m} a\right) \cdot n=D_{v}\left(D_{v}^{m-1} a\right) \cdot n \ll_{k} D_{v}\left(D_{v}^{m-1} a+1\right)
$$

and

$$
D_{v}^{m-1} a+1 \leqq_{0}\left(D_{v}^{m-1} a\right) \cdot 2 \lll{ }_{1} D_{v}^{m-1}(a+1)
$$

From this the assertion follows by 3.2(b).
(b) $\left(D_{v}^{m} 0\right) \cdot n \ll_{k} D_{v}^{m} 1 \ll_{0} D_{v}^{m} D_{v} 0=D_{v}^{m+1} 0$ by 3.7(a), 3.5(a), 3.2(b).
3.8. Lemma. (a) $m \geqslant 1$ and $n \geqslant 1 \Rightarrow H_{c_{v}^{m}}(4 n+6)<H_{c_{v}^{m+1}}(n)$.
(b) $n \geqslant m+1 \Rightarrow H_{c_{v}^{m}}(n)<H_{c_{v}^{n}}(1)$.

Proof. (a) Let $a:=D_{v}^{m} 0$. Obviously $H_{i}(n)=i+n$ and therefore $H_{D_{0} 1}(n)=$ $H_{n+1}(n+1)=2 n+2$. By $3.6(\mathrm{~b})$ we obtain $H_{D_{0}}(4 n+6)=H_{D_{0}+D_{0} 1+D_{0} 1}(n)$. By 3.5(d) we have $2<_{1} a$ (since $m \neq 0$) and thus

$$
D_{0} a+\left(D_{0} 1\right) \cdot 2 \ll_{1} D_{0} a+D_{0} 2 \ll_{1} D_{0} a+D_{0} a \lll_{1} D_{0}(a+1)
$$

and $a+1 \leqq_{0} a+a=\left(D_{v}^{m} 0\right) \cdot 2 \ll_{1} D_{v}^{m+1} 0$. From this together with 3.2(b) we get $D_{0} a+\left(D_{0} 1\right) \cdot 2 \ll{ }_{1} D_{0} D_{v}^{m+1} 0=c_{v}^{m+1}$. Hence $H_{D_{0} a}(4 n+6)<H_{c v_{n}^{+1}}(n)$ for $n \geqslant 1$.
(b) By 3.7(b) and 3.2(b) we have $c_{v}^{n} \ll_{0} c_{v}^{n+1}$. Hence $n \leqslant H_{c_{v}^{n}}(0)$ and $n+1 \leqslant$ $H_{c_{v}^{n}}(1)$ by 3.6(c, d). For $n \geqslant m+1$ we have

$$
\begin{aligned}
c_{v}^{n-1}+c_{v}^{n-1} & =\left(D_{0} D_{v}^{n-1} 0\right) \cdot 2 \lll_{1} D_{0}\left(D_{v}^{n-1} 0+1\right) \\
& <_{0} D_{0}\left(D_{v}^{n-1} 0+D_{v}^{n-1} 0\right) \lll{ }_{1} D_{0} D_{v}^{n} 0=c_{v}^{n}
\end{aligned}
$$

and thus

$$
H_{c_{v}^{n}}(n) \leqslant H_{c_{v}^{n-1}}(n) \leqslant H_{c_{v}^{n-1}}\left(H_{c_{v}^{n-1}}(1)\right)=H_{c_{v}^{n-1}+c_{v}^{n-1}}(1)<H_{c_{v}^{n}}(1) .
$$

4. The infinitary system ID_{ω}^{x}

In this section we prove the following theorem:
4.0. Theorem. If a Π_{2}^{0}-sentence $\forall x \exists y \varphi(x, y)\left(\varphi \in \Sigma_{1}^{0}\right)$ is provable in ID_{v} $(v \leqslant \omega)$, then there exists $p \in \mathbb{N}$ such that $\forall n \geqslant p \exists k<H_{D_{0} D_{n}^{n} 0}(1) \varphi(n, k)$.

Corollary. $\mathrm{ID}_{v} \not \forall \forall n \exists k\left(D_{0} D_{v}^{n}\right)[1][2] \cdots[k]=0$.
Proof. Suppose $\mathrm{ID}_{v} \vdash \forall n \exists k\left(D_{0} D_{v}^{n} 0\right)[1] \cdots[k]=0$. Then also $\mathrm{ID}_{v} \vdash \forall n \exists k$ $\left(D_{0} D_{v}^{n}\right)[1] \cdots[k-1]=0$ and therefore by 4.0 there exists $p \in \mathbb{N}$ such that $\quad \forall n \geqslant p \exists k<H_{D_{0} D_{0}^{n 0}}(1)\left(D_{0} D_{v}^{n} 0\right)[1] \cdots[k-1]=0$. Hence $\min \{k \epsilon$ $\left.\mathbb{N}:\left(D_{0} D_{v}^{p}\right)[1] \cdots[k-1]=0\right\}<H_{D_{0} D_{0}^{p}(1)}$, which is a contradiction to 3.6(a).

From this corollary together with 2.1 and the fact that ID_{ω} proves the same arithmetic sentences as (Π_{1}^{1}-CA) + BI we obtain Theorem III, i.e.,

$$
\left(\Pi_{1}^{1}-\mathrm{CA}\right)+\mathrm{BI} \not \forall \forall n \exists k A^{n}(1) \cdots(k)=\oplus .
$$

Theorem 4.0 is obtained by embedding ID_{v} into an infinitary proof system $\mathrm{ID}_{\omega}^{\infty}$ which allows cut elimination.

Preliminaries. Let L denote the first-order language consisting of the following symbols:
(i) the logical constants $\neg, \wedge, \vee, \forall, \exists$,
(ii) number variables (indicated by x, y),
(iii) a constant 0 (zero) and a unary function symbol ' (successor),
(iv) constants for primitive recursive predicates (among them the symbol < for the arithmetic 'less' relation).

By s, t, t_{0}, \ldots we denote arbitrary L-terms. The constant terms $0,0^{\prime}, 0^{\prime \prime}, \ldots$ are called numerals; we identify numerals and natural numbers and denote them by i, j, k, m, n, u, v, w. A formula of the shape $R t_{1} \cdots t_{n}$ or $\neg R t_{1} \cdots t_{n}$, where R is a n-ary predicate symbol of L, is called an arithmetic prime formula (abbreviated by a.p.f.).

Let X be a unary and Y a binary predicate variable. A positive operator form is a formula $\mathfrak{A}(X, Y, y, x)$ of $L(X, Y)$ in which only X, Y, y, x occur free and all occurrences of X are positive. The language L_{ID} is obtained from L by adding a binary predicate constant $P^{\mathbb{2}}$ and a 3-ary predicate constant $P_{<}^{2 \mathbb{Q}}$ for each positive operator form \mathfrak{A}.

Abbreviations

$$
\begin{array}{ll}
t \in P_{s}^{\mathfrak{Q}}: \equiv P_{s}^{\mathfrak{Q}} t: \equiv P^{\mathfrak{2}} s t, & t \notin P_{s}^{\mathfrak{q}}: \equiv \neg\left(t \in P_{s}^{\mathfrak{2}}\right), \\
P_{<s}^{\mathfrak{2}} t_{0} t_{1}: \equiv P_{<}^{\mathfrak{2}} s t_{0} t_{1}, & \mathfrak{A}_{s}(X, x): \equiv \mathfrak{U}^{(}\left(X, P_{<s}^{\mathfrak{Q}}, s, x\right) .
\end{array}
$$

The formal theory ID_{ω} is an extension of Peano Arithmetic, formulated in the language L_{ID}, by the following axioms:
($P^{\mathfrak{U}}$.1) $\forall y \forall x\left(\mathfrak{U}_{y}\left(P_{y}^{\mathfrak{Q}}, x\right) \rightarrow x \in P_{y}^{\mathfrak{U}}\right)$.
$\left(P^{\mathfrak{Q}} .2\right) \forall y\left(\forall x\left(\mathfrak{A}_{y}(F, x) \rightarrow F(x)\right) \rightarrow \forall x\left(x \in P_{y}^{\mathbb{U}} \rightarrow F(x)\right)\right)$,
for every L_{ID}-formula $F(x)$.
($\left.P_{<}^{\mathfrak{Q}}\right) \quad \forall y \forall x_{0} \forall x_{1}\left(P_{<y}^{\mathfrak{Q}} x_{0} x_{1} \leftrightarrow x_{0}<y \wedge x_{1} \in P_{x_{0}}^{\mathfrak{Q}}\right)$.
The infinitary system $\mathrm{ID}_{\omega}^{\infty}$ will be formulated in the language $L_{\mathrm{ID}}(N)$ which arises from L_{ID} by adding a new unary predicate symbol N. This is a technical tool which shall help us to keep control over the numerials n occurring in \exists-inferences $A(n) \vdash \exists x A(x)$ of $\mathrm{ID}_{\omega}^{\infty}$-derivations. Following Tait [8] we assume all formulas to be in negation normal form, i.e., the formulas are built up from atomic and negated atomic formulas by means of $\wedge, \vee, \forall \exists$ If A is a complex formula we consider $\neg A$ as a notation for the corresponding negation normal form.

Definition of the length $|A|$ of a $L_{\mathrm{ID}}(N)$-formula A

1. $|N t|:=|\neg N t|:=0$.
2. $|A|:=1$, if A is an a.p.f. or a formula ($\neg) P_{s}^{\mathfrak{q}} t$.
3. $\left|P_{<s}^{\mathfrak{Z}} t_{0} t_{1}\right|:=\left|\neg P_{<s}^{\mathfrak{Q}} t_{0} t_{1}\right|:=2$.
4. $|A \wedge B|:=|A \vee B|:=\max \{|A|,|B|\}+1$.
5. $|\forall x A|:=|\exists x A|:=|A|+1$.

Proposition. $|\neg A|=|A|$, for each $L_{\mathrm{ID}}(N)$-formula A.
As before we use the letters u, v to denote numbers $\leqslant \omega$.

Inductive definition of formula sets $\operatorname{Pos}_{v}(v<\omega)$

1. All $L(N)$-formulas belong to Pos_{v}.
2. All formulas $P_{u}^{\mathfrak{Y}} t,(\neg) P_{<u}^{2 g} t_{0} t_{1}$ with $u \leqslant v$ belong to Pos_{v}.
3. All formulas $\neg P_{u}^{\text {श }} t$ with $u<v$ belong to Pos_{v}.
4. If A and B belong to Pos_{v}, then the formulas $A \wedge B, A \vee B, \forall x A, \exists x A$ also belong to Pos_{v}.

Remark. If $P_{u}^{\mathfrak{Q}} t \in \operatorname{Pos}_{v}$, then also $\mathfrak{A}_{u}\left(P_{u}^{\mathfrak{Q}}, t\right) \in \operatorname{Pos}_{v}$.

Notations

- In the following A, B, C always denote closed $L_{\mathrm{mD}}(N)$-formulas.
$-\Gamma, \Gamma^{\prime}, \Delta$ denote finite sets of closed $L_{\mathrm{ID}}(N)$-formulas; we write, e.g., Γ, Δ, A for $\Gamma \cup \Delta \cup\{A\}$.
$-A^{N}$ denotes the result of restricting all quantifiers in A to N.
$-t \in N: \equiv N t, t \notin N: \equiv \neg N t$.
- As before we use the letters a, b, c, d, z to denote elements of T.

Definition

$$
c<_{\Gamma} a: \Leftrightarrow c \lll<_{k} a, \quad \text { where } k:=\max (\{2\} \cup\{3 n: \neg N n \in \Gamma\}) .
$$

4.1. Proposition. (a) $c \ll_{\Gamma} a$ and $\Gamma \subseteq \Delta \Rightarrow c<_{\Delta} a$ (cf. 3.4(a)).
(b) $c \ll_{\Gamma \cup(0 \& N)} a \Rightarrow c \ll_{\Gamma} a$.

Basic inference rules

(^) $\quad A_{0}, A_{1} \vdash A_{0} \wedge A_{1}$.
(v) $\quad A \vdash A \vee B ; \quad B \vdash A \vee B$.
($\left.\forall^{\infty}\right) \quad(A(n))_{n \in \mathbb{N}} \vdash \forall x A(x)$.
(ヨ) $\quad A(n) \vdash \exists x A(x)$.
(N) $n \in N \vdash n^{\prime} \in N$.
$\left(P_{<u}^{\mathbb{Q}}\right) \quad P_{j}^{\mathbb{Z}} n \vdash P_{<u}^{\mathbb{Z}} j n, \quad$ if $j<u<\omega$.
$\left(\neg P_{u}^{\mathrm{K}}\right) \quad \neg P_{j}^{\mathrm{Q}} n \vdash \neg P_{<u}^{\mathrm{Q}} j n, \quad$ if $j<u<\omega$.

Every instance $\left(A_{i}\right)_{i \in I} \vdash A$ of these rules is called a basic inference. If $\left(A_{i}\right)_{i \in I} \vdash A$ is a basic inference with $A \in \operatorname{Pos}_{v}$, then $A_{i} \in \operatorname{Pos}_{v}$ for all $i \in I$. This property will be used in the proof of 4.6.

The system $\mathrm{ID}_{\omega}^{\infty}$ consists of the language $L_{\mathrm{ID}}(N)$ and a certain derivability relation $\vdash_{m}^{a} \Gamma$ (" Γ is derivable with order $a \in T$ and cutdegree $m \in \mathbb{N}$ ") which we introduce below by an iterated inductive definition similar to that of the tree classes \mathscr{T}_{v} in Section 1. The main feature in the definition of $\vdash_{m}^{a} \Gamma$ is the Ω_{u+1}-rule
which we have developed in Buchholz [1], [2]. We try to give a short explanation of this inference rule. To this purpose let us consider " ${ }_{1}^{a} A$ " as a notion of realizability similar to modified realizability. So we read " $\vdash_{1}^{a} A$ " as " a realizes A ". Now suppose that $\vdash_{1}^{z} \Gamma$ is already defined for all $z \in T_{u}$. Then, according to the fact that

$$
f^{\sigma \rightarrow \tau} \mathrm{mr} A \rightarrow B \quad \text { iff } \quad \forall g^{\sigma}\left(g^{\sigma} \operatorname{mr} A \Rightarrow f^{\sigma \rightarrow \tau}\left(g^{\sigma}\right) \mathrm{mr} B\right)
$$

it seems reasonable to define:

$$
a \text { realizes }\left(P_{u}^{\mathfrak{Q}} n \rightarrow B\right): \Leftrightarrow\left\{\begin{array}{l}
\operatorname{dom}(a)=T_{u} \text { and } \\
\forall z \in T_{u}\left(z \text { realizes } P_{u}^{\mathfrak{q}} n \Rightarrow a[z] \text { realizes } B\right) .
\end{array}\right.
$$

This motivates the following inference rule:

$$
\left.\begin{array}{ll}
\left(\Omega_{u+1}\right)^{\prime} & \operatorname{dom}(a)=T_{u} \text { and } \\
& \forall z \in T_{u}\left(\vdash_{1}^{z} P_{u}^{\mathfrak{a}} n \Rightarrow \vdash_{m}^{a[z]} B\right)
\end{array}\right\} \Rightarrow \vdash_{m}^{a} P_{u}^{\mathfrak{2}} n \rightarrow B
$$

The next step is a straightforward modification of this rule:

$$
\left.\begin{array}{ll}
\left(\Omega_{u+1}\right)^{\prime \prime} & \operatorname{dom}(a)=T_{u} \text { and } \\
& \forall z \in T_{u} \forall A \in \operatorname{Pos}_{u}\left(\vdash_{1}^{z} A \vee P_{u}^{\mathfrak{g}} n \Rightarrow \vdash_{m}^{a[z]} A \vee B\right)
\end{array}\right\} \Rightarrow \vdash_{m}^{a} P_{u}^{2} n \rightarrow B
$$

For technical reasons we combine every application of $\left(\Omega_{u+1}\right)^{\prime \prime}$ with a cut $B \vee P_{u}^{\mathbb{Q}} n, P_{u}^{2 \pi} n \rightarrow B \vdash B$. This gives the final version of the $\Omega_{u+1}-$ rule.

Inductive definition of $\vdash_{m}^{a} \Gamma(a \in T, m \in \mathbb{N})$
(Ax1) $\quad \vdash_{m}^{a} \Gamma, A$, if A is a true a.p.f. or $A \equiv 0 \in N$ or $A \equiv \neg P_{<j}^{\mathfrak{R}}$ in with $u \leqslant j$.
(Ax2) $\quad \vdash_{m}^{a} \Gamma, \neg A, A$, if $A \equiv n \in N$ or $A \equiv P_{u}^{2} n$.
(Bas) If $\left(A_{i}\right)_{i \in I} \vdash A$ is a basic inference with $A \in \Gamma$ and $\forall i \in I\left(\vdash_{m}^{a} \Gamma, A_{i}\right)$, then $\vdash_{m}^{a+1} \Gamma$.
$\left(P_{u}^{\mathfrak{Q}}\right) \quad \vdash_{m}^{a} \Gamma, n \in N \wedge \mathfrak{U}_{u}^{N}\left(P_{u}^{\mathfrak{q}}, n\right)$ and $P_{u}^{\mathfrak{Q}} n \in \Gamma \Rightarrow \vdash_{m}^{a+3} \Gamma$.
(Cut) $\vdash_{m}^{a} \Gamma, \neg C$ and $\vdash_{m}^{a} \Gamma, C$ and $|C|<m \Rightarrow \vdash_{m}^{a+1} \Gamma$.
$\left.\begin{array}{ll}\left(\Omega_{u+1}\right) & \operatorname{dom}(a)=T_{u} \text { and } \vdash_{m}^{a[1]} \Gamma, P_{u}^{\mathfrak{Q}} n \text { and } \\ & \forall z \in T_{u} \forall \Delta \subseteq \operatorname{Pos}_{u}\left(\vdash_{1}^{z} \Delta, P_{u}^{Q} n \Rightarrow \vdash_{m}^{a[z]} \Delta, \Gamma\right)\end{array}\right\} \Rightarrow \vdash_{m}^{a} \Gamma$.
(<<) $\quad \vdash_{m}^{b} \Gamma$ and $b \ll{ }_{\Gamma} a \Rightarrow \vdash_{m}^{a} \Gamma$.
4.2. Lemma. (a) $\vdash_{m}^{a} \Gamma$ and $m \leqslant k, \Gamma \subseteq \Delta \Rightarrow \vdash_{k}^{a} \Delta$.
(b) $\vdash_{m}^{a} \Gamma \Rightarrow \vdash_{m}^{c+a} \Gamma$.
(c) $\vdash_{m}^{a} \Gamma, 0 \notin N \Rightarrow \vdash_{m}^{a} \Gamma$.

Proof. By transfinite induction on a using 3.1(b) and 4.1 and the fact that $(c+a)[z]=c+a[z]$ for all $z \in \operatorname{dom}(a)$.
4.3. Lemma (Inversion). Let $\left(A_{i}\right)_{i \in I} \vdash A$ be a basic inference $(\wedge),\left(\forall^{x}\right),\left(P_{<u}^{\mathfrak{q}}\right)$, $\left(\neg P_{<u}^{2}\right)$. Then $\vdash_{m}^{a} \Gamma$, A implies $\forall i \in I\left(\vdash_{m}^{a} \Gamma, A_{i}\right)$.

Proof. By transfinite induction on a.
4.4. Lemma (Reduction). Suppose $\vdash_{m}^{a} \Gamma_{0}, \neg C$ and $|C| \leqslant m$, where C is a formula of the shape $A \vee B$ or $\exists x A(x)$ or $P_{<u}^{2} j n$ or $\neg P_{u}^{\mathscr{Q}} n$ or a false a.p.f. Then $\vdash_{m}^{b} \Gamma, C$ implies $\vdash_{m}^{a+b} \Gamma_{0}, \Gamma$.

Proof. By transfinite induction on b :
(Ax1) If $\vdash_{m}^{b} \Gamma, C$ holds by (Ax1), then also $\vdash_{m}^{a+b} \Gamma$ by (Ax1).
(Ax2) If $\vdash_{m}^{b} \Gamma, C$ holds by (Ax2), then either $\vdash_{m}^{a+b} \Gamma$ by (Ax2) or $\neg C \in \Gamma$. In the latter case $\vdash_{m}^{a+b} \Gamma_{0}, \Gamma$ follows from $\vdash_{m}^{a} \Gamma_{0}, \neg C$.
(Bas) Suppose $b=b_{0}+1, \quad A \in \Gamma \cup\{C\} \quad$ and $\quad \forall i \in I\left(\vdash_{m}^{b_{0}} \Gamma, C, A_{i}\right)$ where $\left(A_{i}\right)_{i \in I} \vdash A$ is a basic inference (\mathscr{I}). Then by I.H. we have (1) $\forall i \in$ $I\left(\vdash_{m}^{a+b_{0}} \Gamma_{0}, \Gamma, A_{i}\right)$.

Case 1: $A \in \Gamma$. Then the assertion follows immediately from (1).
Case 2: $A \equiv C$. Then, according to the assumption we have made on $C,(\mathscr{I})$ is an inference $(\vee),(\exists),\left(P_{<u}^{\mathfrak{2}}\right)$ with $I=\{0\}$. By 4.3, 4.2(a) and (<<) from $\vdash_{m}^{a} \Gamma_{0}, \neg C$ we get (2) $\vdash_{m}^{a+b_{0}} \Gamma_{0}, \Gamma, \neg A_{0}$. From (1), (2) and $\left|A_{0}\right|<|C| \leqslant m$ we obtain $\vdash_{m}^{a+b} \Gamma_{0}, \Gamma$ by a cut with cutformula A_{0}.
(<<) Suppose $\vdash_{m}^{b_{0}} \Gamma, C$ with $b_{0} \ll_{\Gamma, C} b$. Since C is not a formula $n \notin N$, it follows that $a+b_{0}{\ll \Gamma_{0}, \Gamma} a+b$. By I.H. we have $\vdash_{m}^{a+b_{0}} \Gamma_{0}, \Gamma$. Hence $\vdash_{m}^{a+b} \Gamma_{0}, \Gamma$ by (<<).

In all other cases the assertion follows immediately from I.H.
4.5. Theorem (Cutelimination). $\vdash_{m+1}^{a} \Gamma$ and $a \in T_{\rho}, \rho \leqslant \omega, m>0 \Rightarrow \vdash_{m}^{D_{\rho} a} \Gamma$.

Proof. By transfinite induction on a :

1. If $\vdash_{m+1}^{a} \Gamma$ holds by (Ax 1) or (Ax 2), then the assertion is trivial.
2. Suppose $a=a_{0}+1, A \in \Gamma$ and $\forall i \in I\left(\vdash_{m+1}^{a_{0}} \Gamma, A_{i}\right)$, where $\left(A_{i}\right)_{i \in I} \vdash A$ is a basic inference (\mathscr{I}). Then by I.H. we have $\forall i \in I\left(\vdash_{m}^{D_{o} a_{o}} \Gamma, A_{i}\right)$. By ($\left.\mathscr{I}\right)$ we obtain $\vdash_{m}^{D_{o} a_{0}+1} \Gamma$ and then $\vdash_{m}^{D_{\rho} a} \Gamma$ by (<<) and 3.5(a).
3. Suppose $a=a_{0}+3, P_{u}^{\mathfrak{Q}} n \in \Gamma$ and $\vdash_{m+1}^{a_{0}} \Gamma, B$ with $B \equiv n \in N \wedge \mathfrak{X}_{\mu}^{N}\left(P_{u}^{\mathscr{Q}}, n\right)$. Then by I.H. and (<<) we have $\vdash_{m}^{D_{\rho}\left(a_{0}+2\right)} \Gamma, B$. By $\left(P_{u}^{\mathbb{Z}}\right)$ we get $\vdash_{m}^{D_{\rho}\left(a_{0}+2\right)+3} \Gamma$ and then $\vdash_{m}^{D_{0} a} \Gamma$ by (<<) and $3.5(\mathrm{~d})$.
4. Suppose $\operatorname{dom}(a)=T_{u}, \vdash_{m+1}^{a[1]} \Gamma, P_{u}^{\mathfrak{R}} n$ and $\vdash_{m+1}^{a[z]} \Delta, \Gamma$ for all $z \in T_{u}, \Delta \subseteq \operatorname{Pos}_{u}$ with $\vdash_{1}^{z} \Delta, P_{u}^{\mathrm{q}} n$. Since $a \in T_{\rho}$, we have $u<\rho$ and thus $\operatorname{dom}\left(D_{\rho} a\right)=T_{u}$ and $\left(D_{\rho} a\right)[z]=D_{\rho} a[z]$. By I.H. we have $\vdash_{m}^{D_{a} a[1]} \Gamma, P_{u}^{\mathscr{q}} n$ and $\vdash_{m}^{D_{D} a[z]} \Delta, \Gamma$ for all $z \in T_{u}$, $\Delta \leqslant \operatorname{Pos}_{u}$ with $\vdash_{1}^{z} \Delta, P_{u}^{\text {gI }} n$. From this we obtain $\vdash_{m}^{D_{\rho} a} \Gamma$ by an application of $\left(\Omega_{u+1}\right)$.
5. Suppose $\vdash_{m+1}^{a_{0}} \Gamma$ and $a_{0} \ll_{\Gamma} a$. Then by I.H. and 3.2(b) we have $\vdash_{m}^{D_{\rho} a_{0}} \Gamma$ and $D_{\rho} a_{0} \ll{ }_{\Gamma} D_{\rho} a$. Hence $\vdash_{m}^{D_{\rho} a} \Gamma$.
6. Suppose $a=a_{0}+1, \vdash_{m+1}^{a_{0}} \Gamma, \neg C, \vdash_{m+1}^{a_{0}} \Gamma, C$ and $|C|<m+1$. Then by I.H. we have $\vdash_{m}^{D_{p} a_{0}} \Gamma, \neg C$ and $\vdash_{m}^{D_{p} a_{0}} \Gamma, C$.
6.1. $|C|<m$: In this case we obtain $\vdash_{m}^{D_{\rho} a_{0}+1} \Gamma$ by a cut with cutformula C. The assertion follows by (<) and $3.5(\mathrm{~b})$.
6.2. $|C|=m$: Since $m>0$, we may assume that C fulfills the condition of 4.4. Then by 4.4 we obtain $\vdash_{m}^{D_{\rho} a_{0}+D_{\rho} a_{0}} \Gamma$, and from this $\vdash_{m}^{D_{\rho} a} \Gamma$ by (<<) and 3.2(a).

The following theorem shows that if $\Gamma \subseteq \operatorname{Pos}_{v}$ is derivable with cutdegree 1 , then one can eliminate all Ω_{u+1}-inferences with $u \geqslant v$ from the derivation of Γ.
4.6 Theorem (Collapsing). $\vdash_{1}^{a} \Gamma$ and $\Gamma \subseteq \operatorname{Pos}_{v} \Rightarrow \vdash_{1}^{D_{v} a} \Gamma$.

Proof. By transfinite induction on a :

1. Suppose $\operatorname{dom}(a)=T_{u}, \vdash_{1}^{a[1]} \Gamma, P_{u}^{9} n$ and $\vdash_{1}^{a[z]} \Delta, \Gamma$ for all $z \in T_{u}, \Delta \subseteq \operatorname{Pos}_{u}$ with $\vdash_{1}^{2} \Delta, P_{u}^{2 I} n$.

Case 1: $u<v$. Then by I.H. we have $\vdash_{1}^{D_{y} a[1]} \Gamma, P_{u}^{\text {II }} n$ and $\vdash_{1}^{D_{v a} a[z]} \Delta, \Gamma$ for all $z \in T_{u}, \Delta \subseteq \operatorname{Pos}_{u}$ with $\vdash_{1}^{z} \Delta, P_{u}^{2} n$. Moreover, $\operatorname{dom}\left(D_{v} a\right)=T_{u}$ and $\left(D_{v} a\right)[z]=$ $D_{v} a[z]$. The assertion follows by $\left(\Omega_{u+1}\right)$.

Case 2: $u \geqslant v$. Then $\Gamma \cup\left\{P_{u}^{\approx} n\right\} \subseteq \operatorname{Pos}_{u}$ and therefore by I.H. $\vdash_{1}^{D_{u} a[1]} \Gamma, P_{u}^{2 \pi} n$. Since $z:=D_{u} a[1] \in T_{u}$, we get $\vdash_{1}^{a[z]} \Gamma$. Now we apply the I.H. again and obtain $\vdash_{1}^{D_{v} a[z]} \Gamma$. But $D_{v} a[z]=\left(D_{v} a\right)[0] \ll_{\Gamma} D_{v} a$, and therefore $\vdash_{1}^{D_{v} a} \Gamma$.
2. In all other cases the assertion follows immediately from the I.H. by 3.5(b, d), 3.4(a), (<<).

Definition

$$
L(N)_{+}:=\{A: A \text { is a sentence of } L(N) \text { in which } N \text { occurs only positively }\} .
$$

For $\Gamma=\left\{A_{1}, \ldots, A_{n}\right\} \subseteq L(N)_{+}$we define:

$$
F \Gamma(k): \Leftrightarrow\left\{\begin{array}{l}
A_{1} \vee \cdots \vee A_{n} \text { is true in the standard model } \\
\text { when } N \text { is interpreted as }\{i \in \mathbb{N}: 3 i<k\} .
\end{array}\right.
$$

4.7. Lemma.

$$
\left.\begin{array}{l}
\vdash_{1}^{a} i_{1} \notin N, \ldots, i_{m} \notin N, \Gamma \text { and } \\
\Gamma \subseteq L(N)_{+}, n \geqslant \max \left\{2,3 i_{1}, \ldots, 3 i_{m}\right\}
\end{array}\right\} \Rightarrow \vDash \Gamma\left(H_{D_{D_{0}}}(n)\right) .
$$

Proof. By transfinite induction on a : Let

$$
\Gamma_{0}:=\left\{i_{1} \notin N, \ldots, i_{m} \notin N\right\}, \quad k:=\max \left\{2,3 i_{1}, \ldots, 3 i_{m}\right\} \leqslant n .
$$

1. If $\vdash_{1}^{a} \Gamma_{0}, \Gamma$ holds by (Ax 1), then the assertion is trivial.
2. If $\vdash_{1}^{a} \Gamma_{0}, \Gamma$ holds by (Ax2), then the assertion follows from $n<H_{D_{0} a}(n)$.
3. If $\vdash_{1}^{a} \Gamma_{0}, \Gamma$ is the conclusion of a basic inference $\neq(N)$, then the assertion follows immediately from the I.H. and the relation $H_{D_{b} b}(n)<H_{D_{0}(b+1)}(n)$.
4. Suppose $a=b+1, N(j+1) \in \Gamma, \vdash_{1}^{b} \Gamma_{0}, \Gamma, N j$. By I.H. we obtain $\vDash \Gamma \cup$
$\{N j\}\left(H_{D_{0} b}(n)\right)$. By 3.1(c), 3.2(a), 3.6(d) we have $H_{D_{0} b}(n)<H_{\left(D_{0} b\right) \cdot 2}(n)<$ $H_{\left(D_{0} b\right) \cdot 3}(n)<H_{D_{b} a}(n)$ and therefore $H_{D_{0} b}(n)+3 \leqslant H_{D_{0} a}(n)$. Hence $\vDash \Gamma\left(H_{D_{0} a}(n)\right)$.
5. Suppose $\vdash_{1}^{b} \Gamma_{0}, \Gamma$ with $b \ll_{\Gamma_{0} \cup r} a$. Then we have $D_{0} b \ll_{k} D_{0} a$ and therefore $H_{D_{0} b}(n)<H_{D_{0}}(n)$, since $n \geqslant k$. Now the assertion follows immediately from the I.H.
6. Suppose $a=b+1, \vdash_{1}^{b} \Gamma_{0}, \Gamma, i_{0} \in N$ and $\vdash_{1}^{b} i_{0} \notin N, \Gamma_{0}, \Gamma$. Let $\bar{n}:=H_{D_{0} b}(n)$. Then we have

$$
n<\bar{n}<H_{D_{0} b}(\bar{n})=H_{\left(D_{0} b\right) \cdot 2}(n)<H_{D_{0} a}(n)
$$

6.1. $\bar{n}<3 i_{0}$: From $\vdash_{1}^{b} \Gamma_{0}, \Gamma, i_{0} \in N$ we obtain by the I.H. $\vDash \Gamma \cup\left\{i_{0} \in N\right\}(\bar{n})$ and then $\vDash \Gamma(\bar{n})$, since $3 i_{0} \nless \bar{n}$. Using $\bar{n}<H_{D_{0}}(n)$ we get the assertion.
6.2. $3 i_{0} \leqslant \bar{n}$: From $\vdash_{1}^{b} i_{0} \notin N, \Gamma_{0}, \Gamma$ and $\max \left\{k, 3 i_{0}\right\} \leqslant \bar{n}$ we obtain by the I.H. $\vDash \Gamma\left(H_{D_{0} b}(\bar{n})\right)$ and thus $\vDash \Gamma\left(H_{D_{b} a}(n)\right)$.
7. Suppose $\operatorname{dom}(a)=T_{u}, \vdash_{1}^{a[1]} \Gamma_{0}, \Gamma, P_{u}^{\mathfrak{Z}} j$ and $\vdash_{1}^{a[z]} \Delta, \Gamma_{0}, \Gamma$ for all $z \in T_{u}, \Delta \subseteq$ Pos_{u} with $\vdash_{1}^{z} \Delta, P_{u}^{\mathfrak{q}} j$. By 4.6 we obtain $\vdash_{1}^{z} \Gamma_{0}, \Gamma, P_{u}^{\mathfrak{q}} j$ with $z:=D_{u} a[1] \in T_{u}$. From this we get $\vdash_{1}^{a[z]} \Gamma_{0}, \Gamma$. Now we apply the I.H. and obtain $\vDash \Gamma\left(H_{D_{0} a[z]}(n)\right)$. Hence $\vDash \Gamma\left(H_{D_{0} a}(n)\right)$, since $D_{0} a[z]=\left(D_{0} a\right)[0]$.
4.8. Theorem. If $\vdash_{1}^{D^{m}}{ }^{m} \forall x \in N \exists y \in N \varphi^{N}(x, y)$, where $v \leqslant \omega, m \neq 0$ and $\varphi(x, y) a$ Σ_{1}^{0}-formula of the language L, then there exists $p \in \mathbb{N}$ such that $\forall n \geqslant p \exists k<$ $H_{D_{0} D_{v}^{n 0}}(1) \varphi(n, k)$.

Proof. Let $a:=D_{v}^{m} 0$. From the premise we obtain $\vdash_{1}^{a} n \notin N, \exists y \in N \varphi^{N}(n, y)$ for all $n \in \mathbb{N}$. Then by 4.7 we get $\vDash \exists y \in N \varphi^{N}(n, y)\left(H_{D_{0} a}(\bar{n})\right)$ for all $n \in \mathbb{N}$ and all $\bar{n} \geqslant \max \{2,3 n\}$. Hence $\forall n \exists k<H_{D_{0} a}(3 n+2) \varphi(n, k)$. By 3.8 we have $H_{D_{0} a}(3 n+$ 2) $<H_{D_{0} D_{0}^{n}}(1)$ for all $n \geqslant m+2$.

In the remaining part of this section we show that $\mathrm{ID}_{v}(\nu \leqslant \omega)$ can be embedded into $\mathrm{ID}_{\omega}^{\infty}$ and finally we prove Theorem 4.0. Let $v \leqslant \omega$ be fixed.

Abbreviations

$$
\begin{aligned}
& \tilde{k}:=D_{v}^{k+2} 0 \\
& a \rightarrow \longrightarrow_{n} b: \Leftrightarrow a_{0}, \ldots, a_{n}\left(a_{0}=a \wedge a_{n}=b \wedge \forall i<n\left(a_{i}+1 \leqq_{2} a_{i+1}\right)\right) .
\end{aligned}
$$

4.9. Lemma. (a) $\tilde{k} \ll_{1} \widetilde{k+1}$, (b) $\tilde{k} \rightarrow \rightarrow_{6} \widetilde{k+1}$.

Proof. (a) follows from 3.7(b).
(b) By $3.5(\mathrm{~d})$ and $3.7(\mathrm{~b})$ we have $3 \lll<_{2} \tilde{k}$ and $\tilde{k} \cdot 3 \ll_{2} \widetilde{k+1}$. Hence $\tilde{k}+3 \ll_{2}$ $\tilde{k} \cdot 2, \tilde{k} \cdot 2+3<_{2} \tilde{k} \cdot 3<_{2} \overparen{k+1}$ and consequently $\tilde{k} \rightarrow_{3} \tilde{k} \cdot 2 \rightarrow_{3} \overparen{k+1}$.
4.10. Lemma. $\vdash_{0}^{k} \neg A, A$ where $k:=|A|$

Proof. By induction on $|A|$:

1. If A is atomic, then $\vdash_{0}^{\bar{k}} \neg A, A$ by (Ax 1) or (Ax2).
2. $A=A_{0} \wedge A_{1}$: Then $k=m+1$ with $m:=\max \left\{\left|A_{0}\right|,\left|A_{1}\right|\right\}$. By I.H., 4.9(a) and (<<) we get $\vdash_{0}^{\bar{m}} \neg A_{i}, A_{i}$ for $i=0,1$, and then $\vdash_{0}^{(+1} \neg A_{0} \vee \neg A_{1}, A_{0} \wedge A_{1}$ by (\vee), ($\wedge), 4.9(b)$.
3. $A=\forall x B(x)$: This case is treated as 2 .
4.11. Lemma. $\vdash_{0}^{\bar{k}+D_{0} 1} \neg F(0), \neg \forall x \in N\left(F(x) \rightarrow F\left(x^{\prime}\right)\right)$, $n \notin N, F(n)$, where $k:=$ $|F|$.

Proof. Let $G:=\forall x \in N\left(F(x) \rightarrow F\left(x^{\prime}\right)\right)$. By induction on n we show:

$$
\begin{equation*}
\vdash_{0}^{\tilde{k}+3 n} \neg F(0), \neg G, F(n) . \tag{1}
\end{equation*}
$$

From (1) we obtain $\vdash_{0}^{\bar{k}+D_{0} 1} \neg F(0), \neg G, F(n), n \notin N$, since

$$
\tilde{k}+3 n \ll_{3 n} \tilde{k}+D_{0} 1 .
$$

Proof of (1). For $n=0$ the assertion holds by 4.10.
Induction step: Suppose $\vdash_{0}^{\bar{k}+3 n} \neg F(0), \neg G, F(n)$. By 4.10 we have $\vdash_{0}^{\tilde{k}+3 n} \neg F\left(n^{\prime}\right), F\left(n^{\prime}\right)$. Hence $\vdash_{0}^{\tilde{k}+3 n+1} \neg F(0), \neg G, F(n) \wedge \neg F\left(n^{\prime}\right), F\left(n^{\prime}\right)$. By (Ax1) and n applications of (N) we get $\vdash^{k+3 n+1} n \in N$, and then by $(\wedge) \vdash^{k+3 n+2} \neg F(0)$, $\neg G, n \in N \wedge\left(F(n) \wedge \neg F\left(n^{\prime}\right)\right), F\left(n^{\prime}\right)$. Now we apply (\exists) and obtain $\vdash_{0}^{\tilde{k}+3 \cdot n^{\prime}} \neg F(0)$, $\neg G, F\left(n^{\prime}\right)$, since $\neg G \equiv \exists x\left(x \in N \wedge\left(F(x) \wedge \neg F\left(x^{\prime}\right)\right)\right)$.

The following lemma will be used to show that the induction scheme $\forall x \in N\left(\mathfrak{U}_{u}^{N}(F, x) \rightarrow F(x)\right) \rightarrow \forall x \in N\left(P_{u}^{\mathfrak{q}} x \rightarrow F(x)\right)$ is derivable in $\mathrm{ID}_{\omega}^{\infty}$.

4.12. Lemma.

$$
\left.\begin{array}{l}
a \in T_{u}, \Delta \subseteq \operatorname{Pos}_{u}, \vdash_{1}^{a} \Delta, P_{u}^{\mathfrak{Q}} n \\
k=|F|, G \equiv \forall x \in N\left(\mathfrak{A}_{u}^{N}(F, x) \rightarrow F(x)\right)
\end{array}\right\} \Rightarrow \quad \vdash_{1}^{\tilde{k}+a} \Delta, \neg G, F(n)
$$

Proof. Informal description: Let Π be a derivation of $\Delta, P_{u}^{2} n$. In Π we replace every occurrence of P_{u}^{ℓ}, which is linked to the endformula $P_{u}^{\ell} n$, by $F(\cdot)$, Let Π^{\prime} denote the result of this transformation. Π^{\prime} may contain certain inferences of the kind $j \in N \wedge \mathfrak{A}_{u}^{N}(F, j) \vdash F(j)$, and therefore Π^{\prime} may fail to be an $\mathrm{ID}_{\omega}^{\infty}$-derivation. From Π^{\prime} we obtain an $\mathrm{ID}_{\omega}^{\infty}$-derivation of $\Delta, \neg G, F(n)$ as follows: First we adjoin $\neg G$ to each Γ in Π^{\prime}, and then we replace every inference $\neg G, \Gamma, j \in N \wedge$ $\mathfrak{A}_{\boldsymbol{u}}^{N}(F, j) \vdash \neg G, \Gamma, F(j)$ by the following inferences

In order to get a rigorous proof of the lemma we have to prove a more general proposition.

Definition. For $A \in \operatorname{Pos}_{u}$ let A^{*} denote the result of replacing all occurrences of $P_{u}^{\mathscr{Q}}$ in A by $F(\cdot) .\left\{A_{1}, \ldots, A_{m}\right\}^{*}:=\left\{A_{1}^{*}, \ldots, A_{m}^{*}\right\}$.

Proposition. $\Gamma_{0} \cup \Gamma \subseteq \operatorname{Pos}_{u}, a \in T_{u}, k=|F|, \vdash_{1}^{a} \Gamma_{0}, \Gamma \Rightarrow \vdash_{1}^{\bar{k}+a} \Gamma_{0}, \neg G, \Gamma^{*}$.

Proof. By transfinite induction on a :

1. If $\vdash_{1}^{a} \Gamma_{0}, \Gamma$ holds by (Ax1) or (Ax2), then also $\vdash_{1}^{\bar{k}+a} \Gamma_{0}, \neg G, \Gamma^{*}$ by (Ax1), (Ax2), since $\neg P_{u}^{\varrho}$ does not occur in $\Gamma_{0} \cup \Gamma$.
2. Suppose that $a=a_{0}+1$ and $\left(A_{i}\right)_{i \in I} \vdash A$ is a basic inference with $A \in \Gamma_{0} \cup \Gamma$ and $\forall i \in I\left(\vdash_{1}^{a_{0}} \Gamma_{0}, \Gamma, A_{i}\right)$. Then $\forall i \in I\left(A_{i} \in \operatorname{Pos}_{u}\right)$ and therefore we can apply the I.H. to $\Gamma_{0}, \Gamma, A_{i}$.
2.1. $A \in \Gamma_{0}$: By I.H. we get $\forall i \in I\left(\vdash_{1}^{\bar{k}+a_{0}} \Gamma_{0}, \neg G, \Gamma^{*}, A_{i}\right)$ and from this $\vdash_{1}^{\bar{k}+a} \Gamma_{0}, \neg G, \Gamma^{*}$ by the respective basic inference.
2.2. $A \in \Gamma$: Then $A^{*} \in \Gamma^{*}$ and $\left(A_{i}^{*}\right)_{i \in I} \vdash A^{*}$ is a basic inference. By I.H. we have $\forall i \in I\left(\vdash_{1}^{\bar{k}+a_{0}} \Gamma_{0}, \neg G, \Gamma^{*}, A_{i}^{*}\right)$. Hence $\vdash_{1}^{\bar{k}+a} \Gamma_{0}, \neg G, \Gamma^{*}$.
3. Suppose that $\operatorname{dom}(a)=T_{w}, \vdash_{1}^{a[1]} \Gamma_{0}, \Gamma, P_{w}^{\mathfrak{P} j}$ and $\vdash_{1}^{a[z]} \Delta, \Gamma_{0}, \Gamma$ for all $z \in T_{w}$, $\Delta \subseteq \operatorname{Pos}_{w}$ with $\vdash_{1}^{z} \Delta, P_{w}^{\mathfrak{B}} j$. Since $a \in T_{u}$, we have $w<u$ and therefore by I.H. $\vdash_{1}^{\tilde{k}+a[1]} \Gamma_{0}, \neg G, \Gamma^{*}, P_{w}^{\Re} j$ and $\vdash_{1}^{\tilde{k}+a[z]} \Delta, \Gamma_{0}, \neg G, \Gamma^{*}$ for all $z \in T_{w}, \Delta \subseteq \operatorname{Pos}_{w}$ with $\vdash_{1}^{z} \Delta, P_{w}^{\mathfrak{B}} j$. Now by an application of $\left(\Omega_{w+1}\right)$ we get the assertion.
4. Suppose $a=a_{0}+3, P_{u}^{\mathfrak{Q}} j \in \Gamma$ and $\vdash_{1}^{a_{0}} \Gamma_{0}, \Gamma, j \in N \wedge \mathfrak{U}_{u}^{N}\left(P_{u}^{2}, j\right)$. Then $F(j) \in \Gamma^{*}$ and therefore $\vdash_{1}^{\bar{k}} \Gamma^{*}, \neg F(j)$ by 4.10. By I.H. and 4.3 we have $\vdash_{1}^{\bar{k}+a_{0}} \Gamma_{0}, \Gamma^{*}$, $\neg G, j \in N$ and $\vdash_{1}^{k+a_{0}} \Gamma_{0}, \Gamma^{*}, \neg G, \mathfrak{U}_{u}^{N}(F, j)$. Now we obtain $\vdash_{1}^{k+a_{0}+2} \Gamma_{0}, \Gamma^{*}, \neg G$, $j \in N \wedge\left(\mathscr{A}_{u}^{N}(F, j) \wedge \neg F(j)\right)$ and then by $(\exists) \vdash_{1}^{k+a} \Gamma_{0}, \Gamma^{*}, \neg G$.
5. In all other cases the assertion follows immediately from I.H.
4.13. Lemma. $\vdash_{1}^{\bar{k}+D_{u+1} 0} \neg \forall x \in N\left(\mathfrak{A}_{u}^{N}(F, x) \rightarrow F(x)\right), \neg P_{u}^{\mathfrak{q}} n, F(n)$, with $k:=|F|$.

Proof. Let $b:=\tilde{k}+D_{u+1} 0$ and $G:=\forall x \in N\left(\mathfrak{H}_{u}^{N}(F, x) \rightarrow F(x)\right)$. Then $\operatorname{dom}(b)=T_{u}$ and $b[z]=\tilde{k}+z$. Therefore by 4.12 we have $\vdash_{1}^{b[z]} \Delta, \neg G, \neg P_{u}^{2} n, F(n)$ for all $z \in T_{u}, \Delta \subseteq \operatorname{Pos}_{u}$ with $\vdash_{1}^{z} \Delta, P_{u}^{2 \mathbb{2}} n$. By (Ax2) we also have $\vdash_{1}^{b[1]} \neg G, \neg P_{u}^{\mathfrak{M}} n, F(n)$, $P_{u}^{\mathfrak{M}} n$. Now we apply the Ω_{u+1}-rule and obtain $\vdash_{1}^{b} \neg G, \neg P_{n}^{\mathbb{I}} n, F(n)$.

Remark. The theory ID_{v} with $v<\omega$ is the same as ID_{ω} except that the axioms ($P^{2 x} .2$) are replaced by
$\begin{array}{ll}\left(P^{\mathfrak{Q}} .2\right)_{<v} & \forall x\left(\mathfrak{A}_{u}(F, x) \rightarrow F(x)\right) \rightarrow \forall x\left(P_{u}^{\mathfrak{Q}} x \rightarrow F(x)\right), \\ & \text { for each } L_{\mathrm{D}} \text {-formula } F(x) \text { and each } u<v .\end{array}$
4.14. Theorem. If the sentence A is provable in $\operatorname{ID}_{v}(v \leqslant \omega)$, then there exists $k \in \mathbb{N}$ such that $\vdash_{k}^{D^{k}{ }^{k 0}} A^{N}$.

Proposition 1. For every mathematical axiom $A\left(v_{1}, \ldots, v_{m}\right)$ of ID_{v} there exists $k \in \mathbb{N}$ such that $\vdash_{1}^{\bar{k}} A\left(i_{1}, \ldots, i_{m}\right)^{N}$ for all $i_{1}, \ldots, i_{m} \in \mathbb{N}$. $\left(v_{1}, v_{2}, \ldots\right.$ denote variables of the language L.)

Proof. We assume $m=1$.

1. $A(v) \equiv B(0, v) \wedge \forall x\left(B(x, v) \rightarrow B\left(x^{\prime}, v\right)\right) \rightarrow \forall x B(x, v)$.

Let $F(x): \equiv B(x, i)^{N}, \quad G: \equiv \forall x \in N\left(F(x) \rightarrow F\left(x^{\prime}\right)\right)$ and $k:=|F(x)|$. By 4.11, 3.5(c), 4.9(a) we have $\vdash_{1}^{\tilde{k} \cdot 2} \neg F(0), \neg G, n \notin N, F(n)$ for all $n \in \mathbb{N}$. Since $\tilde{k} \cdot 2 \longrightarrow_{9}$ $\overparen{k+2}$, we obtain $\vdash_{1}^{\widehat{k+2}} A(i)^{N}$.
2. For any other axiom of PA the assertion is trivial.
3. $A(v) \equiv \forall x\left(\mathfrak{A}_{u}(B(\cdot, v), x) \rightarrow B(x, v)\right) \rightarrow \forall x\left(P_{u}^{\text {Q }} x \rightarrow B(x, v)\right), u<v<\omega$.

Let $\quad F(x): \equiv B(x, i)^{N}, \quad G: \equiv \forall x \in N\left(\mathfrak{R}_{u}^{N}(F, x) \rightarrow F(x)\right), \quad k:=|F(x)|$. Then $A(i)^{N} \equiv \neg G \vee \forall x\left(x \notin N \vee\left(\neg P_{u}^{\mathfrak{Q}} x \vee F(x)\right)\right)$ and by $4.13 \vdash_{1}^{\hat{k}+D_{u+1} 0} \neg G, \neg P_{u}^{\text {a }} n, F(n)$, for all $n \in \mathbb{N}$. Since $D_{u+1} 0 \leqq_{0} D_{v} 0 \lll{ }_{0} \tilde{k}$ and $\tilde{k} \cdot 2 \longrightarrow_{9} \overparen{k+2}$, we get ${\vdash_{1} \widetilde{k+2}} A(i)^{N}$.
4. $A(v) \equiv \forall y\left(\forall x\left(\mathfrak{A}_{y}(B(\cdot, y, v), x) \rightarrow B(x, y, v)\right) \rightarrow \forall x\left(P_{y}^{\mathfrak{Q}} x \rightarrow B(x, y, v)\right)\right.$ and $v=\omega$.

Let $\quad F_{u}(x): \equiv B(x, u, i)^{N}, G_{u}: \equiv \forall x \in N\left(\mathscr{U}_{u}^{N}\left(F_{u}, x\right) \rightarrow F_{u}(x)\right), \quad k:=\left|F_{u}(x)\right|$. Then $A(i)^{N} \equiv \forall y\left(y \notin N \vee\left(\neg G_{y} \vee \forall x\left(x \notin N \vee\left(\neg P_{y}^{2 x} x \vee F_{y}(x)\right)\right)\right)\right)$ and by 4.13 $\vdash_{1}^{\bar{k}+D_{u+1} 0} \neg G_{u}, \neg P_{u}^{\mathfrak{M}} n, F_{u}(n)$, for all $u, n \in \mathbb{N}$. Since $\tilde{k}+D_{u+1} 0=\left(\bar{k}+D_{\omega} 0\right)[u] \lll u$ $\tilde{k}+D_{\omega} 0$, we obtain by $(\ll) \vdash_{1}^{\tilde{k}+D_{\omega} 0} u \notin N, \neg G_{u}, \neg P_{u}^{\mathrm{q}} n, F_{u}(n)$. From this we get by $(\vee),\left(\forall^{\infty}\right),(\ll)+_{1}^{\widetilde{k+2}} A(i)^{N}$, since $\tilde{k}+D_{\omega} 0 \ll_{0} \tilde{k} \cdot 2 \longrightarrow \longrightarrow_{9} \widetilde{k+2}$.
5. $A \equiv \forall y \forall x\left(\mathfrak{A}_{y}\left(P_{y}^{2}, x\right) \rightarrow P_{y}^{\mathrm{Q}} x\right)$.

Let $k:=\left|\mathfrak{G}_{y}^{N}\left(P_{y}^{\mathfrak{a}}, x\right)\right|$. By (Ax2) we have $\vdash_{0}^{\tilde{k}} n \notin N, n \in N$. By 4.10 we have $\vdash_{0}^{k} \neg \mathfrak{U}_{u}^{N}\left(P_{u}^{\mathfrak{q}}, n\right), \mathfrak{A}_{u}^{N}\left(P_{u}^{\mathfrak{q}}, n\right)$. Hence $\vdash_{0}^{\bar{k} \cdot 2} n \notin N, \neg \mathfrak{U}_{u}^{N}\left(P_{u}^{\mathfrak{q}}, n\right), n \in N \wedge \mathfrak{A}_{u}^{N}\left(P_{u}^{\mathfrak{q}}, n\right)$. Now we apply $\left(P_{u}^{\mathfrak{Q}}\right)$ and get $\vdash_{0}^{\tilde{k} \cdot 2+3} n \notin N, \neg \mathfrak{Q}_{u}^{N}\left(P_{u}^{\mathfrak{Q}}, n\right), P_{u}^{\mathfrak{Q}} n$. Some applications of (\vee), $\left(\forall^{\infty}\right)$ and ($\left.\ll\right)$ yield $\vdash_{0}^{k+3} A^{N}$, since $\tilde{k} \cdot 2+3 \ll_{2} \tilde{k} \cdot 3 \lll_{2} \overparen{k+1} \rightarrow \longrightarrow_{12} \overparen{k+3}$.
6. $A \equiv \forall y \forall x_{0} \forall x_{1}\left(P_{<y}^{\mathfrak{2}} x_{0} x_{1} \leftrightarrow x_{0}<y \wedge P_{x_{0}}^{\mathfrak{q}} x_{1}\right)$: Left to the reader.

Proposition 2. By PL1 we denote Tait's calculus for first-order predicate logic in the language $L_{\mathrm{ID}}(c f .[8])$. If $\Gamma\left(v_{1}, \ldots, v_{m}\right)$ is derivable in PL1, then there exists $k \in \mathbb{N}$ such that $\vdash_{0}^{\bar{k}} i_{1} \notin N, \ldots, i_{m} \notin N, \Gamma\left(i_{1}, \ldots, i_{m}\right)^{N}$ for all $i_{1}, \ldots, i_{m} \in \mathbb{N}$.

Proof. By induction on the derivation of Γ : Let $m=1$.

1. $\Gamma \equiv \Gamma_{0} \cup\{\neg A, A\}$: cf. 4.10.
2. If Γ is the conclusion of a (\wedge) - or (\vee)-inference, then the assertion follows immediately from the I.H.
3. $\Gamma(v) \equiv \Gamma_{0}(v), \forall x A(v, x)$ and PL1 $\vdash \Gamma(v), A(v, x)$ with $x \neq v$: By I.H. there exists k such that $\vdash_{0}^{\bar{k}} i \notin N, n \notin N, \Gamma(i)^{N}, A(i, n)^{N}$ for all $i, n \in \mathbb{N}$. Then by (v) and (\forall^{∞}) we get ${\vdash_{0}^{k+1}}_{\widehat{k+1}}^{\ddagger} N, \Gamma(i)^{N}$.
4. $\Gamma(v) \equiv \Gamma_{0}(v), \exists x A(v, x)$ and PL1 $\vdash \Gamma(v), A(v, t)$:
4.1. $t \equiv y_{\overline{k_{0}}}^{\prime \cdots}(y \neq v)$ or $t \equiv 0 \stackrel{\cdots}{k_{0}}:$ By I.H. there exists $k \geqslant k_{0}$ such that $\vdash_{0}^{k} i \notin N, 0 \notin N, \Gamma(i)^{N}, A\left(i, k_{0}\right)^{N}$ for all $i \in \mathbb{N}$. From this we get by $4.2(\mathrm{c}) \vdash_{0}^{\kappa} i \notin N$, $\Gamma(i)^{N}, A\left(i, k_{0}\right)^{N}$. Since $k \geqslant k_{0}$, we have $\vdash_{0}^{k} k_{0} \in N$. Hence by $(\wedge) \vdash_{0}^{k+1} i \notin N, \Gamma(i)^{N}$, $k_{0} \in N \wedge A\left(i, k_{0}\right)^{N}$. An application of (\exists) yields $\vdash_{0}^{k+1} i \notin N, \Gamma(i)^{N}$.
4.2. $t \equiv v \underset{k_{0}}{\prime \cdots}:$ By I.H. there exists $k \geqslant k_{0}$ such that $\vdash_{0}^{\bar{k}} i \notin N, \Gamma(i)^{N}$, $A(i, i \nmid \cdots)_{k_{0}}^{\prime \cdots}$ for all $i \in \mathbb{N}$. Since $k \geqslant k_{0}$, we have $\vdash_{0}^{\tilde{k}} i \notin N, i \not{ }_{k_{0}}^{\cdots \cdots} \in N$ for all $i \in \mathbb{N}$. Hence $\vdash_{0}^{\bar{k}+1} i \notin N, \Gamma(i)^{N}, i^{\prime \cdots \prime} \in N \wedge A\left(i, i^{\prime \cdots \prime}\right)^{N}$. Now we apply (\exists) and get $\vdash_{0}^{k+1} i \notin N, \Gamma(i)^{N}$.

Proof of 4.14. Suppose $\mathrm{ID}_{v} \vdash A$ (A closed). Then $\operatorname{PL} 1 \vdash \neg\left(A_{1} \wedge \cdots \wedge A_{n}\right), A$ where every A_{i} is the universal closure of an axiom of $\mathrm{ID}_{\mathbf{v}}$. By Propositions 1 and 2 there exists m such that $\vdash_{1}^{\bar{m}}\left(A_{1} \wedge \cdots \wedge A_{n}\right)^{N}$ and $\vdash_{0}^{\bar{m}} \neg\left(A_{1} \wedge \cdots \wedge A_{n}\right)^{N}, A^{N}$. By a cut with cut formula $\left(A_{1} \wedge \cdots \wedge A_{n}\right)^{N}$ we obtain now $\vdash_{k}^{\bar{k}} A^{N}$ with $k:=$ $\max \left\{\left|\left(A_{1} \wedge \cdots \wedge A_{n}\right)^{N}\right|, m\right\}+1$.

Conclusion. By combining the Theorems 4.14, 4.5, 4.8 we obtain Theorem 4.0 which was stated at the beginning of this section.

Appendix: The proof-theoretic ordinal of IDv

Definitions. 1. By transfinite induction on a we define an ordinal $\operatorname{rk}(a)$ for every $a \in T_{0}$.

$$
\operatorname{rk}(a):=\sup \{\operatorname{rk}(a[n])+1: n \in \operatorname{dom}(a)\}
$$

2. By transfinite induction on $\alpha \in$ On we define the sets I_{\Re}^{α} and $I_{\because \sim}^{<\alpha}$ for every positive operator form \mathfrak{A} :

$$
\begin{aligned}
& I_{\mathfrak{M}}^{\alpha}:=\left\{n \in \mathbb{N}: \mathfrak{A}_{0}\left(I_{\mathscr{\varkappa}}^{<\alpha}, n\right) \text { is true in the standard model }\right\}, \\
& I_{\mathfrak{\Re}}^{<\alpha}:=\bigcup_{\xi<\alpha} I_{\mathfrak{Y}}^{\xi} .
\end{aligned}
$$

3. For $n \in \bigcup_{\alpha \in \mathrm{On}} I_{\mathscr{A}}^{\alpha}$ we set $|n|_{\mathscr{n}}:=\min \left\{\alpha: n \in I_{\mathscr{\varkappa}}^{\alpha}\right\}$.
4. $\left|\mathrm{ID}_{v}\right|:=\sup \left\{|n|_{\mathfrak{q}}: \mathrm{ID}_{v} \vdash P_{0}^{\mathfrak{q}} n\right\}$. $\left|\mathrm{ID}_{v}\right|$ is called the proof-theoretic ordinal of $I D_{v}$.

We will prove the following result:

$$
\left|\mathrm{ID}_{v}\right|=\sup \left\{\operatorname{rk}\left(D_{0} D_{v}^{k} 0\right): k \in \mathbb{N}\right\} \quad(v \leqslant \omega)
$$

Definition. Let $\Gamma=\left\{A_{1}, \ldots, A_{n}\right\} \subseteq \operatorname{Pos}_{0}$:

$$
F^{\alpha} \Gamma: \Leftrightarrow\left\{\begin{array}{l}
A_{1} \vee \cdots \vee A_{n} \text { is true in the standard model when } \\
P_{0}^{\mathfrak{Q}}, P_{<0}^{\mathfrak{Q}}, N \text { are interpreted by } I_{\mathfrak{Q}}^{<\alpha}, \emptyset, \mathbb{N} \text { resp }
\end{array}\right.
$$

A.1. Lemma. $\vdash_{1}^{a} \Gamma, \Gamma \subseteq \operatorname{Pos}_{0}, a \in T_{0}, \operatorname{rk}(a) \leqslant \alpha \Rightarrow \vDash^{\alpha} \Gamma$.

Proof. By transfinite induction on a :

1. If $\vdash_{1}^{a} \Gamma$ holds by (Ax1), then $F^{\alpha} \Gamma$ for every α.
2. Suppose that $\vdash_{1}^{a} \Gamma$ holds by (Ax2). Then, since $\Gamma \subseteq \operatorname{Pos}_{0}$, we have $\Gamma=\Gamma_{0}$, $n \notin N, n \in N$ and thus $F^{\alpha} \Gamma$ for every α.
3. If $\vdash_{1}^{a} \Gamma$ is the conclusion of a basic inference (\mathscr{F}), then (\mathscr{I}) is an inference $(\wedge),(\vee),\left(\forall^{\infty}\right),(\exists)$ or (N), and the assertion follows immediately from the I.H.
4. Suppose $\vdash_{1}^{b} \Gamma, n \in N \wedge \mathfrak{A}_{0}^{N}\left(P_{0}^{\mathfrak{q}}, n\right)$ with $a=b+1$ and $\Gamma=\Delta, P_{0}^{\mathfrak{q}} n$. Then $\beta:=\operatorname{rk}(b)<\alpha$. By I.H. we get " $F^{\beta} \Delta$ or $n \in I_{\mathfrak{M}}^{<\beta}$ or $\mathfrak{\vartheta}_{0}\left(I_{\mathfrak{q}}^{<\beta}, n\right)$ " and from this " $F^{\alpha} \Delta$ or $n \in I_{थ_{2}^{<\alpha}}^{<\alpha}$, i.e., $F^{\alpha} \Gamma$.
5. If $\vdash_{1}^{a} \Gamma$ is the conclusion of a cut, then the cut formula is of the kind $n \in N$, and the assertion follows immediately from the I.H.
6. If $\vdash_{1}^{b} \Gamma$ with $b<_{\Gamma} a$, then $\operatorname{rk}(b)<\operatorname{rk}(a) \leqslant \alpha$ and thus $\vdash^{\alpha} \Gamma$ by I.H.

From $a \in T_{0}$ it follows that $\vdash_{1}^{a} \Gamma$ cannot be the conclusion of an application of the Ω_{u+1}-rule.
A.2. Lemma. $\left|\mathrm{ID}_{v}\right| \leqslant \sup \left\{\operatorname{rk}\left(D_{0} D_{v}^{k} 0\right): k \in \mathbb{N}\right\}$.

Proof. Suppose $\mathrm{ID}_{v} \vdash P_{0}^{\mathrm{g}} n$. Then by $4.14,4.5,4.6$ we obtain $\vdash_{1}^{D_{0} D_{v}^{k} 0} P_{0}^{2 \mathrm{~g}} n$, for some $k \in \mathbb{N}$. By A. 1 this yields $n \in I_{\mathfrak{\Re}}^{<\alpha}$ with $\alpha:=\operatorname{rk}\left(D_{0} D_{v}^{k} 0\right)$. Hence $|n|_{\mathfrak{\Re}}<\operatorname{rk}\left(D_{0} D_{v}^{k} 0\right)$.
A.3. Lemma. $\operatorname{Sup}\left\{\operatorname{rk}\left(D_{0} D_{v}^{k} 0\right): k \in \mathbb{N}\right\} \leqslant\left|\operatorname{ID}_{v}\right|$.

Proof. Here we make use of Theorem 2.2 which claims that " $a \in W_{0}$ " is provable in ID_{v}, for every $a \in T_{0}$ which contains no symbol D_{v} with $v>v$. From this we get, for all $k \in \mathbb{N}$,
(1) $\left.\mathrm{ID}_{v}+P_{0}^{2 /[} D_{0} D_{v}^{k}\right\rceil$
where $a \mapsto{ }^{\lceil }{ }^{1}$ is any reasonable Gödel numbering of the terms in T, and \mathfrak{A} is a positive operator form which on the basis of this Gödel numbering formalizes the inductive definition of the sets $W_{v}(v<v)$ in Section 2. Then we also have
(2) $\left.\left.\right|^{\top} a\right|_{2 x}=\operatorname{rk}(a)$, for all $a \in T_{0}$.

The assertion follows immediately from (1) and (2).

References

[1] W. Buchholz, Eine Erweiterung der Schnitteliminations-methode, Habilitationsschrift, Universität Müchen 1977.
[2] W. Buchholz, S. Feferman, W. Pohlers and W. Sieg, Iterated Inductive Definitions and Subsystems of Analysis: Recent Proof-Theoretical Studies, Lecture Notes in Math. 897 (Springer, Berlin, 1981).
[3] E. Cichon, A short proof of two recently discovered independence results using recursion theoretic methods, Proc. Amer. Math. Soc. 14 (1982).
[4] J. Ketonen and R. Solovay, Rapidly growing Ramsey functions, Ann. of Math. 113 (1981) 267-314.
[5] L. Kirby and J. Paris, Accessible independence results for Peano Arithmetic, Bull. London Math. Soc. 14 (1982) 285-293.
[6] D. Schmidt, Built-up systems of fundamental sequences and hierarchies of number-theoretic functions. Arch. Math. Logik Grundlag. 18 (1976).
[7] S. Simpson, Nichtbeweisbarkeit von gewissen kombinatorischen Eigenschaften endlicher Bäume, Arch. Math. Logik Grundlag.
[8] W. W. Tait, Normal derivability in classical logic. in: J. Barwise, ed., The Syntax and Semantics of Infinitary Languages, Lecture Notes in Math. 72 (Springer, Berlin, 1968) 204-236.

