AN INDEPENDENCE RESULT FOR $(\Pi_1^1 - CA) + BI$

Wilfried BUCHHOLZ

Mathematisches Institut der Universität Müchen, Müchen, Fed. Rep. Germany

Communicated by D. van Dalen Received 27 November 1984

Introduction

In Kirby and Paris [5] it was shown that a certain combinatorial statement (concerning finite trees) is independent of Peano Arithmetic. Here we present a not too complicated extension of this statement and prove its independence from the much stronger theory (Π_1^1 -CA) + BI. This is done by refining the methods which we have developed in [2, Ch. IV, \$1-\$4].

Using the terminology of Kirby and Paris our result can be described as follows. A hydra is a finite labeled tree A which has the following properties:

- (i) the root of A has label +,
- (ii) any other node of A is labeled by some ordinal $v \le \omega$,
- (iii) all nodes immediately above the root of A have label 0 (zero).

If Hercules chops off a head (i.e. top node) σ of a given hydra A, the hydra will choose an arbitrary number $n \in \mathbb{N}$ and transform itself into a new hydra $A(\sigma, n)$ as follows. Let τ denote that node of A which is immediately below σ , and let A^- denote that part of A which remains after σ has been chopped off. The definition of $A(\sigma, n)$ depends on the label of σ :

Case 1: label $(\sigma) = 0$. If τ is the root of A, we set $A(\sigma, n) := A^-$. Otherwise $A(\sigma, n)$ results from A^- by sprouting n replicas of A_{τ}^- from the node immediately below τ . Here A_{τ}^- denotes the subtree of A^- determined by τ .

Case 2: label $(\sigma) = u + 1$. Let ε be the first node below σ with label $v \le u$. Let B be that tree which results from the subtree A_{ε} by changing the label of ε to uand the label of σ to 0. $A(\sigma, n)$ is obtained from A by replacing σ by B. In this case $A(\sigma, n)$ does not depend on n.

0168-0072/87/\$3.50 © 1987, Elsevier Science Publishers B.V. (North Holland)

Case 3: label $(\sigma) = \omega$. $A(\sigma, n)$ is obtained from A simply by changing the label of σ : ω is replaced by n + 1.

Notation. If σ is the rightmost head of A (as in the pictures above) we write A(n) instead of $A(\sigma, n)$. In the following we consider only the operation $A \mapsto A(n)$. By \oplus we denote the hydra which consists only of one node, namely its root.

The main results of the present paper are:

Theorem I. By always chopping off the rightmost head, Hercules is able to kill every hydra in a finite number of steps, i.e., for each hydra A and any sequence $(n_i)_{i \in \mathbb{N}}$ of natural numbers there exists $k \in \mathbb{N}$ such that $A(n_0)(n_1) \cdots (n_k) = \bigoplus$.

Theorem II. For every fixed hydra A the statement $\forall (n_i)_{i \in \mathbb{N}} \exists k A(n_0)(n_1) \cdots (n_k) = \oplus$ is provable in $(\Pi_1^1 - CA) + BI$.

Theorem III. Let

Then the Π_2^0 -sentence $\forall n \exists k A^n(1)(2) \cdots (k) = \bigoplus$ is not provable in $(\Pi_1^1$ -CA) + BI.

Contents

- §1. Infinitary wellfounded trees and collapsing functions
- §2. The term structure $(T, \cdot [\cdot])$
- §3. The relations \ll_k and the functions $H_a: \mathbb{N} \to \mathbb{N}$
- §4. The infinitary system ID_{ω}^{∞}

Appendix. The proof-theoretic ordinal of ID_{v}

In Section 1 we prove Theorem I. In Section 2 we prove Theorem II. Section 3 contains some technical lemmata which will be used in Section 4 for the proof of Theorem III. In the appendix we characterize the proof-theoretic ordinals of the theories ID_{ν} ($\nu \leq \omega$) for ν -times iterated inductive definitions by means of the term structure $(T, \cdot [\cdot])$.

1. Infinitary wellfounded trees and collapsing functions

In this section we introduce certain sets \mathcal{T}_v $(v \leq \omega)$ of infinitary wellfounded trees together with a system of socalled collapsing functions $\mathcal{D}_v: \mathcal{T}_\omega \to \mathcal{T}_v$ $(v \leq \omega)$. These functions are then used to associate with every hydra A an element ||A|| of \mathcal{T}_0 in such a way that, for each $n \in \mathbb{N}$, ||A(n)|| is an immediate subtree of ||A||. This yields Theorem I.

Definition of the tree classes \mathcal{T}_{v} ($v \leq \omega$)

Suppose that \mathcal{T}_u for u < v is already defined. Then we define \mathcal{T}_v to be the least set which contains 0 (the empty set) and is closed under the following rule:

 (\mathcal{T}_v) If $\alpha: I \to \mathcal{T}_v$ is a function with $I \in \{\{0\}, \mathbb{N}\} \cup \{\mathcal{T}_u: u < v\}$, then $\alpha \in \mathcal{T}_v$.

According to the inductive definition of \mathcal{T}_v we have the following principle of transfinite induction over \mathcal{T}_v :

 $\forall \alpha \in \mathcal{T}_v \ (\forall x \in \text{domain}(\alpha) \ \Psi(\alpha(x)) \rightarrow \Psi(\alpha)) \rightarrow \forall \alpha \in \mathcal{T}_v \ \Psi(\alpha).$

Proposition. $u < v \Rightarrow \mathcal{T}_u \subsetneq \mathcal{T}_v$.

Notations. $(\alpha_x)_{x \in I} := \{ \langle x, \alpha_x \rangle : x \in I \}$, i.e., $(\alpha_x)_{x \in I}$ denotes the function α with domain I and $\alpha(x) = \alpha_x$ for all $x \in I$.

 $\alpha^+ := (\alpha)_{x \in \{0\}} := \{ \langle 0, \alpha \rangle \} \qquad \text{(the successor of } \alpha \text{)}.$

In the following α , β , γ denote elements of \mathcal{T}_{ω} .

Definition of $+: \mathcal{T}_{\omega} \times \mathcal{T}_{\omega} \to \mathcal{T}_{\omega}$

We define $\alpha + \beta$ by transfinite induction on β :

- (i) $\alpha + 0 := \alpha$,
- (ii) $\alpha + (\beta_x)_{x \in I} := (\alpha + \beta_x)_{x \in I}$

Proposition. (a) $\alpha + (\beta^+) = (\alpha + \beta)^+$.

(b) $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma).$ (c) $\alpha, \beta \in \mathcal{T}_v \Rightarrow \alpha + \beta \in \mathcal{T}_v.$

Definition. $\alpha \cdot 0 := 0$, $\alpha \cdot (n+1) := \alpha \cdot n + \alpha$.

Definition of $\mathcal{D}_{v}: \mathcal{T}_{\omega} \to \mathcal{T}_{v}$

 $\mathcal{D}_{v}(\alpha)$ is defined by transfinite induction on $\alpha \in \mathcal{T}_{\omega}$ simultaneously for all $v \leq \omega$.

$$(\mathfrak{D}1) \quad \mathfrak{D}_{0}(0) := 0^{+}, \qquad \mathfrak{D}_{n+1}(0) := (z)_{z \in \mathcal{T}_{n}}, \qquad \mathfrak{D}_{\omega}(0) := (\mathfrak{D}_{n+1}(0))_{n \in \mathbb{N}}.$$

$$(\mathfrak{D}2) \quad \mathfrak{D}_{v}((\alpha_{x})_{x \in I}) := \begin{cases} (\mathfrak{D}_{v}(\alpha_{0}) \cdot (n+1))_{n \in \mathbb{N}}, & \text{if } I = \{0\}, \\ (\mathfrak{D}_{v}(\alpha_{x}))_{x \in I}, & \text{if } I \in \{\mathbb{N}\} \cup \{\mathcal{T}_{u} : u < v\}, \\ (\mathfrak{D}_{v}(\alpha_{z}))_{n \in \mathbb{N}} & \text{with } z := \mathfrak{D}_{u}(\alpha_{0^{+}}), & \text{if } I = \mathcal{T}_{u} & \text{with } v \leq u < \omega \end{cases}$$

Remark. If domain(α) $\in \{\mathcal{T}_u : v \leq u < \omega\}$, then $\mathcal{D}_v(\alpha)$ is a constant function with domain \mathbb{N} .

Definition of ||A||

For every finite labeled tree A (with labels $\leq \omega$) we define $||A|| \in \mathcal{T}_{\omega}$ by induction on the length (i.e. number of nodes) of A:

$$\| \textcircled{v} \| := \mathscr{D}_{v}(0),$$
$$\| A_{0} \cdot (A_{k}) \| := \mathscr{D}_{v}(\|A_{0}\| + \cdots + \|A_{k}\|).$$

If $A = \bigwedge_{k=1}^{A_0 \cdots A_k}$ is a hydra, we set $||A|| := ||A_0|| + \cdots + ||A_k||$. For $\alpha \in \mathcal{T}_0$ with domain $(\alpha) = \{0\}$ we set $\alpha(n) := \alpha(0)$.

1.1. Theorem. For every hydra $A \neq \bigoplus$ and all $n \in \mathbb{N}$ the following holds: $||A|| \in \mathcal{T}_0$ and ||A(n)|| = ||A|| (n).

Proof. Easy exercise.

From 1.1 we obtain Theorem I by transfinite induction over \mathcal{T}_0 .

2. The term structure $(T, \cdot [\cdot])$

In this section we prove Theorem II. To this purpose we introduce the following set T of terms, where D_0, \ldots, D_{ω} is a sequence of formal symbols.

Inductive definition of the set T

- (T1) $0 \in T$.
- (T2) If $a \in T$ and $v \leq \omega$, then $D_v a \in T$; we call $D_v a$ a principal term.
- (T3) If $a_0, \ldots, a_k \in T$ are principal terms and $k \ge 1$, then $(a_0, \ldots, a_k) \in T$.

For each term $a \in T$ we define its value $\bar{a} \in \mathcal{T}_{\omega}$ by

$$\overline{0}:=0, \qquad \overline{D_v a}:=\mathscr{D}_v(\overline{a}), \qquad \overline{(a_0,\ldots,a_k)}:=\overline{a}_0+\cdots+\overline{a}_k.$$

This interpretation of terms as infinitary wellfounded trees will not be used in the proof of Theorem II. It serves only as a motivation for the following definitions of a + b, T_v , dom(a) and a[z].

The letters a, b, c, z now always denote elements of T.

For principal terms a_0, \ldots, a_k and $k \in \{-1, 0\}$ we set

$$(a_0,\ldots,a_k):=\begin{cases} 0, & \text{if } k=-1, \\ a_0, & k=0. \end{cases}$$

Definition of a + b and $a \cdot n \in T$

$$a + 0 := 0 + a := a,$$

$$(a_0, \ldots, a_k) + (b_0, \ldots, b_m) := (a_0, \ldots, a_k, b_0, \ldots, b_m) \qquad (k, m \ge 0),$$

$$a \cdot 0 := 0, \qquad a \cdot (n+1) := a \cdot n + a.$$

Proposition. (a + b) + c = a + (b + c).

Definition of T_v for $v \leq \omega$

$$T_v := \{0\} \cup \{(D_{u_0}a_0, \ldots, D_{u_k}a_k): k \ge 0, a_0, \ldots, a_k \in T, u_0, \ldots, u_k \le v\}.$$

Remark. $T_0 \subseteq T_1 \subseteq \cdots \subseteq T_\omega = T$.

Abbreviation. $1 := D_0 0$.

Convention. We identify \mathbb{N} with the subset $\{0, 1, 1+1, 1+1+1, \ldots\}$ of T_0 .

Now we define, for every $a \in T$, a subset dom(a) of T and a function $z \mapsto a[z]$ from dom(a) into T. This will be done in such a way that $\overline{z} \in \text{domain}(\overline{a})$ and $\overline{a[z]} = \overline{a}(\overline{z})$, for all $z \in \text{dom}(a)$.

Definition of dom(a) and a[z] for $a \in T$, $z \in dom(a)$

([].0) $dom(0) := \emptyset$. ([].1) $dom(1) := \{0\}; 1[0] := 0$. $([] .2) dom(D_{u+1}0) := T_u; (D_{u+1}0)[z] := z.$ $([] .3) dom(D_{\omega}0) := N; (D_{\omega}0)[n] := D_{n+1}0.$ $([] .4) Let <math>a = D_v b$ with $b \neq 0$: (i) dom(b) = {0} : dom(a) = N, $a[n] := (D_v b[0]) \cdot (n+1).$ $(ii) dom(b) = T_u with <math>v \le u < \omega$: dom(a) := N, $a[n] := D_v b[D_u b[1]].$ $(iii) dom(b) \in {N} \cup {T_u : u < v} : dom(a) := dom(b), a[z] := D_v b[z].$ $([] .5) <math>a = (a_0, \ldots, a_k)(k \ge 1) : dom(a) := dom(a_k),$ $a[z] := (a_0, \ldots, a_{k-1}) + a_k[z].$

Definition. 0[n] := 0, a[n] := a[0] for $a \in T$ with dom $(a) = \{0\}$.

Proposition. (a) $a \neq 0 \Leftrightarrow \operatorname{dom}(a) \neq \emptyset$.

(b) $\operatorname{dom}(a) = \{0\} \Leftrightarrow a = a[0] + 1.$

(c) $0 \neq a \in T_v \Rightarrow \operatorname{dom}(a) \in \{\{0\}, \mathbb{N}\} \cup \{T_u : u < v\}$, and $a[z] \in T_v$ for all $z \in \operatorname{dom}(a)$.

Now we are going to compare terms and hydras. It will turn out that the term structure $(T_0, \cdot [\cdot])$ is isomorphic to the structure $(\mathcal{H}, \cdot (\cdot))$, where \mathcal{H} denotes the set of all hydras.

In fact $(\mathcal{H}, \cdot(\cdot))$ is nothing else than a geometric representation of $(T_0, \cdot[\cdot])$. $(\mathcal{H}, \cdot(\cdot))$ has been defined just in such a way that it becomes isomorphic to $(T_0, \cdot[\cdot])$.

Definition of |A|

If $A = A_0$ is a hydra or any finite labeled tree with labels $\leq \omega$

we define |A| to be that term $a \in T$ which implicitly is given by the definition of ||A|| in Section 1, namely:

$$|A| := \begin{cases} D_{\xi}(|A_0|, \ldots, |A_k|), & \text{if } \xi \leq \omega, \\ (|A_0|, \ldots, |A_k|), & \text{if } \xi = +. \end{cases}$$

2.1. Theorem. (a) The operation $A \mapsto |A|$ yields a 1-1 correspondence between the set of all hydras and the set T_0 .

(b) |A(n)| = |A|[n], for each hydra A and all $n \in \mathbb{N}$.

Proof. (a) Obvious.

(b) Definition (for $c, z \in T, c \neq 0$)

$$c[*/z] := \begin{cases} z, & \text{if } c = D_v 0, \\ D_v b[*/z], & \text{if } c = D_v b \text{ with } b \neq 0, \\ (c_0, \ldots, c_{k-1}) + c_k[*/z], & \text{if } c = (c_0, \ldots, c_k), \quad k \ge 1. \end{cases}$$

Now the reader can easily verify the following propositions and then also part (b) of the theorem.

Proposition 1. If z is a principal term, then c[*/z] results from c by replacing the rightmost subterm $D_v 0$ of c by z.

Proposition 2. If $z \in T_u = \text{dom}(a)$, then a[z] = a[*/z].

Proposition 3. If dom(a) $\in \{\{0\}, \mathbb{N}\}$, then one of the following cases holds: (i) $a = (a_0, \ldots, a_{k-1}, 1)$ and $a[n] = (a_0, \ldots, a_{k-1})$. (ii) $a = c[*/D_v(a_0, \ldots, a_{k-1}, 1)]$ and $a[n] = c[*/D_v(a_0, \ldots, a_{k-1}) \cdot (n+1)]$. (iii) $a = c[*/D_\omega 0]$ and $a[n] = c[*/D_{n+1}0]$. (iv) $a = c[*/D_v b]$, dom(b) = T_u , $v \le u$ and $a[n] = c[*/D_v b[D_u b[1]]]$.

Let W_0 denote the least subset of T_0 which contains 0 and is closed under the following rule:

$$a \in T_0$$
 and $\forall n \in \mathbb{N}(a[n] \in W_0) \Rightarrow a \in W_0$.

Since every $a \in T_0$ corresponds to an infinitary wellfounded tree $\bar{a} \in \mathcal{T}_0$ with $\bar{a}(n) = \overline{a[n]}$ (for all $n \in \mathbb{N}$), it follows that $W_0 = T_0$ and consequently $\forall a \in T_0 \forall (n_i)_{i \in \mathbb{N}} \exists k a[n_0][n_1] \cdots [n_k] = 0$.

Now we want to give a proof of " $a \in W_0$ " which, for every fixed term $a \in T_0$, can be formalized in ID_{ω} , the formal theory of ω -times iterated inductive definitions. There we have to use methods which do not depend on the nonconstructive tree classes \mathcal{T}_{ν} . In fact, we will establish a more general result:

2.2. Theorem. Let $0 < v \le \omega$. If $a \in T_0$ contains no symbol D_v with v < v, then " $a \in W_0$ " is provable in ID_v .

Since ID_{ω} is contained in $(\Pi_1^1 - CA) + BI$ and since $(\Pi_1^1 - CA) + BI$ proves " $a \in W_0 \rightarrow \forall (n_i)_{i \in \mathbb{N}} \exists k \ a[n_0] \cdots [n_k] = 0$ ", we obtain from 2.2:

2.3. Theorem. $(\Pi_1^1\text{-}CA) + BI \vdash \forall (n_i)_{i \in \mathbb{N}} \exists k \ a[n_0] \cdots [a_k] = 0$, for each $a \in T_0$.

This theorem together with 2.1 yields Theorem II.

In the following let $v \le \omega$ be fixed. We use u, v to denote numbers $\le v$.

Iterated inductive definition of sets W_v (v < v)

(W1) $0 \in W_v$. (W2) $a \in T_v$, dom $(a) \in \{\{0\}, \mathbb{N}\}, \forall n (a[n] \in W_v) \Rightarrow a \in W_v$. (W3) $a \in T_v$, dom $(a) = T_u$ with u < v, $\forall z \in W_u (a[z] \in W_v) \Rightarrow a \in W_v$.

Proposition. $u \leq v < v \Rightarrow W_u \subseteq W_v \subseteq T_v$

Abbreviations. Let X range over subsets of T which are definable in the language of ID_{y} .

1. By $A_v(X, a)$ we denote the following statement:

$$a = 0 \lor [\operatorname{dom}(a) \in \{\{0\}, \mathbb{N}\} \land \forall n \ (a[n] \in X)] \\ \lor \exists u < v \ [\operatorname{dom}(a) = T_u \land \forall z \in W_u(a[z] \in X).$$

2. $A_v(X) := \{x \in T : A_v(X, x)\}.$ 3. $X^{(a)} := \{y \in T : a + y \in X\}.$ 4. $\bar{X} := \{y \in T : \forall x (x \in X \rightarrow x + D_v y \in X)\}.$ 5. $W^* := \{x \in T : \forall u < v(D_u x \in W_u)\}.$

By the definition of W_v , for all v < v we have:

- (A1) $A_v(W_v) = W_v$, (A2) $A_v(X) \subseteq X \Rightarrow W_v \subseteq X$.
- **2.4. Lemma.** (a) $A_v(X) \subseteq X$ and $a \in X \Rightarrow A_v(X^{(a)}) \subseteq X^{(a)}$ $(v \le v)$. (b) $a, b \in W_v \Rightarrow a + b \in W_v$ (v < v).

Proof. (a) Suppose $A_v(X) \subseteq X$, $a \in X$, $A_v(X^{(a)}, b)$. We have to prove $a + b \in X$: 1. b = 0: Then $a + b = a \in X$.

2. dom(b) $\in \{\{0\}, \mathbb{N}\}$ and $\forall n (b[n] \in X^{(a)})$: Then we have dom(a + b) = dom(b) and $(a + b)[n] = a + b[n] \in X$, for all $n \in \mathbb{N}$. It follows that $a + b \in A_v(X) \subseteq X$.

3. dom $(b) = T_u$ with u < v: similar to 2.

(b) From (a) together with (A1), (A2) we obtain, for v < v, $a \in W_v \to W_v \subseteq W_v^{(a)}$, i.e., $a \in W_v \to (b \in W_v \to a + b \in W_v)$.

2.5. Lemma. $A_{\nu}(X) \subseteq X \Rightarrow A_{\nu}(\bar{X}) \subseteq \bar{X}$

Proof. Assumptions: $A_{\nu}(X) \subseteq X$, $A_{\nu}(\overline{X}, b)$, $a \in X$.

We have to prove $a + D_v b \in X$. First we prove: (1) $\forall u < v \ (a + D_{u+1} 0 \in X)$.

We have dom $(a + D_{u+1}0) = T_u$ and $(a + D_{u+1}0)[z] = a + z$. By 2.4 we obtain $A_v(X^{(a)}) \subseteq X^{(a)}$. Since $A_u(X^{(a)}) \subseteq A_v(X^{(a)})$, it follows by (A2) that $W_u \subseteq X^{(a)}$, i.e., $\forall z \in W_u(a + z \in X)$. Hence $A_v(X, a + D_{u+1}0)$ and therefore $a + D_{u+1}0 \in X$, since $A_v(X) \subseteq X$.

Proof of $a + D_v b \in X$:

1. b = 0 and v = 0: Then $a + D_v b = a + 1$; and $a + 1 \in X$ follows from $A_v(X) \subseteq X \land a \in X$.

2. b = 0 and v = u + 1: In this case we are done by (1).

3. b = 0 and $v = \omega$: Then dom $(a + D_v b) = \mathbb{N}$ and $(a + D_v b)[n] = a + D_{n+1}0$. By (1) we obtain $A_v(X, a + D_v b)$. Hence $a + D_v b \in X$.

4. $b = b_0 + 1$ with $b_0 \in \overline{X}$: Then we have $\forall x \in X (x + D_v b_0 \in X)$. Using this and the assumption $a \in X$ we obtain $\forall n \in \mathbb{N} (a + (D_v b_0) \cdot (n+1) \in X)$ by complete

induction. Since dom $(a + D_v b) = \mathbb{N}$ and $(a + D_v b)[n] = a + (D_v b_0) \cdot (n+1)$ it follows that $a + D_v b \in A_v(X) \subseteq X$.

5. dom $(b) = \mathbb{N}$ and $\forall n (b[n] \in \overline{X})$: Then we have dom $(a + D_v b) = \mathbb{N}$ and $(a + D_v b)[n] = a + D_v b[n] \in X$, for all $n \in \mathbb{N}$. Hence $a + D_v b \in A_v(X)$. 6. dom $(b) = T_u$, u < v and $\forall z \in W_u(b[z] \in \overline{X})$: similar to 5.

2.6. Lemma. $A_{\nu}(W^*) \subseteq W^*$.

Proof. Suppose $b \in A_v(W^*)$ and v < v. We have to show $D_v b \in W_v$.

1. b = 0 and v = 0: From $0 \in W_v$ we get $D_0 0 = 1 \in W_v$ by (W2).

2. b = 0 and v = u + 1: Then $dom(D_v b) = T_u$, $(D_v b)[z] = z$ and $W_u \subseteq W_v$. Hence $D_v b \in W_v$ by (W3).

3. $b = b_0 + 1$ and $b_0 \in W^*$: Then we have $dom(D_v b) = \mathbb{N}$, $(D_v b)[n] = (D_v b_0) \cdot (n+1)$ and $D_v b_0 \in W_v$. Using 2.4(b) we obtain $\forall n (D_v b)[n] \in W_v$ by induction on n. Hence $D_v b \in W_v$.

4. dom $(b) = T_u$, u < v and $b[z] \in W^*$ for all $z \in W_u$:

4.1. u < v: Then we have dom $(D_v b) = T_u$ and $(D_v b)[z] = D_v b[z] \in W_v$ for all $z \in W_u$, i.e., $D_v b \in W_v$.

4.2. $v \le u < v$: Then we have dom $(D_v b) = \mathbb{N}$ and $(D_v b)[n] = D_v b[z]$ with $z := D_u b[1]$. Obviously $1 \in W_u$ and therefore $b[1] \in W^*$. It follows that $z \in W_u$. From this we obtain $b[z] \in W^*$ and then $D_v b[z] \in W_v$, i.e., $\forall n (D_v b)[n] \in W_v$. Hence $D_v b \in W_v$.

5. dom $(b) = \mathbb{N}$ and $b[n] \in W^*$ for all $n \in \mathbb{N}$: similar to 4.1.

2.7. Lemma. If $a \in T$ contains no symbol D_v with v > v, then $A_v(X) \subseteq X \rightarrow a \in X$.

Proof. By induction on the length of a: suppose $A_v(X) \subseteq X$.

1. a = 0: In this case $a \in A_{\nu}(X) \subseteq X$.

2. $a = (a_0, \ldots, a_k) (k \ge 1)$: Let $c := (a_0, \ldots, a_{k-1})$. Then we have:

(1) $c \in X \to A_{\nu}(X^{(c)}) \subseteq X^{(c)}$ (by 2.4(a)).

(2) $c \in X$ (by induction hypothesis).

(3) $A_{\nu}(X^{(c)}) \subseteq X^{(c)} \rightarrow a_k \in X^{(c)}$ (by induction hypothesis).

From this we get $a = c + a_k \in X$.

3. $a = D_v b$: From $A_v(X) \subseteq X$ we get $0 \in X$ and $A_v(\bar{X}) \subseteq \bar{X}$ by 2.5. By I.H. (induction hypothesis) we have $A_v(\bar{X}) \subseteq \bar{X} \to b \in \bar{X}$. By definition of \bar{X} we have $b \in \bar{X} \to (0 \in X \to D_v b \in X)$. Hence $D_v b \in X$.

4. $a = D_v b$ with v < v: By I.H. we have $A_v(W^*) \subseteq W^* \rightarrow b \in W^*$. Using 2.6 we obtain $b \in W^*$. Hence $a = D_v b \in W_v$. From $A_v(X) \subseteq X$ we get $A_v(X) \subseteq X$ and then $W_v \subseteq X$.

2.8. Lemma. If $a \in T_0$ contains no symbol D_v with v > v, then $a \in W_0$.

Proof. Let $a \neq 0$. Then $a = D_0 a_0 + \cdots + D_0 a_k$ with $a_0, \ldots, a_k \in T$, and by Lemmata 2.6, 2.7 we have $a_0, \ldots, a_k \in W^*$. Hence $D_0 a_0, \ldots, D_0 a_k \in W_0$. From this we obtain $a \in W_0$ by 2.4(b).

By formalizing in ID_v the definition of W_v (v < v) and the proofs of 2.4–2.8 we obtain Theorem 2.2.

3. The relations \ll_k and the functions $H_a: \mathbb{N} \to \mathbb{N}$

In Section 4 we will use terms $a \in T$ instead of ordinals to measure the lengths of infinitary derivations. In this context we need certain relations \ll_k on T which we introduce now. We also introduce a hierarchy $(H_a)_{a \in T_0}$ of number-theoretic functions which is closely related to the so called Hardy hierarchy. The relation \ll_0 restricted to T_0 is just the step-down relation of Schmidt [6]; cf. also Ketonen and Solovay [4] where similar relations are studied.

As before the letters a, b, c, d, e, z will always denote elements of T. As mentioned in Section 2 every $a \in T$ can be considered as a notation for a wellfounded tree $\bar{a} \in \mathcal{T}_{\omega}$ in such a way that $\bar{z} \in \text{domain}(\bar{a})$ and $\bar{a}(\bar{z}) = \overline{a[z]}$ holds for all $z \in \text{dom}(a)$. Consequently we have the following principle of *transfinite induction over* T:

$$\forall a \in T \ [\forall z \in \operatorname{dom}(a) \ \Psi(a[z]) \to \Psi(a)] \to \forall a \in T \ \Psi(a).$$

Definition of $c \ll_k a$ by transfinite induction on $a \in T$

$$c \ll_k a : \Leftrightarrow a \neq 0 \text{ and } \forall z \in d_k(a) \ (c \leq_k a[z])$$

where

$$d_k(a) := \begin{cases} \{k\}, & \text{if dom}(a) \in \{\{0\}, \mathbb{N}\} \\ \{D_u e : 0 \neq e \in T\}, & \text{if dom}(a) = T_u \end{cases}$$

and

 $c \leq k a : \Leftrightarrow c \ll_k a \text{ or } c = a.$

3.1. Lemma. (a) $c \ll_k a$ and $a \ll_k b \Rightarrow c \ll_k b$. (b) $c \ll_k b \Rightarrow a + c \ll_k a + b$. (c) $b \neq 0 \Rightarrow a \ll_k a + b$.

Proof by transfinite induction on b.

3.2. Lemma. (a)
$$n \le k + 1 \Rightarrow (D_v a) \cdot n \ll_k D_v(a+1)$$
.
(b) $c \ll_k a \Rightarrow D_v c \ll_k D_v a$.

Proof. (a) By 3.1(c) we have $(D_v a) \cdot n \leq_k (D_v a) \cdot (k+1) = D_v (a+1)[k]$. Hence $(D_v a) \cdot n \ll_k D_v (a+1)$, since $d_k (D_v (a+1)) = \{k\}$.

(b) Transfinite induction on a: Suppose $a \neq 0$ and $\forall z \in d_k(a) (c \leq a[z])$.

1. $a = a_0 + 1$: By I.H. and 3.2(a) we have $D_v c \leq D_v a_0 \ll_k D_v a$.

2. dom $(a) \in \{\mathbb{N}\} \cup \{T_u : u < v\}$: Then $d_k(D_v a) = d_k(a)$ and $\forall z \in d_k(a)$ $((D_v a)[z] = D_v a[z])$. By I.H. we have $\forall z \in d_k(a)(D_v c \leq k D_v a[z])$. Hence $D_v c \ll_k D_v a$.

3. dom $(a) = T_u$ with $v \le u$: Then $d_k(D_v a) = \{k\}$ and $(D_v a)[k] = D_v a[z]$ with $z := D_u a[1] \in d_k(a)$. By I.H. we have $D_v c \le D_v a[z]$. Hence $D_v c \ll D_v a$.

3.3. Lemma. dom $(a) = \mathbb{N} \Rightarrow a[n] \leq a[n+1]$.

Proof. By induction on the length of *a*:

1. $a = D_{\omega}0$: Then we have $a[n+1] = D_{n+2}0$ and therefore $d_k(a[n+1]) = \{D_{n+1}e: 0 \neq e \in T\}$, a[n+1][z] = z. Using 3.1(c) and 3.2(b) we obtain $\forall z \in d_k(a[n+1])(D_{n+1}0 \ll_k z)$. Hence $a[n] \ll_k a[n+1]$.

2. For a = b + c or $a = D_v b$ with dom $(b) = \mathbb{N}$ the assertion follows immediately from I.H. and 3.1(b), 3.2(b).

3. For $a = D_v b$ with dom $(b) \in \{T_u : v \le u\}$ we have a[n] = a[n+1].

4. For $a = D_v(b_0 + 1)$ we have $a[n] = (D_v b_0)(n + 1) \ll_k (D_v b_0)(n + 2) = a[n + 1]$ by 3.1(c).

3.4. Lemma. (a) $a \ll_k b$ and $k \leqslant m \Rightarrow a \ll_m b$. (b) dom $(a) = \mathbb{N}$ and $n \leqslant k \Rightarrow a[n] \ll_k a$.

Proof. (a) Transfinite induction on b: Suppose $b \neq 0$ and $\forall z \in d_k(b) (a \leq_k b[z])$. For dom $(b) = \{0\}$ or dom $(b) = T_u$ the assertion follows immediately from I.H. Otherwise the I.H. and 3.3 yield $a \leq_m b[k] \leq_m b[m]$. Hence $a \ll_m b$.

(b) By 3.3 we get $a[n] \leq k a[k]$. Hence $a[n] \ll a$.

3.5. Lemma. (a) $a \neq 0 \Rightarrow 1 \leq_0 a$. (b) $D_v a + 1 \ll_1 D_v (a + 1)$. (c) $D_u 1 \ll_0 D_{u+1} 0$ and $D_0 1 \ll_0 D_{\omega} 0$. (d) $a \neq 0$ or $v \neq 0 \Rightarrow k + 1 \ll_k D_v a$ and for $k \neq 0$, $D_v a + k + 1 \ll_k D_v (a + 1)$.

Proof. (a) For $a \notin \{0, 1\}$ we have $\forall z \in d_0(a)(a[z] \neq 0)$. From this the assertion follows by transfinite induction on a.

(b) We have $D_v a + 1 \leq _0 D_v a + D_v a = D_v (a + 1)[1]$.

(c) By 3.5(a) and 3.2(b) we have $D_u 1 \leq_0 z = (D_{u+1}0)[z]$ for all $z \in d_0(D_{u+1}0)$. Hence $D_u 1 \ll_0 D_{u+1}0$. Especially $D_0 1 \ll_0 D_1 0 = (D_\omega 0)[0]$ and thus $D_0 1 \ll_0 D_\omega 0$.

(d) We have $k+1 = (D_01)[k]$ and therefore $k+1 \ll_k D_01$. By (c) it follows that $k+1 \ll_k D_v 0$ for all $v \neq 0$. If $a \neq 0$, then we have $k+1 \ll_k D_v 1 \leq_0 D_v a$ by (a) and 3.2(b). Using $k+1 \ll_k D_v a$ we get $D_v a + k + 1 \ll_k (D_v a) \cdot 2 \ll_1 D_v (a + 1)$.

Definition of $H_a: \mathbb{N} \to \mathbb{N}$ for $a \in T_0$

$$H_0(n) := n,$$

 $H_a(n) := H_{a[n]}(n+1), \text{ if } a \neq 0.$

3.6. Lemma. Let $a, b, c \in T_0$.

- (a) $H_a(n) = \min\{k > n : a[n][n+1] \cdots [k-1] = 0\}, \text{ if } a \neq 0.$
- (b) $H_{a+b} = H_a \circ H_b$
- (c) $H_a(n) < H_a(n+1)$.
- (d) $c \ll_k a \Rightarrow H_c(n) < H_a(n)$, for all $n \ge k$.

Proof. (a) Let $m := \min\{k > n : a[n][n+1] \cdots [k-1] = 0\}$. Then we have

$$H_a(n) = H_{a[n]}(n+1) = \cdots = H_{a[n]\cdots[m-1]}(m) = H_0(m) = m.$$

(b) Let $b \neq 0$ and $m := H_b(n)$. Then $(a+b)[n] \cdots [m-1] = a + (b[n] \cdots [m-1]) = a + 0 = a$ and thus $H_{a+b}(n) = H_a(m) = H_a(H_b(n))$.

(c) and (d) are proved simultaneously by transfinite induction on a: Let $a \neq 0$.

(c) By 3.3 we have $a[n] \leq_0 a[n+1]$, and therefore by I.H.

$$H_a(n) = H_{a[n]}(n+1) \le H_{a[n+1]}(n+1) < H_{a[n+1]}(n+2) = H_a(n+1).$$

(d) Suppose $c \leq_k a[k]$ and $n \geq k$: By 3.3 we get $c \leq_k a[n]$ and then by I.H. $H_c(n) \leq H_{a[n]}(n) < H_{a[n]}(n+1) = H_a(n)$.

Definition.

$$D_v^0 a := D_v a, \qquad D_v^{m+1} a := D_v D_v^m a, \qquad c_v^m := D_0 D_v^m 0.$$

7. Lemma. (a) $(D_v^m a) \cdot n \ll_k D_v^m (a+1)$, for $n \le k+1$. (b) $(D_v^m 0) \cdot n \ll_k D_v^{m+1} 0$, for $n \le k+1$.

Proof. (a) From 3.1(c) and 3.2(b) we obtain $D_v^m a \ll_0 D_v^m (a+1)$. For $k \neq 0$ we proceed by induction on m:

1. m = 0: $(D_{\nu}^{m}a) \cdot n = (D_{\nu}a) \cdot n \ll_{k} D_{\nu}(a+1) = D_{\nu}^{m}(a+1)$ by 3.2.

2. $m \neq 0$: Using 3.2(a), 3.5(a) and the I.H. we obtain

$$(D_v^m a) \cdot n = D_v(D_v^{m-1}a) \cdot n \ll_k D_v(D_v^{m-1}a+1)$$

and

$$D_v^{m-1}a + 1 \leq _0 (D_v^{m-1}a) \cdot 2 \ll_1 D_v^{m-1}(a+1).$$

From this the assertion follows by 3.2(b).

(b) $(D_v^m 0) \cdot n \ll_k D_v^m 1 \leq_0 D_v^m D_v 0 = D_v^{m+1} 0$ by 3.7(a), 3.5(a), 3.2(b).

3.8. Lemma. (a) $m \ge 1$ and $n \ge 1 \Rightarrow H_{c_v^m}(4n+6) < H_{c_v^{m+1}}(n)$. (b) $n \ge m+1 \Rightarrow H_{c_v^m}(n) < H_{c_v^n}(1)$. **Proof.** (a) Let $a := D_v^m 0$. Obviously $H_i(n) = i + n$ and therefore $H_{D_0 1}(n) = H_{n+1}(n+1) = 2n+2$. By 3.6(b) we obtain $H_{D_0 a}(4n+6) = H_{D_0 a+D_0 1+D_0 1}(n)$. By 3.5(d) we have $2 \ll_1 a$ (since $m \neq 0$) and thus

$$D_0a + (D_01) \cdot 2 \ll_1 D_0a + D_02 \ll_1 D_0a + D_0a \ll_1 D_0(a+1)$$

and $a + 1 \leq_0 a + a = (D_v^m 0) \cdot 2 \ll_1 D_v^{m+1} 0$. From this together with 3.2(b) we get $D_0 a + (D_0 1) \cdot 2 \ll_1 D_0 D_v^{m+1} 0 = c_v^{m+1}$. Hence $H_{D_0 a}(4n + 6) < H_{c_v^{m+1}}(n)$ for $n \ge 1$.

(b) By 3.7(b) and 3.2(b) we have $c_v^n \ll_0 c_v^{n+1}$. Hence $n \leq H_{c_v^n}(0)$ and $n+1 \leq H_{c_v^n}(1)$ by 3.6(c, d). For $n \geq m+1$ we have

$$c_{v}^{n-1} + c_{v}^{n-1} = (D_{0}D_{v}^{n-1}0) \cdot 2 \ll_{1} D_{0}(D_{v}^{n-1}0 + 1)$$
$$\leq_{0} D_{0}(D_{v}^{n-1}0 + D_{v}^{n-1}0) \ll_{1} D_{0}D_{v}^{n}0 = c_{v}^{n}$$

and thus

$$H_{c_v^{n}}(n) \leq H_{c_v^{n-1}}(n) \leq H_{c_v^{n-1}}(H_{c_v^{n-1}}(1)) = H_{c_v^{n-1}+c_v^{n-1}}(1) < H_{c_v^{n}}(1).$$

4. The infinitary system ID_{ω}^{∞}

In this section we prove the following theorem:

4.0. Theorem. If a Π_2^0 -sentence $\forall x \exists y \varphi(x, y) \ (\varphi \in \Sigma_1^0)$ is provable in ID_v $(v \leq \omega)$, then there exists $p \in \mathbb{N}$ such that $\forall n \geq p \exists k < H_{D_0D_1^{n_0}}(1) \varphi(n, k)$.

Corollary. ID_v $\notin \forall n \exists k (D_0 D_v^n 0)[1][2] \cdots [k] = 0.$

Proof. Suppose $ID_v \vdash \forall n \exists k (D_0 D_v^n 0)[1] \cdots [k] = 0$. Then also $ID_v \vdash \forall n \exists k$ $(D_0 D_v^n 0)[1] \cdots [k-1] = 0$ and therefore by 4.0 there exists $p \in \mathbb{N}$ such that $\forall n \ge p \exists k < H_{D_0 D_v^n 0}(1) (D_0 D_v^n 0)[1] \cdots [k-1] = 0$. Hence $\min\{k \in \mathbb{N} : (D_0 D_v^p 0)[1] \cdots [k-1] = 0\} < H_{D_0 D_v^n 0}(1)$, which is a contradiction to 3.6(a).

From this corollary together with 2.1 and the fact that ID_{ω} proves the same arithmetic sentences as $(\Pi_1^1-CA) + BI$ we obtain Theorem III, i.e.,

 $(\Pi_1^1\text{-}CA) + BI \notin \forall n \; \exists k \; A^n(1) \cdots (k) = \bigoplus.$

Theorem 4.0 is obtained by embedding ID_{ν} into an infinitary proof system ID_{ω}^{∞} which allows cut elimination.

Preliminaries. Let L denote the first-order language consisting of the following symbols:

- (i) the logical constants \neg , \land , \lor , \forall , \exists ,
- (ii) number variables (indicated by x, y),
- (iii) a constant 0 (zero) and a unary function symbol ' (successor),

(iv) constants for primitive recursive predicates (among them the symbol < for the arithmetic 'less' relation).

By s, t, t_0, \ldots we denote arbitrary L-terms. The constant terms $0, 0', 0'', \ldots$ are called numerals; we identify numerals and natural numbers and denote them by *i*, *j*, *k*, *m*, *n*, *u*, *v*, *w*. A formula of the shape $Rt_1 \cdots t_n$ or $\neg Rt_1 \cdots t_n$, where *R* is a *n*-ary predicate symbol of *L*, is called an *arithmetic prime formula* (abbreviated by a.p.f.).

Let X be a unary and Y a binary predicate variable. A positive operator form is a formula $\mathfrak{A}(X, Y, y, x)$ of L(X, Y) in which only X, Y, y, x occur free and all occurrences of X are positive. The language L_{ID} is obtained from L by adding a binary predicate constant $P^{\mathfrak{A}}$ and a 3-ary predicate constant $P_{<}^{\mathfrak{A}}$ for each positive operator form \mathfrak{A} .

Abbreviations

$$t \in P_s^{\mathfrak{A}} := P_s^{\mathfrak{A}} t := P^{\mathfrak{A}} st, \qquad t \notin P_s^{\mathfrak{A}} := \neg (t \in P_s^{\mathfrak{A}}),$$
$$P_{$$

The formal theory ID_{ω} is an extension of Peano Arithmetic, formulated in the language L_{ID} , by the following axioms:

$$(P^{\mathfrak{A}}.1) \quad \forall y \; \forall x \; (\mathfrak{A}_{y}(P^{\mathfrak{A}}_{y}, x) \to x \in P^{\mathfrak{A}}_{y}).$$

$$(P^{\mathfrak{A}}.2) \; \forall y \; (\forall x \; (\mathfrak{A}_{y}(F, x) \to F(x)) \to \forall x \; (x \in P^{\mathfrak{A}}_{y} \to F(x))),$$
for every L_{ID} -formula $F(x)$.

$$(P^{\mathfrak{A}}_{<}) \quad \forall y \; \forall x_0 \; \forall x_1 (P^{\mathfrak{A}}_{< y} x_0 x_1 \leftrightarrow x_0 < y \land x_1 \in P^{\mathfrak{A}}_{x_0}).$$

The infinitary system ID_{ω}^{∞} will be formulated in the language $L_{ID}(N)$ which arises from L_{ID} by adding a new unary predicate symbol N. This is a technical tool which shall help us to keep control over the numerials n occurring in \exists -inferences $A(n) \vdash \exists x A(x)$ of ID_{ω}^{∞} -derivations. Following Tait [8] we assume all formulas to be in *negation normal form*, i.e., the formulas are built up from atomic and negated atomic formulas by means of \land , \lor , $\forall \exists$ If A is a complex formula we consider $\neg A$ as a notation for the corresponding negation normal form.

Definition of the length |A| of a $L_{ID}(N)$ -formula A

- 1. $|Nt| := |\neg Nt| := 0.$
- 2. |A| := 1, if A is an a.p.f. or a formula $(\neg) P_s^{\mathfrak{A}} t$.
- 3. $|P_{\leq s}^{\mathfrak{A}} t_0 t_1| := |\neg P_{\leq s}^{\mathfrak{A}} t_0 t_1| := 2.$
- 4. $|A \wedge B| := |A \vee B| := \max\{|A|, |B|\} + 1.$
- 5. $|\forall x A| := |\exists x A| := |A| + 1.$

Proposition. $|\neg A| = |A|$, for each $L_{ID}(N)$ -formula A.

As before we use the letters u, v to denote numbers $\leq \omega$.

Inductive definition of formula sets Pos_v ($v < \omega$)

1. All L(N)-formulas belong to Pos_v .

2. All formulas $P_u^{\mathfrak{A}}t$, $(\neg)P_{\leq u}^{\mathfrak{A}}t_0t_1$ with $u \leq v$ belong to Pos_v .

3. All formulas $\neg P_u^{\mathfrak{A}} t$ with u < v belong to Pos_v .

4. If A and B belong to Pos_v , then the formulas $A \wedge B$, $A \vee B$, $\forall x A$, $\exists x A$ also belong to Pos_v .

Remark. If $P_{\mu}^{\mathfrak{A}}t \in \operatorname{Pos}_{\nu}$, then also $\mathfrak{A}_{\mu}(P_{\mu}^{\mathfrak{A}}, t) \in \operatorname{Pos}_{\nu}$.

Notations

- In the following A, B, C always denote closed $L_{\rm ID}(N)$ -formulas.

 $-\Gamma$, Γ' , Δ denote finite sets of closed $L_{\rm ID}(N)$ -formulas; we write, e.g., Γ , Δ , A for $\Gamma \cup \Delta \cup \{A\}$.

 $-A^{N}$ denotes the result of restricting all quantifiers in A to N.

 $- t \in N :\equiv Nt, t \notin N :\equiv \neg Nt.$

- As before we use the letters a, b, c, d, z to denote elements of T.

Definition

$$c \ll_{\Gamma} a : \Leftrightarrow c \ll_{k} a, \text{ where } k := \max(\{2\} \cup \{3n : \neg Nn \in \Gamma\}).$$

4.1. Proposition. (a) $c \ll_{\Gamma} a$ and $\Gamma \subseteq \Delta \Rightarrow c \ll_{\Delta} a$ (cf. 3.4(a)).

(b) $c \ll_{\Gamma \cup \{0 \notin N\}} a \Rightarrow c \ll_{\Gamma} a$.

Basic inference rules

- $(\wedge) \qquad A_0, A_1 \vdash A_0 \wedge A_1.$
- $(\vee) \qquad A \vdash A \lor B; \qquad B \vdash A \lor B.$
- (\forall^{∞}) $(A(n))_{n\in\mathbb{N}} \vdash \forall x A(x).$
- $(\exists) \qquad A(n) \vdash \exists x A(x).$
- $(N) \qquad n \in N \vdash n' \in N.$
- $(P^{\mathfrak{A}}_{< u}) \quad P^{\mathfrak{A}}_{j} n \vdash P^{\mathfrak{A}}_{< u} jn, \quad \text{if } j < u < \omega.$

$$(\neg P_u^{\mathfrak{A}}) \quad \neg P_j^{\mathfrak{A}} n \vdash \neg P_{< u}^{\mathfrak{A}} jn, \quad \text{if } j < u < \omega.$$

Every instance $(A_i)_{i \in I} \vdash A$ of these rules is called a *basic inference*. If $(A_i)_{i \in I} \vdash A$ is a basic inference with $A \in \text{Pos}_v$, then $A_i \in \text{Pos}_v$ for all $i \in I$. This property will be used in the proof of 4.6.

The system ID_{ω}^{∞} consists of the language $L_{ID}(N)$ and a certain derivability relation $\vdash_{m}^{a} \Gamma$ (" Γ is derivable with order $a \in T$ and cutdegree $m \in \mathbb{N}$ ") which we introduce below by an iterated inductive definition similar to that of the tree classes \mathcal{T}_{v} in Section 1. The main feature in the definition of $\vdash_{m}^{a} \Gamma$ is the Ω_{u+1} -rule

which we have developed in Buchholz [1], [2]. We try to give a short explanation of this inference rule. To this purpose let us consider " $\vdash_1^a A$ " as a notion of realizability similar to modified realizability. So we read " $\vdash_1^a A$ " as "*a* realizes *A*". Now suppose that $\vdash_1^z \Gamma$ is already defined for all $z \in T_u$. Then, according to the fact that

$$f^{\sigma \to \tau} \operatorname{mr} A \to B$$
 iff $\forall g^{\sigma} (g^{\sigma} \operatorname{mr} A \Rightarrow f^{\sigma \to \tau} (g^{\sigma}) \operatorname{mr} B)$

it seems reasonable to define:

a realizes
$$(P_u^{\mathfrak{A}} n \to B)$$
 : $\Leftrightarrow \begin{cases} \operatorname{dom}(a) = T_u & \text{and} \\ \forall z \in T_u \ (z \text{ realizes } P_u^{\mathfrak{A}} n \Rightarrow a[z] \text{ realizes } B). \end{cases}$

This motivates the following inference rule:

$$\begin{array}{ll} (\Omega_{u+1})' & \operatorname{dom}(a) = T_u & \operatorname{and} \\ \forall z \in T_u(\vdash_1^z P_u^{\mathfrak{A}} n \Rightarrow \vdash_m^{a[z]} B) \end{array} \right\} \Rightarrow \vdash_m^a P_u^{\mathfrak{A}} n \to B.$$

The next step is a straightforward modification of this rule:

$$(\Omega_{u+1})'' \quad \operatorname{dom}(a) = T_u \quad \text{and} \\ \forall z \in T_u \; \forall A \in \operatorname{Pos}_u \left(\vdash_1^z A \lor P_u^{\mathfrak{A}} n \Rightarrow \vdash_m^{a[z]} A \lor B \right) \right\} \Rightarrow \vdash_m^a P_u^{\mathfrak{A}} n \to B.$$

For technical reasons we combine every application of $(\Omega_{u+1})^n$ with a cut $B \vee P_u^{\mathfrak{A}}n, P_u^{\mathfrak{A}}n \to B \vdash B$. This gives the final version of the Ω_{u+1} -rule.

Inductive definition of $\vdash_m^a \Gamma$ $(a \in T, m \in \mathbb{N})$

- (Ax1) $\vdash_m^a \Gamma$, A, if A is a true a.p.f. or $A \equiv 0 \in N$ or $A \equiv \neg P_{<u}^{\mathfrak{A}} jn$ with $u \leq j$.
- (Ax2) $\vdash_m^a \Gamma, \neg A, A, \text{ if } A \equiv n \in N \text{ or } A \equiv P_u^{\mathfrak{A}} n.$
- (Bas) If $(A_i)_{i \in I} \vdash A$ is a basic inference with $A \in \Gamma$ and $\forall i \in I (\vdash_m^a \Gamma, A_i)$, then $\vdash_m^{a+1} \Gamma$.

$$(P_u^{\mathfrak{A}}) \qquad \vdash_m^a \Gamma, \ n \in N \land \mathfrak{A}_u^N(P_u^{\mathfrak{A}}, n) \text{ and } P_u^{\mathfrak{A}}n \in \Gamma \Rightarrow \vdash_m^{a+3} \Gamma.$$

(Cut)
$$\vdash_m^a \Gamma, \neg C \text{ and } \vdash_m^a \Gamma, C \text{ and } |C| < m \Rightarrow \vdash_m^{a+1} \Gamma.$$

- $(\Omega_{u+1}) \quad \operatorname{dom}(a) = T_u \text{ and } \vdash_m^{a[1]} \Gamma, P_u^{\mathfrak{A}} n \text{ and} \\ \forall z \in T_u \, \forall \Delta \subseteq \operatorname{Pos}_u \left(\vdash_1^z \Delta, P_u^{\mathfrak{A}} n \Rightarrow \vdash_m^{a[z]} \Delta, \Gamma \right) \right\} \Rightarrow \vdash_m^a \Gamma.$
- $(\ll) \qquad \vdash^b_m \Gamma \text{ and } b \ll_{\Gamma} a \Rightarrow \vdash^a_m \Gamma.$

4.2. Lemma. (a) $\vdash_m^a \Gamma$ and $m \leq k$, $\Gamma \subseteq \Delta \Rightarrow \vdash_k^a \Delta$.

- (b) $\vdash_m^a \Gamma \Rightarrow \vdash_m^{c+a} \Gamma$.
- (c) $\vdash_m^a \Gamma$, $0 \notin N \Rightarrow \vdash_m^a \Gamma$.

Proof. By transfinite induction on a using 3.1(b) and 4.1 and the fact that (c+a)[z] = c + a[z] for all $z \in dom(a)$.

4.3. Lemma (Inversion). Let $(A_i)_{i \in I} \vdash A$ be a basic inference (\land) , (\forall^{∞}) , $(P_{\leq u}^{\mathfrak{A}})$, $(\neg P_{\leq u}^{\mathfrak{A}})$. Then $\vdash_m^a \Gamma$, A implies $\forall i \in I (\vdash_m^a \Gamma, A_i)$.

Proof. By transfinite induction on *a*.

4.4. Lemma (Reduction). Suppose $\vdash_m^a \Gamma_0$, $\neg C$ and $|C| \leq m$, where C is a formula of the shape $A \lor B$ or $\exists x A(x)$ or $P_{\leq u}^{\mathfrak{A}}$ for $\neg P_u^{\mathfrak{A}}$ n or a false a.p.f. Then $\vdash_m^b \Gamma$, C implies $\vdash_m^{a+b} \Gamma_0$, Γ .

Proof. By transfinite induction on b:

(Ax1) If $\vdash_m^b \Gamma$, C holds by (Ax1), then also $\vdash_m^{a+b} \Gamma$ by (Ax1).

(Ax2) If $\vdash_m^b \Gamma$, C holds by (Ax2), then either $\vdash_m^{a+b} \Gamma$ by (Ax2) or $\neg C \in \Gamma$. In the latter case $\vdash_m^{a+b} \Gamma_0$, Γ follows from $\vdash_m^a \Gamma_0$, $\neg C$.

(Bas) Suppose $b = b_0 + 1$, $A \in \Gamma \cup \{C\}$ and $\forall i \in I (\vdash_m^{b_0} \Gamma, C, A_i)$ where $(A_i)_{i \in I} \vdash A$ is a basic inference (\mathcal{I}) . Then by I.H. we have (1) $\forall i \in I (\vdash_m^{a+b_0} \Gamma_0, \Gamma, A_i)$.

Case 1: $A \in \Gamma$. Then the assertion follows immediately from (1).

Case 2: $A \equiv C$. Then, according to the assumption we have made on C, (\mathcal{I}) is an inference (\lor) , (\exists) , $(P_{\leq u}^{\mathfrak{A}})$ with $I = \{0\}$. By 4.3, 4.2(a) and (\ll) from $\vdash_m^a \Gamma_0, \neg C$ we get (2) $\vdash_m^{a+b_0} \Gamma_0, \Gamma, \neg A_0$. From (1), (2) and $|A_0| < |C| \leq m$ we obtain $\vdash_m^{a+b} \Gamma_0, \Gamma$ by a cut with cutformula A_0 .

(«) Suppose $\vdash_m^{b_0} \Gamma$, C with $b_0 \ll_{\Gamma,C} b$. Since C is not a formula $n \notin N$, it follows that $a + b_0 \ll_{\Gamma_0,\Gamma} a + b$. By I.H. we have $\vdash_m^{a+b_0} \Gamma_0$, Γ . Hence $\vdash_m^{a+b} \Gamma_0$, Γ by («).

In all other cases the assertion follows immediately from I.H.

4.5. Theorem (Cutelimination). $\vdash_{m+1}^{a} \Gamma$ and $a \in T_{\rho}$, $\rho \leq \omega$, $m > 0 \Rightarrow \vdash_{m}^{D_{\rho}a} \Gamma$.

Proof. By transfinite induction on *a*:

1. If $\vdash_{m+1}^{a} \Gamma$ holds by (Ax1) or (Ax2), then the assertion is trivial.

2. Suppose $a = a_0 + 1$, $A \in \Gamma$ and $\forall i \in I (\vdash_{m+1}^{a_0} \Gamma, A_i)$, where $(A_i)_{i \in I} \vdash A$ is a basic inference (\mathscr{I}) . Then by I.H. we have $\forall i \in I (\vdash_m^{D_p a_o} \Gamma, A_i)$. By (\mathscr{I}) we obtain $\vdash_m^{D_p a_0+1} \Gamma$ and then $\vdash_m^{D_p a} \Gamma$ by (\ll) and 3.5(a).

3. Suppose $a = a_0 + 3$, $P_u^{\mathfrak{A}} n \in \Gamma$ and $\vdash_{m+1}^{a_0} \Gamma$, B with $B \equiv n \in N \land \mathfrak{A}_u^N(P_u^{\mathfrak{A}}, n)$. Then by I.H. and (\ll) we have $\vdash_m^{D_p(a_0+2)} \Gamma$, B. By $(P_u^{\mathfrak{A}})$ we get $\vdash_m^{D_p(a_0+2)+3} \Gamma$ and then $\vdash_m^{D_pa} \Gamma$ by (\ll) and 3.5(d).

4. Suppose dom(a) = T_u , $\vdash_{m+1}^{a[1]} \Gamma$, $P_u^{\mathfrak{A}} n$ and $\vdash_{m+1}^{a[2]} \Delta$, Γ for all $z \in T_u$, $\Delta \subseteq \operatorname{Pos}_u$ with $\vdash_1^z \Delta$, $P_u^{\mathfrak{A}} n$. Since $a \in T_\rho$, we have $u < \rho$ and thus dom $(D_\rho a) = T_u$ and $(D_\rho a)[z] = D_\rho a[z]$. By I.H. we have $\vdash_m^{D_\rho a[1]} \Gamma$, $P_u^{\mathfrak{A}} n$ and $\vdash_m^{D_\rho a[z]} \Delta$, Γ for all $z \in T_u$, $\Delta \leq \operatorname{Pos}_u$ with $\vdash_1^z \Delta$, $P_u^{\mathfrak{A}} n$. From this we obtain $\vdash_m^{D_\rho a} \Gamma$ by an application of (Ω_{u+1}) .

5. Suppose $\vdash_{m+1}^{a_0} \Gamma$ and $a_0 \ll_{\Gamma} a$. Then by I.H. and 3.2(b) we have $\vdash_{m}^{D_{\rho}a_0} \Gamma$ and $D_{\rho}a_0 \ll_{\Gamma} D_{\rho}a$. Hence $\vdash_{m}^{D_{\rho}a} \Gamma$.

6. Suppose $a = a_0 + 1$, $\vdash_{m+1}^{a_0} \Gamma$, $\neg C$, $\vdash_{m+1}^{a_0} \Gamma$, C and |C| < m + 1. Then by I.H. we have $\vdash_m^{D_p a_0} \Gamma$, $\neg C$ and $\vdash_m^{D_p a_0} \Gamma$, C.

6.1. |C| < m: In this case we obtain $\vdash_m^{D_p a_0+1} \Gamma$ by a cut with cutformula C. The assertion follows by (\ll) and 3.5(b).

6.2. |C| = m: Since m > 0, we may assume that C fulfills the condition of 4.4. Then by 4.4 we obtain $\vdash_{m}^{D_{\rho}a_{0}+D_{\rho}a_{0}}\Gamma$, and from this $\vdash_{m}^{D_{\rho}a}\Gamma$ by (\ll) and 3.2(a).

The following theorem shows that if $\Gamma \subseteq \text{Pos}_v$ is derivable with cutdegree 1, then one can eliminate all Ω_{u+1} -inferences with $u \ge v$ from the derivation of Γ .

4.6 Theorem (Collapsing). $\vdash_1^a \Gamma$ and $\Gamma \subseteq \text{Pos}_v \Rightarrow \vdash_1^{D_{v^a}} \Gamma$.

Proof. By transfinite induction on *a*:

1. Suppose dom(a) = T_u , $\vdash_1^{a[1]} \Gamma$, $P_u^{\mathfrak{A}} n$ and $\vdash_1^{a[z]} \Delta$, Γ for all $z \in T_u$, $\Delta \subseteq \operatorname{Pos}_u$ with $\vdash_1^z \Delta$, $P_u^{\mathfrak{A}} n$.

Case 1: u < v. Then by I.H. we have $\vdash_1^{D_v a[1]} \Gamma$, $P_u^{\mathfrak{A}} n$ and $\vdash_1^{D_v a[z]} \Delta$, Γ for all $z \in T_u$, $\Delta \subseteq \operatorname{Pos}_u$ with $\vdash_1^z \Delta$, $P_u^{\mathfrak{A}} n$. Moreover, $\operatorname{dom}(D_v a) = T_u$ and $(D_v a)[z] = D_v a[z]$. The assertion follows by (Ω_{u+1}) .

Case 2: $u \ge v$. Then $\Gamma \cup \{P_u^{\mathfrak{A}}n\} \subseteq \operatorname{Pos}_u$ and therefore by I.H. $\vdash_1^{D_u a[1]} \Gamma, P_u^{\mathfrak{A}}n$. Since $z := D_u a[1] \in T_u$, we get $\vdash_1^{a[z]} \Gamma$. Now we apply the I.H. again and obtain $\vdash_1^{D_v a[z]} \Gamma$. But $D_v a[z] = (D_v a)[0] \ll_{\Gamma} D_v a$, and therefore $\vdash_1^{D_v a} \Gamma$.

2. In all other cases the assertion follows immediately from the I.H. by $3.5(b, d), 3.4(a), (\ll)$.

Definition

 $L(N)_+ := \{A : A \text{ is a sentence of } L(N) \text{ in which } N \text{ occurs only positively} \}.$ For $\Gamma = \{A_1, \ldots, A_n\} \subseteq L(N)_+$ we define:

$$\models \Gamma(k) \quad :\Leftrightarrow \quad \begin{cases} A_1 \lor \cdots \lor A_n \text{ is true in the standard model} \\ \text{when } N \text{ is interpreted as } \{i \in \mathbb{N} : 3i < k\}. \end{cases}$$

4.7. Lemma.

$$\left. \begin{array}{l} +_{1}^{a} i_{1} \notin N, \ldots, i_{m} \notin N, \Gamma \quad and \\ \Gamma \subseteq L(N)_{+}, n \geq \max\{2, 3i_{1}, \ldots, 3i_{m}\} \end{array} \right\} \quad \Rightarrow \quad \models \Gamma(H_{D_{0}a}(n)).$$

Proof. By transfinite induction on *a*: Let

 $\Gamma_0 := \{i_1 \notin N, \ldots, i_m \notin N\}, \quad k := \max\{2, 3i_1, \ldots, 3i_m\} \le n.$

1. If $\vdash_1^a \Gamma_0$, Γ holds by (Ax1), then the assertion is trivial.

2. If $\vdash_1^a \Gamma_0$, Γ holds by (Ax2), then the assertion follows from $n < H_{D_n}(n)$.

3. If $\vdash_1^a \Gamma_0$, Γ is the conclusion of a basic inference $\neq(N)$, then the assertion follows immediately from the I.H. and the relation $H_{Dnb}(n) < H_{Dn(b+1)}(n)$.

4. Suppose a = b + 1, $N(j + 1) \in \Gamma$, $\vdash_1^b \Gamma_0$, Γ , Nj. By I.H. we obtain $\models \Gamma \cup$

 $\{Nj\}(H_{D_0b}(n))$. By 3.1(c), 3.2(a), 3.6(d) we have $H_{D_0b}(n) < H_{(D_0b) \cdot 2}(n) < H_{(D_0b) \cdot 3}(n) < H_{D_0a}(n)$ and therefore $H_{D_0b}(n) + 3 \le H_{D_0a}(n)$. Hence $\models \Gamma(H_{D_0a}(n))$.

5. Suppose $\vdash_{1}^{b} \Gamma_{0}$, Γ with $b \ll_{\Gamma_{0} \cup \Gamma} a$. Then we have $D_{0}b \ll_{k} D_{0}a$ and therefore $H_{D_{0}b}(n) < H_{D_{0}a}(n)$, since $n \ge k$. Now the assertion follows immediately from the I.H.

6. Suppose a = b + 1, $\vdash_1^b \Gamma_0$, Γ , $i_0 \in N$ and $\vdash_1^b i_0 \notin N$, Γ_0 , Γ . Let $\bar{n} := H_{D_0 b}(n)$. Then we have

$$n < \bar{n} < H_{D_0 b}(\bar{n}) = H_{(D_0 b) \cdot 2}(n) < H_{D_0 a}(n).$$

6.1. $\bar{n} < 3i_0$: From $\vdash_1^b \Gamma_0$, Γ , $i_0 \in N$ we obtain by the I.H. $\models \Gamma \cup \{i_0 \in N\}(\bar{n})$ and then $\models \Gamma(\bar{n})$, since $3i_0 \leq \bar{n}$. Using $\bar{n} < H_{D_0a}(n)$ we get the assertion.

6.2. $3i_0 \leq \bar{n}$: From $\vdash_1^b i_0 \notin N$, Γ_0 , Γ and max $\{k, 3i_0\} \leq \bar{n}$ we obtain by the I.H. $\models \Gamma(H_{D_0b}(\bar{n}))$ and thus $\models \Gamma(H_{D_0a}(n))$.

7. Suppose dom(a) = T_u , $\vdash_1^{a[1]} \Gamma_0$, Γ , $P_u^{\mathfrak{A}j}$ and $\vdash_1^{a[z]} \Delta$, Γ_0 , Γ for all $z \in T_u$, $\Delta \subseteq \operatorname{Pos}_u$ with $\vdash_1^z \Delta$, $P_{uj}^{\mathfrak{A}j}$. By 4.6 we obtain $\vdash_1^z \Gamma_0$, Γ , $P_{uj}^{\mathfrak{A}j}$ with $z := D_u a[1] \in T_u$. From this we get $\vdash_1^{a[z]} \Gamma_0$, Γ . Now we apply the I.H. and obtain $\models \Gamma(H_{D_0 a[z]}(n))$. Hence $\models \Gamma(H_{D_0 a}(n))$, since $D_0 a[z] = (D_0 a)[0]$.

4.8. Theorem. If $\vdash_1^{D_v^m 0} \forall x \in N \exists y \in N \varphi^N(x, y)$, where $v \leq \omega$, $m \neq 0$ and $\varphi(x, y)$ a Σ_1^0 -formula of the language L, then there exists $p \in \mathbb{N}$ such that $\forall n \geq p \exists k < H_{D_0 D_u^m 0}(1) \varphi(n, k)$.

Proof. Let $a := D_v^m 0$. From the premise we obtain $\vdash_1^a n \notin N$, $\exists y \in N \varphi^N(n, y)$ for all $n \in \mathbb{N}$. Then by 4.7 we get $\models \exists y \in N \varphi^N(n, y) (H_{D_0 a}(\bar{n}))$ for all $n \in \mathbb{N}$ and all $\bar{n} \ge \max\{2, 3n\}$. Hence $\forall n \exists k < H_{D_0 a}(3n+2) \varphi(n, k)$. By 3.8 we have $H_{D_0 a}(3n+2) < H_{D_0 D_{n_0}^m}(1)$ for all $n \ge m+2$.

In the remaining part of this section we show that ID_{ν} ($\nu \le \omega$) can be embedded into ID_{ω}^{∞} and finally we prove Theorem 4.0. Let $\nu \le \omega$ be fixed.

Abbreviations

$$\widetilde{k} := D_{\nu}^{k+2}0,$$

$$a \to a_{n}b \quad :\Leftrightarrow \quad \exists a_{0}, \ldots, a_{n}(a_{0} = a \land a_{n} = b \land \forall i < n \ (a_{i} + 1 \leq a_{i+1})).$$
4.9. Lemma. (a) $\widetilde{k} \ll_{1} \widetilde{k+1}$, (b) $\widetilde{k} \to \widetilde{k+1}$.

Proof. (a) follows from 3.7(b).

(b) By 3.5(d) and 3.7(b) we have $3 \ll_2 \tilde{k}$ and $\tilde{k} \cdot 3 \ll_2 \tilde{k+1}$. Hence $\tilde{k} + 3 \ll_2 \tilde{k} \cdot 2$, $\tilde{k} \cdot 2 + 3 \ll_2 \tilde{k} \cdot 3 \ll_2 \tilde{k+1}$ and consequently $\tilde{k} \rightarrow_3 \tilde{k} \cdot 2 \rightarrow_3 \tilde{k+1}$.

4.10. Lemma. $\vdash_{0}^{k} \neg A$, A where k := |A|

```
Proof. By induction on |A|:
```

1. If A is atomic, then $\vdash_0^{\bar{k}} \neg A$, A by (Ax1) or (Ax2).

2. $A = A_0 \wedge A_1$: Then k = m + 1 with $m := \max\{|A_0|, |A_1|\}$. By I.H., 4.9(a) and (\ll) we get $\vdash_0^{\tilde{m}} \neg A_i, A_i$ for i = 0, 1, and then $\vdash_0^{\widetilde{m+1}} \neg A_0 \vee \neg A_1, A_0 \wedge A_1$ by $(\vee), (\wedge), 4.9$ (b).

3. $A = \forall x B(x)$: This case is treated as 2.

4.11. Lemma. $\vdash_0^{\bar{k}+D_01} \neg F(0), \neg \forall x \in N \ (F(x) \to F(x')), n \notin N, F(n), where k := |F|.$

Proof. Let $G := \forall x \in N (F(x) \rightarrow F(x'))$. By induction on *n* we show:

(1) $\vdash_0^{\tilde{k}+3n} \neg F(0), \neg G, F(n).$

From (1) we obtain $\vdash_0^{\bar{k}+D_01} \neg F(0)$, $\neg G$, F(n), $n \notin N$, since

$$\tilde{k}+3n\ll_{3n}\tilde{k}+D_01.$$

Proof of (1). For n = 0 the assertion holds by 4.10.

Induction step: Suppose $\models_0^{\bar{k}+3n} \neg F(0), \neg G, F(n)$. By 4.10 we have $\models_0^{\bar{k}+3n} \neg F(n'), F(n')$. Hence $\models_0^{\bar{k}+3n+1} \neg F(0), \neg G, F(n) \land \neg F(n'), F(n')$. By (Ax1) and *n* applications of (*N*) we get $\models^{\bar{k}+3n+1} n \in N$, and then by $(\land) \models^{k+3n+2} \neg F(0), \neg G, n \in N \land (F(n) \land \neg F(n')), F(n')$. Now we apply (\exists) and obtain $\models_0^{\bar{k}+3\cdot n'} \neg F(0), \neg G, F(n')$, since $\neg G \equiv \exists x \ (x \in N \land (F(x) \land \neg F(x')))$.

The following lemma will be used to show that the induction scheme $\forall x \in N (\mathfrak{A}_{u}^{N}(F, x) \rightarrow F(x)) \rightarrow \forall x \in N (P_{u}^{\mathfrak{A}} x \rightarrow F(x))$ is derivable in ID_{ω}^{∞} .

4.12. Lemma.

$$a \in T_u, \ \Delta \subseteq \operatorname{Pos}_u, \ \vdash_1^a \Delta, \ P_u^{\mathfrak{A}} n \\ k = |F|, \ G \equiv \forall x \in N \left(\mathfrak{A}_u^N(F, x) \to F(x) \right)$$
 $\Rightarrow \quad \vdash_1^{\tilde{k}+a} \Delta, \ \neg G, \ F(n)$

Proof. Informal description: Let Π be a derivation of Δ , $P_u^{\mathfrak{A}}n$. In Π we replace every occurrence of $P_u^{\mathfrak{A}}$, which is linked to the endformula $P_u^{\mathfrak{A}}n$, by $F(\cdot)$, Let Π' denote the result of this transformation. Π' may contain certain inferences of the kind $j \in N \land \mathfrak{A}_u^N(F, j) \vdash F(j)$, and therefore Π' may fail to be an $\mathrm{ID}_{\omega}^{\infty}$ -derivation. From Π' we obtain an $\mathrm{ID}_{\omega}^{\infty}$ -derivation of Δ , $\neg G$, F(n) as follows: First we adjoin $\neg G$ to each Γ in Π' , and then we replace every inference $\neg G$, $\Gamma, j \in N \land$ $\mathfrak{A}_u^N(F, j) \vdash \neg G$, $\Gamma, F(j)$ by the following inferences

$$\frac{\neg G, \Gamma, j \in N \land \mathfrak{A}_{u}^{N}(F, j) \quad \neg F(j), F(j)}{\neg G, \Gamma, j \in N \land \mathfrak{A}_{u}^{N}(F, j) \land \neg F(j), F(j)} \quad (\land)$$
$$(\exists)$$

In order to get a rigorous proof of the lemma we have to prove a more general proposition.

Definition. For $A \in \text{Pos}_u$ let A^* denote the result of replacing all occurrences of $P_u^{\mathfrak{A}}$ in A by $F(\cdot)$. $\{A_1, \ldots, A_m\}^* := \{A_1^*, \ldots, A_m^*\}$.

Proposition. $\Gamma_0 \cup \Gamma \subseteq \operatorname{Pos}_u, \ a \in T_u, \ k = |F|, \ +_1^a \Gamma_0, \ \Gamma \Rightarrow +_1^{\tilde{k}+a} \Gamma_0, \ \neg G, \ \Gamma^*.$

Proof. By transfinite induction on *a*:

1. If $\vdash_1^a \Gamma_0$, Γ holds by (Ax1) or (Ax2), then also $\vdash_1^{\hat{k}+a} \Gamma_0$, $\neg G$, Γ^* by (Ax1), (Ax2), since $\neg P_u^{\mathfrak{A}}$ does not occur in $\Gamma_0 \cup \Gamma$.

2. Suppose that $a = a_0 + 1$ and $(A_i)_{i \in I} \vdash A$ is a basic inference with $A \in \Gamma_0 \cup \Gamma$ and $\forall i \in I (\vdash_1^{a_0} \Gamma_0, \Gamma, A_i)$. Then $\forall i \in I (A_i \in \text{Pos}_u)$ and therefore we can apply the I.H. to Γ_0, Γ, A_i .

2.1. $A \in \Gamma_0$: By I.H. we get $\forall i \in I (\vdash_1^{\bar{k}+a_0} \Gamma_0, \neg G, \Gamma^*, A_i)$ and from this $\vdash_1^{\bar{k}+a} \Gamma_0, \neg G, \Gamma^*$ by the respective basic inference.

2.2. $A \in \Gamma$: Then $A^* \in \Gamma^*$ and $(A_i^*)_{i \in I} \vdash A^*$ is a basic inference. By I.H. we have $\forall i \in I (\vdash_1^{\bar{k}+a_0} \Gamma_0, \neg G, \Gamma^*, A_i^*)$. Hence $\vdash_1^{\bar{k}+a} \Gamma_0, \neg G, \Gamma^*$.

3. Suppose that dom(a) = T_w , $\vdash_1^{a[1]} \Gamma_0$, Γ , $P_w^{\mathfrak{B}}j$ and $\vdash_1^{a[z]} \Delta$, Γ_0 , Γ for all $z \in T_w$, $\Delta \subseteq \operatorname{Pos}_w$ with $\vdash_1^z \Delta$, $P_w^{\mathfrak{B}}j$. Since $a \in T_u$, we have w < u and therefore by I.H. $\vdash_1^{\bar{k}+a[1]} \Gamma_0$, $\neg G$, Γ^* , $P_w^{\mathfrak{B}}j$ and $\vdash_1^{\bar{k}+a[z]} \Delta$, Γ_0 , $\neg G$, Γ^* for all $z \in T_w$, $\Delta \subseteq \operatorname{Pos}_w$ with $\vdash_1^z \Delta$, $P_w^{\mathfrak{B}}j$. Now by an application of (Ω_{w+1}) we get the assertion.

4. Suppose $a = a_0 + 3$, $P_u^{\mathfrak{A}} j \in \Gamma$ and $\vdash_{1}^{a_0} \Gamma_0$, $\Gamma, j \in N \land \mathfrak{A}_u^N(P_u^{\mathfrak{A}}, j)$. Then $F(j) \in \Gamma^*$ and therefore $\vdash_{1}^{\tilde{k}} \Gamma^*, \neg F(j)$ by 4.10. By I.H. and 4.3 we have $\vdash_{1}^{\tilde{k}+a_0} \Gamma_0, \Gamma^*, \neg G, j \in N$ and $\vdash_{1}^{\tilde{k}+a_0} \Gamma_0, \Gamma^*, \neg G, \mathfrak{A}_u^N(F, j)$. Now we obtain $\vdash_{1}^{k+a_0+2} \Gamma_0, \Gamma^*, \neg G, j \in N \land (\mathfrak{A}_u^N(F, j) \land \neg F(j))$ and then by (\exists) $\vdash_{1}^{k+a} \Gamma_0, \Gamma^*, \neg G$.

5. In all other cases the assertion follows immediately from I.H.

4.13. Lemma. $\vdash_1^{\bar{k}+D_{u+1}0} \neg \forall x \in N (\mathfrak{A}_u^N(F, x) \rightarrow F(x)), \ \neg P_u^{\mathfrak{A}}n, \ F(n), \ with \ k := |F|.$

Proof. Let $b := \tilde{k} + D_{u+1}0$ and $G := \forall x \in N (\mathfrak{A}_{u}^{N}(F, x) \to F(x))$. Then dom $(b) = T_{u}$ and $b[z] = \tilde{k} + z$. Therefore by 4.12 we have $\vdash_{1}^{b[z]} \Delta, \neg G, \neg P_{u}^{\mathfrak{A}}n, F(n)$ for all $z \in T_{u}, \Delta \subseteq \operatorname{Pos}_{u}$ with $\vdash_{1}^{z} \Delta, P_{u}^{\mathfrak{A}}n$. By (Ax2) we also have $\vdash_{1}^{b[1]} \neg G, \neg P_{u}^{\mathfrak{A}}n, F(n), P_{u}^{\mathfrak{A}}n$. Now we apply the Ω_{u+1} -rule and obtain $\vdash_{1}^{b} \neg G, \neg P_{n}^{\mathfrak{A}}n, F(n)$.

Remark. The theory ID_{ν} with $\nu < \omega$ is the same as ID_{ω} except that the axioms $(P^{\mathfrak{A}}.2)$ are replaced by

$$(P^{\mathfrak{A}}.2)_{<\nu} \quad \forall x \ (\mathfrak{A}_u(F, x) \to F(x)) \to \forall x \ (P^{\mathfrak{A}}_u x \to F(x)),$$

for each L_{ID} -formula $F(x)$ and each $u < \nu$.

4.14. Theorem. If the sentence A is provable in ID_v ($v \le \omega$), then there exists $k \in \mathbb{N}$ such that $\vdash_k^{D_v^{t_0}} A^N$.

Proposition 1. For every mathematical axiom $A(v_1, \ldots, v_m)$ of ID_v there exists $k \in \mathbb{N}$ such that $\vdash_1^{\bar{k}} A(i_1, \ldots, i_m)^N$ for all $i_1, \ldots, i_m \in \mathbb{N}$. (v_1, v_2, \ldots) denote variables of the language L.)

Proof. We assume m = 1.

1. $A(v) \equiv B(0, v) \land \forall x (B(x, v) \rightarrow B(x', v)) \rightarrow \forall x B(x, v).$

Let $F(x) :\equiv B(x, i)^N$, $G :\equiv \forall x \in N (F(x) \rightarrow F(x'))$ and k := |F(x)|. By 4.11, 3.5(c), 4.9(a) we have $\vdash_1^{\tilde{k} \cdot 2} \neg F(0)$, $\neg G$, $n \notin N$, F(n) for all $n \in \mathbb{N}$. Since $\tilde{k} \cdot 2 \rightarrow 9$ k + 2, we obtain $\vdash_1^{\tilde{k} + 2} A(i)^N$.

2. For any other axiom of PA the assertion is trivial.

3. $A(v) \equiv \forall x (\mathfrak{A}_u(B(\cdot, v), x) \rightarrow B(x, v)) \rightarrow \forall x (P_u^{\mathfrak{A}} x \rightarrow B(x, v)), u < v < \omega.$

Let $F(x) := B(x, i)^N$, $G := \forall x \in N (\mathfrak{A}_u^N(F, x) \to F(x))$, k := |F(x)|. Then $A(i)^N = \neg G \lor \forall x \ (x \notin N \lor (\neg P_u^{\mathfrak{A}} x \lor F(x)))$ and by $4.13 \vdash_1^{\tilde{k} + D_{u+1}0} \neg G, \neg P_u^{\mathfrak{A}} n, F(n)$, for all $n \in \mathbb{N}$. Since $D_{u+1}0 \leq_0 D_v 0 \ll_0 \tilde{k}$ and $\tilde{k} \cdot 2 \to_9 \tilde{k+2}$, we get $\vdash_1^{\tilde{k+2}} A(i)^N$.

4. $A(v) \equiv \forall y \ (\forall x \ (\mathfrak{A}_y(B(\cdot, y, v), x) \rightarrow B(x, y, v)) \rightarrow \forall x \ (P_y^{\mathfrak{A}} x \rightarrow B(x, y, v))$ and $v = \omega$.

Let $F_u(x) := B(x, u, i)^N$, $G_u := \forall x \in N (\mathfrak{A}_u^N(F_u, x) \to F_u(x))$, $k := |F_u(x)|$. Then $A(i)^N = \forall y (y \notin N \lor (\neg G_y \lor \forall x (x \notin N \lor (\neg P_y^{\mathfrak{A}} x \lor F_y(x)))))$ and by 4.13 $\vdash_1^{\tilde{k}+D_{u+1}0} \neg G_u, \neg P_u^{\mathfrak{A}} n, F_u(n)$, for all $u, n \in \mathbb{N}$. Since $\tilde{k} + D_{u+1}0 = (\tilde{k} + D_\omega 0)[u] \ll_u$ $\tilde{k} + D_\omega 0$, we obtain by $(\ll) \vdash_1^{\tilde{k}+D_\omega 0} u \notin N, \neg G_u, \neg P_u^{\mathfrak{A}} n, F_u(n)$. From this we get by $(\lor), (\forall^\infty), (\ll) \vdash_1^{\tilde{k}+2} A(i)^N$, since $\tilde{k} + D_\omega 0 \ll_0 \tilde{k} \cdot 2 \longrightarrow_9 \tilde{k} + 2$.

5. $A \equiv \forall y \forall x (\mathfrak{A}_{y}(P_{y}^{\mathfrak{A}}, x) \rightarrow P_{y}^{\mathfrak{A}}x).$

Let $k := |\mathfrak{A}_{y}^{N}(P_{y}^{\mathfrak{A}}, x)|$. By (Ax2) we have $\vdash_{0}^{\tilde{k}} n \notin N$, $n \in N$. By 4.10 we have $\vdash_{0}^{\tilde{k}} \neg \mathfrak{A}_{u}^{N}(P_{u}^{\mathfrak{A}}, n)$, $\mathfrak{A}_{u}^{N}(P_{u}^{\mathfrak{A}}, n)$. Hence $\vdash_{0}^{\tilde{k} \cdot 2} n \notin N$, $\neg \mathfrak{A}_{u}^{N}(P_{u}^{\mathfrak{A}}, n)$, $n \in N \land \mathfrak{A}_{u}^{N}(P_{u}^{\mathfrak{A}}, n)$. Now we apply $(P_{u}^{\mathfrak{A}})$ and get $\vdash_{0}^{\tilde{k} \cdot 2 + 3} n \notin N$, $\neg \mathfrak{A}_{u}^{N}(P_{u}^{\mathfrak{A}}, n)$, $P_{u}^{\mathfrak{A}}$. Some applications of (\lor) , $(\blacktriangledown^{\infty})$ and (\ll) yield $\vdash_{0}^{\tilde{k} + 3} A^{N}$, since $\tilde{k} \cdot 2 + 3 \ll_{2} \tilde{k} \cdot 3 \ll_{2} \tilde{k} + 1 \longrightarrow_{12} \tilde{k} + 3$. 6. $A \equiv \forall y \forall x_{0} \forall x_{1} (P_{\leq y}^{\mathfrak{A}} x_{0} < y \land P_{x_{0}}^{\mathfrak{A}} x_{1})$: Left to the reader.

Proposition 2. By PL1 we denote Tait's calculus for first-order predicate logic in the language L_{ID} (cf. [8]). If $\Gamma(v_1, \ldots, v_m)$ is derivable in PL1, then there exists $k \in \mathbb{N}$ such that $\vdash_0^k i_1 \notin N, \ldots, i_m \notin N, \Gamma(i_1, \ldots, i_m)^N$ for all $i_1, \ldots, i_m \in \mathbb{N}$.

Proof. By induction on the derivation of Γ : Let m = 1.

1. $\Gamma \equiv \Gamma_0 \cup \{\neg A, A\}$: cf. 4.10.

2. If Γ is the conclusion of a (\wedge)- or (\vee)-inference, then the assertion follows immediately from the I.H.

3. $\Gamma(v) \equiv \Gamma_0(v), \forall x A(v, x) \text{ and } PL1 \vdash \Gamma(v), A(v, x) \text{ with } x \neq v$: By I.H. there exists k such that $\vdash_0^{\bar{k}} i \notin N, n \notin N, \Gamma(i)^N, A(i, n)^N$ for all $i, n \in \mathbb{N}$. Then by (\vee) and (\forall^{∞}) we get $\vdash_0^{\bar{k+1}} i \notin N, \Gamma(i)^N$.

4. $\Gamma(v) \equiv \Gamma_0(v)$, $\exists x A(v, x)$ and $PL1 \vdash \Gamma(v)$, A(v, t):

4.1. $t \equiv y_{k_0}^{(\dots)}$ $(y \neq v)$ or $t \equiv 0_{k_0}^{(\dots)}$: By I.H. there exists $k \ge k_0$ such that $\vdash_0^k i \notin N, 0 \notin N, \Gamma(i)^N, A(i, k_0)^N$ for all $i \in \mathbb{N}$. From this we get by 4.2(c) $\vdash_0^k i \notin N, \Gamma(i)^N, A(i, k_0)^N$. Since $k \ge k_0$, we have $\vdash_0^k k_0 \in N$. Hence by $(\wedge) \vdash_0^{k+1} i \notin N, \Gamma(i)^N, k_0 \in N \land A(i, k_0)^N$. An application of (\exists) yields $\vdash_0^{k+1} i \notin N, \Gamma(i)^N$.

4.2. $t \equiv v_{k_0}^{\prime \dots \prime}$: By I.H. there exists $k \ge k_0$ such that $\vdash_0^{\bar{k}} i \notin N$, $\Gamma(i)^N$, $A(i, i_{k_0}^{\prime \dots \prime})^N$ for all $i \in \mathbb{N}$. Since $k \ge k_0$, we have $\vdash_0^{\bar{k}} i \notin N$, $i_{k_0}^{\prime \dots \prime} \in N$ for all $i \in \mathbb{N}$. Hence $\vdash_0^{\bar{k}+1} i \notin N$, $\Gamma(i)^N$, $i^{\prime \dots \prime} \in N \land A(i, i^{\prime \dots \prime})^N$. Now we apply (\exists) and get $\vdash_0^{\bar{k}+1} i \notin N$, $\Gamma(i)^N$.

Proof of 4.14. Suppose $ID_{\nu} \vdash A$ (A closed). Then $PL1 \vdash \neg (A_1 \land \cdots \land A_n)$, A where every A_i is the universal closure of an axiom of ID_{ν} . By Propositions 1 and 2 there exists m such that $\vdash_1^{\tilde{m}} (A_1 \land \cdots \land A_n)^N$ and $\vdash_0^{\tilde{m}} \neg (A_1 \land \cdots \land A_n)^N$, A^N . By a cut with cut formula $(A_1 \land \cdots \land A_n)^N$ we obtain now $\vdash_k^{\tilde{k}} A^N$ with $k := \max\{|(A_1 \land \cdots \land A_n)^N|, m\} + 1$.

Conclusion. By combining the Theorems 4.14, 4.5, 4.8 we obtain Theorem 4.0 which was stated at the beginning of this section.

Appendix: The proof-theoretic ordinal of ID_v

Definitions. 1. By transfinite induction on a we define an ordinal rk(a) for every $a \in T_0$:

 $\operatorname{rk}(a) := \sup \{ \operatorname{rk}(a[n]) + 1 : n \in \operatorname{dom}(a) \}.$

2. By transfinite induction on $\alpha \in On$ we define the sets $I_{\mathfrak{A}}^{\alpha}$ and $I_{\mathfrak{A}}^{\leq \alpha}$ for every positive operator form \mathfrak{A} :

 $I_{\mathfrak{A}}^{\alpha} := \{ n \in \mathbb{N} : \mathfrak{A}_{0}(I_{\mathfrak{A}}^{<\alpha}, n) \text{ is true in the standard model} \},\$

$$I_{\mathfrak{A}}^{$$

3. For $n \in \bigcup_{\alpha \in \text{On}} I_{\mathfrak{A}}^{\alpha}$ we set $|n|_{\mathfrak{A}} := \min\{\alpha : n \in I_{\mathfrak{A}}^{\alpha}\}$.

4. $|ID_{\nu}| := \sup\{|n|_{\mathfrak{A}} : ID_{\nu} \vdash P_{0}^{\mathfrak{A}}n\}$. $|ID_{\nu}|$ is called the proof-theoretic ordinal of ID_{ν} .

We will prove the following result:

 $|\mathrm{ID}_{v}| = \sup\{\mathrm{rk}(D_{0}D_{v}^{k}0): k \in \mathbb{N}\} \qquad (v \leq \omega).$

Definition. Let $\Gamma = \{A_1, \ldots, A_n\} \subseteq Pos_0$:

 $\models^{\alpha} \Gamma \iff \begin{cases} A_1 \vee \cdots \vee A_n \text{ is true in the standard model when} \\ P_0^{\mathfrak{A}}, P_{<0}^{\mathfrak{A}}, N \text{ are interpreted by } I_{\mathfrak{A}}^{<\alpha}, \emptyset, \mathbb{N} \text{ resp.} \end{cases}$

A.1. Lemma. $\vdash_1^a \Gamma$, $\Gamma \subseteq \text{Pos}_0$, $a \in T_0$, $\text{rk}(a) \le \alpha \Rightarrow \models^{\alpha} \Gamma$.

Proof. By transfinite induction on *a*:

1. If $\vdash_1^{\alpha} \Gamma$ holds by (Ax1), then $\models^{\alpha} \Gamma$ for every α .

2. Suppose that $\models_1^{\alpha} \Gamma$ holds by (Ax2). Then, since $\Gamma \subseteq \text{Pos}_0$, we have $\Gamma = \Gamma_0$, $n \notin N$, $n \in N$ and thus $\models^{\alpha} \Gamma$ for every α .

3. If $\vdash_1^a \Gamma$ is the conclusion of a basic inference (\mathcal{I}) , then (\mathcal{I}) is an inference (\wedge) , (\vee) , (\forall^{∞}) , (\exists) or (N), and the assertion follows immediately from the I.H.

4. Suppose $\vdash_1^b \Gamma$, $n \in N \land \mathfrak{A}_0^N(P_0^{\mathfrak{A}}, n)$ with a = b + 1 and $\Gamma = \Delta$, $P_0^{\mathfrak{A}}n$. Then $\beta := \operatorname{rk}(b) < \alpha$. By I.H. we get " $\models^{\beta} \Delta$ or $n \in I_{\mathfrak{A}}^{\leq \beta}$ or $\mathfrak{A}_0(I_{\mathfrak{A}}^{\leq \beta}, n)$ " and from this " $\models^{\alpha} \Delta$ or $n \in I_{\mathfrak{A}}^{\leq \alpha}$ ", i.e., $\models^{\alpha} \Gamma$.

5. If $\vdash_1^a \Gamma$ is the conclusion of a cut, then the cut formula is of the kind $n \in N$, and the assertion follows immediately from the I.H.

6. If $\vdash_1^b \Gamma$ with $b \ll_{\Gamma} a$, then $\operatorname{rk}(b) < \operatorname{rk}(a) \le \alpha$ and thus $\models^{\alpha} \Gamma$ by I.H.

From $a \in T_0$ it follows that $\vdash_1^a \Gamma$ cannot be the conclusion of an application of the $\Omega_{\mu+1}$ -rule.

A.2. Lemma. $|ID_v| \leq \sup\{rk(D_0D_v^k0): k \in \mathbb{N}\}.$

Proof. Suppose $ID_v \vdash P_0^{\mathfrak{A}} n$. Then by 4.14, 4.5, 4.6 we obtain $\vdash_1^{D_0 D_v^{k_0}} P_0^{\mathfrak{A}} n$, for some $k \in \mathbb{N}$. By A.1 this yields $n \in I_{\mathfrak{A}}^{<\alpha}$ with $\alpha := \operatorname{rk}(D_0 D_v^{k_0})$. Hence $|n|_{\mathfrak{A}} < \operatorname{rk}(D_0 D_v^{k_0})$.

A.3. Lemma. Sup{ $\operatorname{rk}(D_0D_v^k 0): k \in \mathbb{N}$ } $\leq |\operatorname{ID}_v|$.

Proof. Here we make use of Theorem 2.2 which claims that " $a \in W_0$ " is provable in ID_v , for every $a \in T_0$ which contains no symbol D_v with v > v. From this we get, for all $k \in \mathbb{N}$,

(1)
$$\mathrm{ID}_{v} \vdash P_{0}^{\mathfrak{A}} [D_{0} D_{v}^{k} 0]$$

where $a \mapsto [a]$ is any reasonable Gödel numbering of the terms in T, and \mathfrak{A} is a positive operator form which on the basis of this Gödel numbering formalizes the inductive definition of the sets W_v (v < v) in Section 2. Then we also have

(2)
$$|a|_{\mathfrak{A}} = \mathrm{rk}(a)$$
, for all $a \in T_0$.

The assertion follows immediately from (1) and (2).

References

- [1] W. Buchholz, Eine Erweiterung der Schnitteliminations-methode, Habilitationsschrift, Universität Müchen 1977.
- [2] W. Buchholz, S. Feferman, W. Pohlers and W. Sieg, Iterated Inductive Definitions and Subsystems of Analysis: Recent Proof-Theoretical Studies, Lecture Notes in Math. 897 (Springer, Berlin, 1981).
- [3] E. Cichon, A short proof of two recently discovered independence results using recursion theoretic methods, Proc. Amer. Math. Soc. 14 (1982).
- [4] J. Ketonen and R. Solovay, Rapidly growing Ramsey functions, Ann. of Math. 113 (1981) 267-314.
- [5] L. Kirby and J. Paris, Accessible independence results for Peano Arithmetic, Bull. London Math. Soc. 14 (1982) 285-293.

- [6] D. Schmidt, Built-up systems of fundamental sequences and hierarchies of number-theoretic functions. Arch. Math. Logik Grundlag. 18 (1976).
- [7] S. Simpson, Nichtbeweisbarkeit von gewissen kombinatorischen Eigenschaften endlicher Bäume, Arch. Math. Logik Grundlag.
- [8] W. W. Tait, Normal derivability in classical logic. in: J. Barwise, ed., The Syntax and Semantics of Infinitary Languages, Lecture Notes in Math. 72 (Springer, Berlin, 1968) 204-236.