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Volume 106, 1990 

A NOTE ON POLYNOMIAL TIME COMPUTABLE ARITHMETIC 

Wilfried Buchholz and Wilfried Sieg 

ABSTRACT. In Ferreira's contribution to these Proceedings the class & 
of polynomial time computable functions is characterized as the class 
of provably recursive functions of some weak formal theories. The 
first such characterization of & was given, of course, by Buss. A form 
of Herbrand's theorem for partially normal ized derivations is used in 
this note to obtain Ferreira's results. Such "Herbrand-analyses" have 
been applied in a variety of contexts (see [F/S] , [L] , [Sl]): they are 
most appropriate if one wants to extract computational Information 
from derivations; they are conceptually clear and technically strong. 

A. INTRODUCTION. The class fP of polynomial time computable functions is characte­

rized in [F] as the class of provably recursive functions of three restricted theories 

for binary trees or 0-1-words. The basic theory , PTCA, allows induction for polynomial 

time decidable predicates; P T C A + is obtained from it by expanding the induction Schema 

to NP-predicates. The third theory, (I^-PIND), is like P T C A + , but its language contains 

only Symbols for some basic functions, not for all elements of & , That the latter 

theory has exactly the elements of 9 as its provably recursive functions is the analogue 

of the main theorem in [B] for n-1. Ferreira obtains this result by a mixture of 

model- and proof- theoretic techniques. We give a canonical, purely proof-theoretic 

Herbrand-analysis that yields Ferreira's result for PTCA* and brings out most sharply 

the central problem; namely, the analysis of weak induction Schemata by recursive 

functions of low complexity. 

The main ideas for this paper emerged in the summer of 1988, when we gave a 

joint seminar at the Ludwigs-Maximil ians-Universität in München. Buchholz presented 

[F] in the seminar; Sieg was working on his [S2] in which Herbrand-analyses for 

Systems of (bounded) arithmetic are given. So it was natural to explore whether they 

can be given for Ferreira's theories of binary trees. Our note is thus complementing [F]. 

B. BOUNDED LOGICAL COMPLEXITY. We use the same formal framework as [F]; in 

particular, L is the first order language with constant symbols 0 , 0 , 1 , function 

Symbols ^ and x, and two binary relation symbols Q and = . The language L(<^), i.e. 

L p in [F], is obtained from L by adding function symbols for each element of 9*. The 
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latter class can be defined inductively as the smallest class X of functions, such that 

X contains certain initial functions (Z ; P. n , l ^ i ^ n , ne(N; C 0 , C j , and Q) , and is closed 

under composition and bounded iteration. Let st abbreviate s^t for L-terms s and t: 

x | z - y Stands for ( l x z g lxx & y c x & lxz = l x y ) v ( l x x Q l x z & y - x ) . Using these 

abbreviations we formulate the Schema of bounded iteration : 

f is defined by iteration from g , hQ , hj with bound t[x,y] if 

f(x,0) = g(x) 

f(x,yi) = h . (x ,y , f (x ,y)) | t r x ? y ] (i = 0 , l ) 

where t is an L-term and X indicates a possibly empty sequence of variables. As we 

are going to work in a Tait-style sequent calculus, it is convenient to build up formulas 

from literals (atomic or negations of atomic formulas) by using & , v , V, 3 . Negations 

of complex formulas, conditionals and biconditionals are defined as usual. 

1. DEFINITIONS 

1.1. Q¥{9) denotes the set of quantifier-free formulas of L ( 9 ) . 
1.2. (Vxc;y)(p [(3xQy)<p] abbreviates (Vx)( xcy-><p ) [(3x)( xgy & <p ), resp.]. 

1.3. (3x£t )cp abbreviates Gx)( X £ t & <p ) , where s s t is l x s Q l x t . 

1.4. A formula cp is in t % ( 9 > ) resp.] if it has been obtained from literals in 

L ( 9 ) by & , v , V c , 3 c , [ a n d ] ^ ,resp.]. 

1.5. An L(«^)- formula cp is in s - Z * { 9 ) if it is of the form (3yst)a> with üeQF(9>). 

The formulas in t ^ { 9 ) are exactly the polynomial time computable matrices of [F]. — 
The theories for binary trees to be investigated contain the basic axioms for the 

non-logical symbols of L (see [F]), the defining equations for the elements of 9 in 

case the theory is formulated in L { 9 ) , and the induction principle on notations tor 

classes of formulas J~\ <p0 & (Vx)( cpx -» <pxO& 9x1) -» (Vx)(px K < $ z J ~ ) . The latter 

schema is denoted by . /"-NIA; the resulting theory - always with classical logic — is 

called (cF-NIA). 

We formulate a few properties of 9> that are provable in (QF (^) -NIA) . 

2. LEMMA. 

(i) For every term s of L ( 9 ) there is a term t of L, such that (QF (^)-NIA) 

proves s <, t. 

(ii) For any cpt(x) <pn(x) € QF(^) and f r . . . , f n + 1 € 9 there is an f z 9 such that 

(QF(^)-NIA) proves 

(9 t(x)&f(x)^f t(x)) v (-•cp1(x)&cp2(x)& f(x) = f2(x)) 

v (-.cp^x) &-,<p2(x)& 9 ? (x)&f(x) = f3(x)) 

V (-ncp^X) &...&-.<pn(x)& « X ) = f n + 1(x)). 
(iii) For any <p(x,y) € Q F { 9 ) there is an h € ^ , such that (QF(«^)-NIA) proves 

'((3y<=x) cp(x,y) «-* cp(x,h(x,x))). 

The last part of the lemma allows us to prove that in ( Q F { 9 ) - N I A ) every A Q ( » ^ ^ f o r ­

mula is equivalent to a quantifier-free formula; proposition 6 of [ F ] establishes in 

turn that in ( s - l J ^ J - N I A ) every Z ^ « ^ ) - f o r m u l a is equivalent to one in s - Z * ( 9 ) . 
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Thus we have: 

3. PROPOSITION. 

(i) ( A Q ( ^ ) - N I A ) is equivalent to (QF(<^)-NIA). 

(ii) ( s - l f m - N I A ) is equivalent to ( Z ^ ( ^ ) - N I A ) . 

Notice that ( A ^ ( ^ ) - N I A ) is Ferreira's PTCA, and (s-I*(^)-NIA) is his P T C A + . Now 

we turn our attention to bounding the complexity of formulas in derivations. The 

iatter are now presented in a Tait-style calculus as in [Sch]; the induction principle is 

given equivalently by a rule <F-NIR* of the form 

A , - . < p x , 9 x 0 A , - i cpx t y x l ( 9 € ^ ) 
A , ~ i 9 0 , 9s 

where s is a term, and x must not occur in the lower sequent. This new formulation 

of (c£~-NIA) has two virtues — it is equivalent to the earlier one and allows us to 

prove partial normalization theorems. 

5. DEFINITION . 

A derivation in (cF-NIA) is called I-normal if and only if all its cuts are either I-cuts 

or have atomic cut-formulas; where a cut with cut-formula 9 is called an I-cut if one 

of its premises is the conclusion of the induction rule with principal formula 9 or 19. 

The Standard proof of the normalization theorem for predicate logic can readily be 

adapted to show that any derivation in (^-NIA) can be I-normalized. 

6. THEOREM. (I-normalization) If D is a derivation of F in (<F-NIA), then there is an 

I-normal derivation D° of the same endsequent in (t£~-NIA). 

The length |D° | of D° can be bounded by 2 ^ ' , m=p(D)-l; the cut-rank function p 

takes into account only the complexity of cuts that are not I-cuts. I-normal derivations 

do not have the subformula property, but the complexity of formulas occurring in 

them can nevertheless be bounded significantly. 

7. COROLLARY. Let & and H> be classes of formulas that are closed under Substitution. 

If D is an I-normal derivation of T in (<F-NIA) with T c ^ , then any formula in D is 

either atomic or a subformula of an element of J ~ u {-19: < $ s . T )u c§. 

C. EXTRACTING TERMS. 

The I-nor mal ization theorem will be used to establish a (generalized) Herbrand-theorem. 

8. THEOREM. (3-inversion) Let T contain only existential formulas, and let <b be 

quantlfler-free; if r,(3y)t|jy is provable in (QF(<^)-NIA) then there is a term t* such 

that r,ipt* i S also provable in ( Q F i t P )-NIA). (tp may contain additional variables.) 

PROOF . The proof proceeds by induction on I-normal (QF{& ) -NIA)-derivations D. We 

focus on the central step, when NIR* is the last rule applied in D. (The other non-trivial 

cases, e.g. 3-introduction, require definition by cases.) 
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Then D is of the form 

D n 

A,-i<px , cpxO, (3y) A,-i<px , <pxl, (Jy) tpy 
D, 

= r 
The induction hypothesis applied to the Dj yields terms tj[x] and derivations D* of 

(1) A,-.<px,tpxi,iljtj[x] ( i^O, l ) . 

Obviously (QF(«^) -NIA) proves 

(2) -icp0 , cps , 3 X Q s[ cpx & - 1(9x0 & cpxl)] . 

By Lemma 2(iii) there is an h€^\ such that (QF(<^)-NIA) proves 

(3) - . 3 x c s [ 9 x & i ( 9 x 0 & 9x1)] , ( p h ( s ) & n ( < p h ( s ) 0 & <ph(s)l ). 

From (2) and (3) we obtain: 

(4) -190 , 9s , 9h(s) , 

(5) - « 9 0 , 9s , - i 9 h ( s ) 0 , - i9h ( s ) l . 

From (1) (with h(s) substituted for x) and (5) we obtain 

- n 9 0 , 9s , A , - i9h (s ) , ipt0[h(s)] ^t jLMs)] and then ( by (4)) 

A , -190 , 9 s , 4>t0[h(s)] ,^tj[h(s)] . 

This together with Lemma 2(ii) gives us an f€<^ such that (QF(^)-NIA) proves 

A , - n 9 0 ,9S,iJjf(s). Q.E.D. 

The 3-inversion is crucial for establishing the main conservation result. 

9. THEOREM. ( s - Z ^(^) -NIA) is conservative over (QF(<^)-NIA) with respect to 

IlJJ-sentences 9 of the form (Vx) (3y )9*( x,y) with 9 * e Q F ( ^ ) . 

PROOF. As (QF(<^)-NIA) is contained in ( s - Z ^ )-NI A) we have to show only that 

every nSJ-sentence provable in the latter theory is provable in the former. This is 

achieved by transforming any I-normal derivation D in ( s - Z ^ ( « ^ ) - N I A ) of a sequent A, 

where A contains only existential formulas, into a derivation D 1 of A in (QF(<^ )-NI A). 

We proceed by induction on the number n of applications of NIR* in D , not counting 

for sure NIR*-instances with formulas in Q F { & ) . - The case « = 0 is trivial. So let n 

be m+i and consider an uppermost instance of NIR* with (JJ of the form (3y)( y<: tfxl 

& 4>*yx ) , where 4>* is in Q F ( ^ ) ; both 4>* and t may contain additional variables. The 

subderivation E of D determined by that inference is of the form 

r,-i4*x, 4*x0 r , - i j j x , 4*xi 
r,-.<|i0, 4>s 

Taking into account the form of i|> and the fact that D is an I-normal derivation in 

( s - Z ^ J - N I A ) , we can obtain (recalling corollary 7) by repeated V-Inversion from 

the E.( derivations of r*t -i(y s t[x] & ty*yx), ipxi , where r* contains only existential 

formulas. 3-inversion yields terms tj[y,x] and derivations in (QF(^)-NIA) of 

(•j) r*,-i(y^t[x]&i|)*yx) f tjly.x] ^ tCxi]& i|>*t.[y,x]xi . 
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Now we define a function f by iteration with bound tlxOHCxl] (using Lemma 2(i) and 

(ii) to bring the definition into the required form): f(y,0)=y , f(yf xi) = t.[f(y,x), x]. 

From the derivations leading to the El and this definition we get derivations of 

r*,-i( f(y,x)st[x]&il>*f(y,x)x ), f(y,xi) * tCxi] & <|>*f(y,xi)xi 

and by QF(<^)-NIR* of 

r* f-i( y^t[0] & ij/"y0 ), f(y,s)^ t[s] &^*f(y,s)s . 

With a little bit of logic we finally obtain a derivation E ' in (QF(J^)-NlA) of r , - i ip0 , I|JS . 

Replace E in D by E \ The resulting derivation has only m applications of s-Y^{9)-NIR* 

and the induction hypothesis yields the above claim. Q.E.D. 

D. CHARACTERIZING 9 . 

Since for every L(^)-term t[x] the function Xx.ttx] is in 9, theorem 8 implies 

that the provably recursive functions of (QF(^)-NIA) are exactly the polynomial time 

computable ones. Using also theorem 9 and proposition 4 we obtain the sought after 

characterization result. 

10. THEOREM. 

9 is exactly the class of provably recursive functions of ( I . ] > ( 9 ) - N I A ) . 

REMARKS. 

(i) [F] establishes that ( I ^ ( 9 ) - N \ A ) is a conservative extension of (I^-NIA); thus 

the theorem holds also for the latter theory. 

(ii) The Herbrand-analysis given in C is insensitive to extensions of the various theories 

by ü^-sentences . Thus, the main results hold also for ü^-extens ions of the theories 

involved. 
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