
Nuclear Physics A252 (1975) 152--162; ( ~  North-Holland Publishing Co., Amsterdam 

Not to be reproduced by photoprint or microfilm without written permission from the publisher 

RADIATIVE ELECTRON CAPTURE IN HEAVY-ION COLLISIONS 

M. KLEBER and D. H. JAKUBASSA 

Physik-Department, Technische Universitiit Miinchen, 8046 Garching, Germany 

Received 9 December 1974 

(Revised 12 June 1975) 

Abstract: The cross section for radiative capture of  bound electrons (REC) by fast heavy ions is 
calculated in (i) the impulse approximation, (ii) the impact parameter apprximation and (iii) 
the first Born approximation. The last two methods yield the same result. It agrees with the 
result given by the impulse approximation in the case of small perturbation of  the initial 
electronic state during the collision. The question how REC may be utilized to measure 
electronic momentum densities is investigated. For this purpose higher order effects are 
calculated. 

1. Introduction 

In the X-ray emission accompanying the passage of highly stripped, heavy ions 
through gases or metal foils one can distinguish between three types of radiation: 

(a) characteristic X-ray lines; 
(b) a broad X-ray band due to radiative electron capture 1-s) (REC) of the 

bound target electrons; 
(c) high-energy radiation observed mainly in medium and heavy targets. 
In process (b) the target electrons are captured directly into the K-shell of the 

projectile. Process (c) is the result of  several effects: nuclear and electronic brems- 
strahlung and, at low beam velocities, it includes radiative electronic transitions 
during the temporary formation of a quasimolecule made up of the target atom and 
the heavy ion. 

In this paper we shall concentrate on the REC and to a lesser extent on molecular 
orbital (MO) phenomena 3- 7). The REC cross section turns out 2) to be propor- 
tional to the Compton profile s) and therefore in principle may be used to measure 
electronic momentum distributions. This will be shown in sect. 2 by means of the 
impulse approximation. In sect. 3 we calculate the dependence of the REC on the 
impact parameter. In sect. 4 we show that the first Born approximation is equivalent 
to the impact parameter method. We investigate second order Feynman diagrams 
as a first correction for off-energy-shell effects, i.e. for MO phenomena. In sect. 5 
we discuss the relationship between REC and MO radiation. 

2. Impulse approximation 

Consider the radiative capture of a free electron into the ground state of a com- 
pletely stripped nucleus with charge Z. This effect is known as radiative recombina- 
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tion and the corresponding cross section is 9, J o) 

d%c 3 sin2 0, (1) 
d---ff = o-,,.c 

[ 7 3 "~:' exp ( - 4 7  arctan (1]+)) I0 -+'J cm'. (2) 
a,,+ = 9.1 ~1--~21 1 - e x p  (-2~+) 

Here r/ = ZeZ/hv is the Sommcrfcld parameter (or Coulomb parameter) and v is 
the original relative velocity between electron and nucleus. The angle 9 denotes the 
angle bctwecn v and the direction of the emitted photon. The energy of the emitted 
photon is 

hco = ½my2(1 +~/z), (3) 

where m is the mass of the electron. 
In fig. I we show ~,,= as a function of  Z for different values of  v. The non-relativistic 

high-energy limit (7 << I) of eq. (2) reads 

a,=¢ = 1.4 t/5 10 -21 cm 2. (2a) 
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Fig. 1. Cross section are= [eq. (2)] for the radiative recombination of a free electron into the K-shell 
of  a bare nucleus of charge Z for various relative velocities v (in units of c). 
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The relevant parameter for recombination is r/ which measures how strongly the 
Coulomb interaction will distort the asymptotic wave function of the electron during 
the collision. For  ~/ < 1 the distortion is small and recombination may be calcu- 
lated in first Born  approximation. I f  r / >  1 the distortion is strong enough to change 
the electronic wave function considerably during the collision. 

Bound electrons are characterized by their momentum distribution. I f  the velocity 
of  the ion is considerably greater than the orbital velocity of the electron to be 
captured, then the cross section can be written as 

f d~Yre c d2°" -- dap I~/i(p-po)12c~(Ef-Ei). (4) 
df2dhco - - ~  

This is the impulse approximation s). The 6-function guarantees energy conservation 
and I~(p)l 2 is the initial electronic momentum distribution, which now is peaked 
around Po = my because the electron is moving with this average momentum to- 
wards the projectile considered at rest. For  the type of collision specified above the 
initial electronic potential Vj remains constant during the capture process and we 
may write 

Ei _ (~0 "]- D~xil 2 + Vi = _ ~i "~- 2p_._~v ..~ v. Pi, 
2m 2m 

(5) 

where we have introduced the initial electronic binding energy ei. Furthermore, 

so that 

Ef = -cf+hco,  (6) 

d~¢~ dh(Dd2°" = f d3pi (d~)p=po+pl ]~/i(pi)]2(~ (h('D- gf-[- ~i -- 2--'m p02 --V" Pi )" (7) 

The cross section shows a Doppler broadening: the energy of the emitted photon 
depends on the electronic momentum component, Piz say, parallel to v. 

I f  REC goes into the K-shell of  an ion heavier than the target then the cross 
section is peaked around p~ = 0. In this region the recombination cross section varies 
slowly and may be taken out of the integral 

df~dhco 2m 

Introducing the Compton profile 

= f dp,x dplyl@i(pi)l 2, 
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which is the probability of finding the electron with momentum p~, the cross section 
reads 

d2a 
-- I (do'¢e¢t Ji(Piz), (10) 

df2dho~ v \ dr2/p=po+p~. 

2 
hco = e,f- el + p--e-~ + vpi:. 

2m 

When integrated over the energies of the emitted photon, the cross section is seen 
to be approximately the recombination cross section for a free electron. 

e If ~/ ~ 1, the recombination cross section may be replaced by its Born value ar,~, 

1 (da~,~_~ e 2 (2nht2hco (p sin 9t2 
 --d-ff : , = , ,,., , p,(p). (11) 

where pt(p) is the electronic momentum density in the final target state. 
For hydrogen-like atoms the spherically averaged electron density in a shell with 

principal quantum number n is 

1 , - t  m~ t I~k*'m(p)12 8rrs (12) 
" ( ' )  -- ,--Eo = -  =  2(v2+4)" 

where the momentum r depends on the screened charge Z,c through x = Zs:ne2/hn. 
The Compton profile then reads 

f ,  lp,(p) p 3n(P 28rts+x~) 3 . (13) Ji(Pz) = 2~ d p =  

From eqs. (10) and (13) it follows that the full width w of the REC peak is given by 

w ,~ vx i . (14) 

The total REC peak is obtained by adding the contributions of all target electrons 
incoherently. 

It should be noted that the impulse approximation (7) Or (10) is restricted to an 
intrinsic momentum pj, not exceeding the relative momentum Po. It is also not 
applicable to large negative values of Pi~ (Piz < -Po) .  

3. Impact parameter method 

We apply the straight line version of the impact parameter method because 
REC takes place at distances where the Coulomb repulsion of the two nuclei is not 
important. Furthermore, if r/ ~< 1, we may use unperturbed electronic wave func- 
tions in target andprojectile. We introduce (fig. 2) the separation R between target 
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Fig. 2. Coordinates for the system of  projectile P, residual target T (target minus electron) and 
electron e. The electron coordinate r is measured from the c.m. of  P and T. 

T (mass mr) and projectile P (mass rap) together with the electron :coordinate r 
measured from the c.m., so that 

mp m r 
ri = r -  - - R ,  re = r +  - - R ,  (15) 

m r + mp mr + me 

and small corrections t from the electronic mass are neglected. The wave function 
of  the electron in the target is given by 

~i(r'R't)=tPi(ri)exp[ iki'r-i(h2k2\ 2m --8i) ~-~ , (16) 

and in the final state of  the projectile by 

(h2k 2 
tpt(r, R, t) = q~f(rf) exp [ikt " r - i  \-~m -gf) t-h] , (17) 

with tpi(rj), ~pf(rf), ei and nf being the undisturbed time-independent wave functions 
and binding energies of  the electron in target and projectile. The phase factors in 
eq. (16) and (17) reflect the motion of  the electron with respect to the c.m. The 
corresponding momenta are 

ki = me k, kr = mr  k, ( 1 8 )  

mr+mp m r + m e  

where k -~ mv/h = po/h. 
REC is caused by the transition operator 

re = - e A- v,, (19) 
c 

where v, is the electronic velocity with respect to the projectile. One may decompose 
v, into a part vr parallel to r and into one parallel to R, 

Ve V r + mT = - -  v .  ( 2 0 )  
mr+me 

t These recoil corrections are important in the time-independent treatment. 
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The impact parameter method treats R and v as parameters 

R = b+vt,  b.  v = 0. (21) 

However, ~, still acts as an operator. 
In order to calculate the transition amplitude 

f = d3rgo*(r, R, t)Wcpi(r, R, t), (22) 

it is convenient to introduce wave functions in momentum space, 

~i(ri) = (27~?*) - ~ f  dZpi ~i(Pi) exp (ipi. ri/?*), (23) 

together with a similar relation for the final configuration. The emission of a photon 
with wave number s = co~c, energy ?*co and polarization vector ua (~ = 1, 2) is due 
to the field 

Aa(s, ?*co) = - -(2~?*c2~--*¢xp l'-i(s" rf-cot)]ua. (24) 
\ V c o l  

Here V stands for the periodicity volume of the electromagnetic field. We neglect 
the phase factor e x p ( -  is. rt) because s .  rf << 1 is normally satisfied if we identify 
rf with the electronic K-shell radius in the heavy ion. It is straightforward to east 
eq. (22) into the form 

f = f~(b) = 2 ~  e ( ~ o ) ' u ~  f d3" ' ("  + "°)~b*(Pi + 

x~Oi(,i)exp(-ipi'b/?*)~5(?*co-e.f+ei - p=° -,'p,). (25) 
2m 

If we take ~ to be in the z-direction the cross section for the emission of a photon is 
given by 

d2°" V(?*co)2 I 
dg2d?*co = (2~t?*c) 3 db~db,x=x,zX laa(b)l 2. (26) 

The factor in front of the integral is the number of photon states per unit energy 
and unit solid angle• The summation over the two polarization directions is easily 
performed because the wave function ~0i(pi ) is significantly different from zero only 
for values of pi much smaller than Po, 

lua(pi + Po)[ 2 ~ sin 20(pl=+po) 2, (27) 
~,= 1, 2 

and 8 is the angle between beam direction and direction of the emitted photon. 
After some calculation we arrive at 

d2a = e2 (2x?*12?*co ( P°~Pi')2f 
dad?*co ?*c \---c-- sin8 dpixdpiyl¢t(pt)¢f(pi-l-Po)[ z, (28) 
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where Pi= is linked to h(o by eq. (10). By comparing the Born version (11) of  the 
impulse approximation (7) with the result 2.11) (28) of the impact parameter method 
we find the two expressions to be identical. 

In this section we formulated the REC with respect to the c.m. The result eq. (28) 
does not, however, depend on this choice as long as for an arbitrary origin the 
velocity v. in eq. (19) is taken as the velocity between electron and projectile. 

We are now in a position to investigate the contributions to the REC cross 
section as a function of  the impact parameter. The integrand on the fight hand side 
of eq. (25) is peaked around Pt = 0 if  REC goes into the K-shell of  a heavy ion. 
Then the transition amplitude is proportional to 

f(b) ,,, f dpi x dpi , ~/i(Pi) exp ( - i p l "  b/h). (29) 

For an electron in a hydrogenic ls state f(b) can be calculated analytically. The 
relative contribution P to the REC cross section as a function of  the impact 
parameter turns out to be 

P(x) = ~x3(Kl(~)) 2, 

x = -  1+ 
a 

Here Kl(x ) denotes the modified Bessel function of the second kind and of  order one 
and a is the Bohr radius of  the initial ls state. The function P(x) is plotted in fig. 3; 
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Fig. 3. Relative contribution [eq. (30)] to the REC as a function of the impact parameter measured 
in units of a[l --I- (p,a)2]'~. 
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its integral over all positive values of  x is, o f  course, normalized to unity. The main 
contribution to REC occurs at x ~ 1. This means that the wings of  the radiation 
peak come from close collisions. 

4. Born series 

In the time-independent formulation the cross section for REC is 

d2o " /~t/zf k f~  d~,~Tir]2" (31) 
df~dfl----~ = Pph (2Xh2) 2 . 

The quantities/~i,/~f, ki and kf are the reduced masses and total relative momenta 
in the entrance and in the exit channel, respectively. The number o f  photon states 
per unit energy and unit solid angle is denoted by Pph. As usual eq. (31) contains 
an integration over all directions of  the outgoing heavy-ion beam. It is well known 
that the second and higher order Born approximations for the exact T-matrix are 
not  uniquely defined for rearrangement collisions. One possible expansion is t2) 

Tit = TB+ (~krl Vr Gi*V~l¢l> + . . . .  (32) 

where Gi t is the initial state Green function and Yi and Vr stand for initial and final 
state interactions. Therefore, Vl consists of  the radiation field plus the Coulomb 
interaction between projectile and electron whereas F'f is the sum of  radiation field 
and the Coulomb interaction between target and electron. In the case of  REC 

Q b 

d 

Fig. 4. Second order Feynman diagrams for the REC. The dotted line stands for a Coulomb inter- 
action; the wavy line means the emission of a photon. The loops indicate to which system (either 
projectile or target) the electron is bound. Note that diagrams 4c and 4<1 do not contribute to the 

second order Born approximation. 
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there are two second order Born terms. Their corresponding Feynman graphs are 
shown in figs. 4a and 4b. It has to be noted that the second order Feynman graphs 
4c and 4b do not  contribute to the second order Born approximation. In fact, it can 
be shown by a straightforward but lengthy calculation that graph 4c alone gives the 
REC cross section which we derived in the foregoing sections. 

The Born term 

T~ = (~hf[Wl~i), (33) 

where W is given by eq. (19), may be easily calculated and inserted into eq. (31). 
It turns out that the first Born approximation for REC is identical with the Born 
version of the impulse approximation and, thus, with the result of impact parameter 
method. This is not surprising because it is known that the first Born approximation 
and the impact parameter method yield equivalent results in case of the total 
non-radiative electron capture. 

A calculation of  the second order diagrams 4a and 4b shows that their effect is 
small if the collision is fast. Although these graphs are a first correction to the for- 
mation of  quasimolecular states during the collision, the Born series is not suited 
for the calculation of MO radiation because it consists of terms with alternating 
signs. 

5. Relation to molecular orbital X-rays 

Radiative electronic transitions between bound states will also take place at low 
beam velocities. This radiation is the analogue to REC and it originates in a tem- 
porary formation of  molecular orbitals (MO) during the collision. If  the collis.ion 
is fast with respect to the orbital velocity of  the outer electrons but slow with respect 
to the inner electrons then REC and MO radiation will be observed simulta- 
neously a). Various MO phenomena have been discussed in the literature x 3-12) so 
that we restrict our discussion to the close relationship between REC and MO 
radiation. 

Consider an ion having a K-shell vacancy whose lifetime is much greater than 
the collision time. For slow collisions the unperturbed asymptotic wave functions 
of  eqs. (16) and (17) must be replaced by time-dependent molecular wave functions 

['.t" li) = rp,(r, R ( t ) )  exp ~ -codt'ei(t' , (34) 

and a similar expression holds for the final electronic wave function. The electronic 
binding energies e~(t) and el( 0 now depend on time. The transition amplitude is 

f = d3 r ( f l .  A.  V, li). (35) 
~mc 

Now the gradient operates on the electron coordinate r which again is measured 
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from the c.m. of the quasimolecule. A similar calculation as in sect. 3 leads to 

da = 4 hco eZ f 
(36) 

dhco 3 (he) z hc 

where D c is defined by 

Oc(o~ ) (2~)-" f;®dtD(R(t))exp " i f ' 

oCR(0) = *,(0 d R(0)  

The REC can be considered as the limit of eqs. (36) and (37) when the collision 
is so fast that the binding energies of the electron do not change during the collision. 
For recent experiments and for a detailed discussion of the spectral shape of MO 
X-ray continua we refer to ref. 3). 

6. Conclusion 

We have established the main features which determine the spectral distribution 
of the non-relativistic REC. The REC phenomenon has been defined for sudden 
collisions and it is the analogue to MO radiation in adiabatic collisions. It is impor- 
tant to note that the Born version of the impulse approximation, the impact param- 
eter method and the first order Born approximation are identical in case of REC. 
An important quantity is the Sommerfeld parameter 17 = ZateZ/hv which should 
be less than or approximately equal to unity. Here Zaf is the effective charge of 
the ion. If ~/ is much larger than unity both impact parameter method and Born 
approximation will fail because the Coulomb interaction between target electron 
and ion will excite or ionize the electron before REC takes place. 

The charge state of fast heavy ions will be in many cases ~ 6) such that r / ~  I 
holds. Under this condition the high energy wing of the REC photon peak may be 
utilized by means of eq. (7) or (10) to measure electronic momentum distributions 
up to the relative kinetic momentum of the target electron with respect to the ion. 

Except for very light targets the collision velocity will in general be fast only for 
the weakly bound outer electrons. On the other hand, the inner electrons, having a 
broad momentum distribution, will produce MO X-rays and bremsstrahlung aT) 
which is not suited to measure the underlying momentum distribution. 

The REC into projectile states other than the K-shell is also not suited to measure 
electronic momentum distributions because the corresponding radiation peaks lie 
closer to the bremsstrahlung limit of weakly bound or free electrons than does the 
peak which originates from capture into the K-shell. 

We have greatly benefitted from discussions with H. D. Betz, P. Kienle, F. Bell, 
T. Fliessbach and H. Schmidt. 
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