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Dynamic screening of ions passing through solids 
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Abstract. The screened potential of an ion moving through a free-electron gas is calculated, 
and the resulting energy shift of bound electronic states of the ion is estimated. We find a 
decrease of the 2p-1s transition energy due to screening effects, and compare it with experi- 
mental results for high-velocity S projectiles in an AI target. 

1. Introduction 

It is well known (Neufeld and Richie 1955, Brandt 1975) that the potential of ions is 
modified when they pass through solids. The screening is due to the valence electrons of 
the medium and can be described by means of the dielectric constant E ( q ,  CO) of a free- 
electron gas (Lindhard 1954). For fast ions with velocity U exceeding the Fermi velocity 
uF of the electron gas, Neelavathi et a1 (1974) and Ritchie et a1 (1976) derived the screened 
ion potential by taking an analytical approximation for the dielectric constant. This 
potential shows oscillations behind the ion which correspond to theexcitation ofplasmons. 
Day (1975) used the semiclassical E but evaluated the potential only along the ion track. 
Calculating the potential more carefully we find an oscillatory behaviour only in part of 
the space behind the ion. 

Apart from the wake field there is a screening contribution to the potential in the 
vicinity of the ion which exists for all velocities v and which weakens the Coulomb poten- 
tial. It leads to a decrease of the binding energy of the electronic states. While for a fast 
moving ion the deviation from the energy levels of the nuclear Coulomb field tends to zero 
with increasing v, the binding energy is considerably lowered in the case of a slow 
moving ion. 

The relative change of the binding energy is largest for light ions. The ground state of a 
stationary proton is only very weakly bound (Rogers et al 1970); in fact, a bound state 
exists only for media with cES/a 2. 0.88 where dg is the static screening constant and a the 
Bohr radius (Almbladh et a1 1976). We will show that there is no bound state for a slowly 
moving proton. Whether the bound state which reappears for large v is actually occupied 
is discussed elsewhere (Cross 1977). 

For heavier ions the change in the binding energy can be found by examining the 
transition energy between electronic states. In a recent experiment (Bell et a1 1976a) the 
x-ray energy ofa  specific 2p-1s multiplet transition ('PI-'&,) in helium-like sulphur pro- 
jectiles was measured. A small though distinct line shift was observed depending on 
whether the transition occurred inside or outside the target. 
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In this paper we first discuss the screened potential (§2), then we estimate the binding 
energy of the hydrogen ground state in terms of the velocity v (§ 3), and finally we calculate 
the energy shift of electronic transitions due to dynamical screening in the limit of high 
velocities v/vF 9 1 (94) and compare with experiment (9 5). 

2. Potential of a moving charge 

For weak perturbations, i.e., small ion charges Z,  the potential generated by a moving ion 
in the medium can be calculated in linear response theory. The energy of an electron in 
this potential I\s given by (Neelavathi et a1 1974) 

i r m  r i  \ 

V(p, z‘) = - 2Ze2/n Re {?, dq J dx exp(iqz‘x) J,[qpJ(l - x2)] / i4q,  w )  
0 

(2.1) 

where the ion is supposed to move in the z direction with constant velocity U < c, and p 
and z’ = z - ut are cylindrical coordinates in the rest system of the ion, 0) is given by 
q u  = qvx. The calculation is greatly simplified if one replaces E by its semiclassical approxi- 
mation (Lindhard 1954, Day 1975) which agrees with the exact E for small momenta 
q < k ,  or high frequencies U )  + hqz/2m, where m is the electron mass. Since for v > vF the 
main contributions to the integral (2.1) come from the region where these conditions are 
fulfilled, the semiclassical dielectric constant provides a good approximation in this case: 

(2.2) 2 /  2 2 ~ ( q ,  qvx) = 1 - ( 3 0 ~ 1 4  Q ~ ( ~ X / / V F ) >  

with up the plasma frequency and Q, a function independent of q :  

The imaginary part of E is nonzero only for x < vF/v and leads to a contribution to V 
which is asymmetric with respect to z’. If v > tiF, we split the integral (2.1) into two parts, 

1 

V = VI + V,, corresponding to jo’ dx = jrLI dx + lo, dx. 

The first part, VI, falls off as the inverse cube of the distance for large p, z’, while for 
small distances it reproduces the Coulomb field Vc plus a positive shift: 

for v < vF 

for v 3 vF. 
Vl(p = 0, z’ = 0)  - Vc = Ze2,’ds 

For low velocities z’ < vF there is only a small deviation ( x  % 0.1) from the static screening 
constant d s  = (t130p/vF)-1 while for large v the screening tends to zero with U - ’  

(Ritchie et al 1976). 
The second part of V. V,, exists only in the region v > vF where ~ - ‘ ( q ,  o) has poles 

near the real axis at q = i J Q , / d ,  - id  with 6 = $0.  It can be evaluated by contour 
integration and one obtains half of the residue of each pole. Taking into account that the 
Bessel function JO(q) consists of two parts which behave like ei4 and e-1q respectively, 
when q -+ i i m ,  one obtains in the region z’ < - p [ ( ~ ; / z ’ , ) ~  - 1]1’2. 
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V2 = -Ze2/ds  dx sin(JQlz'x/dJ J,(JQ,pJU - x2)/d,) JQ,. (2.4) 
UFlU 

En this region behind the ion, which corresponds to the Cherenkov cone in electrodynamics 
(Jackson 1975) if one interprets uF as the velocity of light in the medium, V2 exhibits 
damped oscillations. These oscillations are largest on the negative z' axis and decrease 
with growing angle 8 = tan- '  p/ lz ' / ,  until they disappear for p/lz'l z ( ( v / v , )~  - 1)-'l2. 
Figure 1 displays the magnitude of V2 at the first minimum as a function of 8. The edge 
of the cone where the oscillations disappear is smeared out because of damping effects, 
due to the dispersive ~ ( q ,  w), 
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Figure 1. Wake potential V, at its first minimum as a function of the angle between the negative 
:' axis and the ray z ' / p  = constant, for q'c, = 2 and an AI target. The arrow denotes the 
Cherenkov angle. 
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Figure 2. Contributions to the ion potential V in the plane p = 0 for u,kF = 2 (AI target). The 
broken curve is the unscreened Coulomb potential 7 ,  the dotted curve is the symmetric and 
asymmetric part of V,  - V,, the chain curve is the wake field Vz and the full curve gives the 
total V 
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Figure 2 shows the contributions to the screened ion potential in the plane p = 0 as a 
function of 2’. The potential is strongly asymmetric since the screening electrons of the 
medium prefer to gather behind the ion. This effect is the more pronounced the higher 
the ion velocity. 

3. Energy shift of the hydrogen ground state 

The energy levels of an ion passing through a medium are obtained by solving the 
Schrodinger equation with the potential (2.1). Since we are, however, interested only in the 
energy shift which is due to the screening we replace the exact energy by its expectation 
value formed with the unscreened hydrogen wavefunctions. With yc  = I/ - Vc the 
energy shift is given by: 

AEn = <$n(P, z’)I Y C ( P >  z’)IIC/n(P, z’)>. (3.1) 
The main contribution to AE comes from the symmetric part of VI - y. since the 
expectation value (3.1) is sensitive only to distances close to the ion. Neglecting V, we 
obtain AEls from (3.1) and (2.1) by first performing the integration over space: 

with a = h2/(mZe2). The 4 integral can be evaluated by contour integration. 
Figure 3 shows the ground state energy of hydrogen passing with velocity z; through 

the electron gas, While for Z = 1 a bound state exists only for u/v, 2 2, ions with Z 3 2 
have bound states for all velocities. For v % vF, E,,  approaches the free-ion energy. 

V/V, 

Figure 3. Ground state energy of hydrogen moving with velocity t’ through an A1 target. The 
broken curve is obtained by the scaling procedure described in the text. 

If v > tiF and (ds/a)(v/vF) $ 1, the bound state energy can also be obtained by a scaling 
procedure: one approximates the potential I/ by the static form - Z e 2 / r  valid for 
small distances, where d is now the ‘dynamic’ screening constant (Lindhard 1976) 
(710)~/2v)-~ from (2.3). The dependence of the energy on the screening constant d, ob- 
tained by an exact solution of the Schrodinger equation (Rogers et a1 1970), can then be 
transformed into a dependence on U. This approximation is also shown in figure 3. 
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4. Energy shift of the atomic transitions 

The energy shift of the atomic levels is again approximated by (3.1). But now we are 
interested in the difference between the energy levels where the constant potential shift 
(2.3) cancels, and the wake potential V2 can no longer be neglected. 

For 2 % 1 we can expand the integrand in (2.1), after having performed the q 
integration, in terms of p and z' since p ,  z' 5 a and aJds - 112, and then calculate the 
expectation value with this potential approximation. When integrating over q it is 
convenient to use the integral representation of J,. 

The transition energies are modified if there are electrons bound to the ion, since they 
change the screened potential (2.1). In the case where one ls-electron is bound, the addi- 
tional shift of the transition energy, which arises from the dynamic screening alone, is of 
the order 1/Z compared to the shift without a bound electron. Both contributions depend 
quadratically on the inverse screening constant d -  '. 

If ti $ tiF, the terms in V,, involving p strongly dominate the terms involving z'. 
Neglecting contributions proportional to z'Jp one can approximate V,, for small distances 
by y,(p, z') x Y , ( p ,  0)  + Y,(O, z') - Y,(O, 0), and evaluate the transition energy analyti- 
cally. Considering, for example, the transition from the 2p(m = k 1) state to the 1s state 
we find from (2.1): 

Ze2a A,$+ 1) v / v ) ~  ( ~ V J V ,  - 3 In VJV, - 2p-1s - - 16d:( 3 I n 2 +  y )  

which deviates less than 10% from the numerical value. The energy shift decreases with 
ti- for large velocities, and is in zero order, independent of 2 in the region where the 
linear response theory is valid. 

The dependence of A E g A i 3  on the density n of the electron gas is shown in figure 4. 
The increase of (4.1) with n is nearly independent of the velocity v. 

2 L 6 0.1 
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Figure 4. Shift of the transition energy between the 2p and 1,s state as a function of the density 
of the medium for various ion velocities I'. t i o  = 10- '6fm-3] .  
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5. Comparison with experiment and discussion 

In a recent experiment (Bell et a1 1976a) the x-ray energy of the 2p-1s transition in 
helium-like sulphur projectiles with U/C = 0.08 has been measured as a function of the 
thickness of an A1 target (v/v, = 11.8). The transition energy depends on the ratio of 
decays inside and outside the target, i.e., on the ratio of the lifetime i-' = 1.5 x s 
of the K hole to the time of flight tx = X/U through the target of thickness x. For a quali- 
tative description of the target thickness dependence of the energy we assume a constant 
number I ,  of K holes inside the target and an exponential decay I = I ,  e-'.' outside the 
target. The x-ray yield from decays inside the target is then given by IOtx/zR, and for 
decays from outside one obtains Zo/(izR) (Bell et a1 1976b), where zR is the radiative lifetime 
of the 2p state. Normalising by the total yield we find for the mean transition energy: 

where E2p-ls is the transition energy for decays outside the target. Figure 5 shows the 
target thickness dependence of the energy shift E2p-ls-EZp--!s of the lP,-lSo transition. 
The metastable 3P1-'S0 transition was taken as a reference line since it is independent of 
x. The theory (5.1) is normalised to experiment at the smallest target thickness since 
AEZp-ls only yields the energy difference of decays for x = !I and x = W .  We calculated 
AE2p-ls and found - 1.17 eV for the 2p(m = i 1) initial state and - 1.06 eV for m = 0. 
For the evaluation of (5.1) we averaged over m and obtained AEZpPls = - 1.13 eV. The 
experimental energy shift is thus well reproduced. 

To summarise, dynamical screening of a moving ion influences all processes which are 
sensitive to the nuclear charge. At small distances from the ion, compared to the static 
screening length, we have approximately static screening for U < vF whereas for large 
velocities U % vF the screening effects diminish with U- I. It leads to a decrease of the binding 
energies of the electronic states of the ion, as well as to a lowering of the electronic 
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transition energies in agreement with experiment. At large distances behind the ion the 
potential shows strong oscillations inside the Cherenkov cone for v > vF which leads to 
speculations about wake-riding charged particles in dense media (Neelavathi et al1974). 
For slow ions with high nuclear charges one has to treat the dynamical screening within a 
nonlinear theory, but this will not change qualitatively the results mentioned above. 
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