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We describe a simple analytical model for the ground state energy of an electron in a two-
center potential. An effective charge Z(R) is derived which corresponds to the monopole
approximation of this potential. As an example, we study the (H, H) and (Br, Zr) systems.

1. Introduction

The theory of K-shell ionization in adiabatic heavy-ion
collisions requires knowledge of the electronic energy
E(R) and wave function W(R) as a function of the
separation R between projectile and target nucleus. The
application of an exact two-center calculation [1] is,
however, very cumbersome. Therefore several approxi-
mations have been introduced such as the replacement
of E(R) and y(R) by their values in the united atom limit
{R=0) [2] or at the distance R ; of closest approach [3].
Recently a perturbative expansion of the binding
energy at R, combined with a variational calculation
where the extension k™! of the 1s wave function is
optimized, had also been performed [4].

In this paper we derive an approximation for E(R) by
taking a spherically symmetric wave function ¥ ,(R)
with the origin at a distance x from the target nucleus in
the direction of R, and by optimizing x and x for fixed R.
In Section 2 we calculate the ground state energy non-
relativistically and give in Section 3 an extension to the
relativistic case. In Section 4 follows a discussion of the
functional dependence of E, k and x. As an example the
systems (H, H) and (Br, Zr) are considered.

2. Charge Cloud Model in the Nonrelativistic Case

There are quite a few approaches to the determination
of the energy of an electron in a diatomic system by a
variational calculation, mainly applied to (H,H) or
other light nuclei. They range from a simple semiclassi-
cal model where the electron is described by a homo-
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geneously charged sphere [5] to very refined calcu-
lations which use spheroidal wave functions for the
electron. These functions contain one [6] or two [7]
variational parameters which correspond to a variable
nuclear charge or to a variable location and extension
of the electron distribution respectively.

The model described below does not claim to give an
optimal fit to the energy of the electron. But its
simplicity helps to extract the physical significance of
the introduced parameters. It is not confined to sym-
metric systems and is meant to be applied in slow
collision processes.

An electron in the field of projectile and target nucleus
with charge Z, and Z, respectively is described by the
Hamiltonian

h? Z, e Z,e?

H=——A-— - _,
2m r—R—x| [r—x|

2.1)

The coordinates are shown in Figure 1. The expectation
value of H 1s calculated with the 15 wave function

Y, =n"12 132 exp(—xr) (2.2)

and depends on the parameters x and x:

E=h2x*2m
—Z,[1/R—x)—e 2*®"I/(R —x) +x)]
—Z, e[ 1/x—e2**(1/x +K)]. 2.3)

For Z, =7, it is symmetric with respect to the in-
terchange of x and R—x. k and x are obtained from
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Fig. 1. Coordinate system for an electron in the field of projectile and
target nucleus

minimizing the energy. The limiting cases R=0 and R
= o0 coincide with the exact solution. From 0E/0x =0
one finds x=RZ /(Z,+Z,) for R -0 which is the
center of charge, and x=0 for R=0c0 which yields
the boundary condition for the 1so energy when
Z,>Z,. The second equation 0E/0x=0 leads to
k=(Z,+Z,))a, for R=0 and «k=Z,/a, for
R =0, where g, is the Bohr radius #%/me?.

3. Extension to the Relativistic Case

An application of the variational principle to the Dirac
equation meets the difficulty that the Dirac operator
has no lower boundary [8]. This can lead to an
overestimate of the binding energy due to the coupling
of the negative continuum states. In the region with (Z,
+Z,)az1 (x=e?/hc) a variational calculation of the
ground state energy is no longer reasonable. For
charges where the point nuclei are still a good approxi-
mation one can use the wave function

A
¢S=Nexp(—xr)ry'1{_'u

with y=(1 —(hx/mc)*)*/? (3.1)

where N is the normalization constant and x, A and p
are variational parameters. In the case of an atom (R
=0 or o) this leads to the exact Dirac 1s energy and
wave function.

The calculation is, however, much simplified if we use
the Schrodinger operator (2.1) with (2.2) but replace the
kinetic energy in (2.3) by the relativistic expression

Epn=(m?c* +1? k2 cH)? —m (3.2)
This leads also to the Dirac 1s energy in the atomic

case, with x given by Z/ao(1—(Z ®)*)" "%, (Z=Z, or
Z.+Z,).

4. Results and Discussion

In Figure 2 the 1 so energy obtained by minimizing (2.3)
is compared to the numerical solution of the two-center
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Fig. 2. 1 so energy as a function of the internuclear distance. 1 refers to
the (H, H) system and 2 to the (Br, Zr) system. The solid lines are two-
center calculations and the dashed lines originate from the va-
riational model
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Fig. 3. Center of the electron distribution for the lso state as a

function of the internuclear distance. 1 refers to the (H, H) system and
2 to the (Br, Zr) system
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problem. For relativistic systems the replacement {3.2)
is used in order to obtain the correct energies in the
limiting cases R =0 and R = co. Examples are given for
(H,H) [9] and (Br, Zr) [10]. We obtain a fairly good
agreement, the deviations at R/a, ~2 (a,=a,/Z,) re-
sulting from the deformation of the electron distribu-
tion which is not included in (2.2).

Figure3 shows the monopole polarization x of the
electron cloud as a function of the nuclear separation R.
In the case of symmetric systems we find a “phase
transition” for R/a,~1 which is correlated to the
symmetry breaking of the wave function [11]. It is due
to the classical description of the location of the
electron. In a quantum mechanical treatment with
symmetrized wave functions the location can not be
observed.

It should be mentioned that in the nonrelativistic case
the quantities E/E, (E, = —Z, ¢*/2a,), x/R and k a, are
only functions of R/a, and Z,/Z,.

The parameter k¥ which describes the extension of the
electron cloud, can be related to an effective nuclear
charge Z(R). It is defined by Z=xa, in the nonre-
lativistic case and by Z=(a2+(xa,)" %) 1? in the
relativistic case and changes from Z, +Z, to Z, when
R goes from zero to infinity. By means of Z(R) one may
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Fig. 4. Shift of the effective nuclear charge as a function of the
internuclear distance. 1 refers to the (H, H) system and 2 to the (Br, Zr)
system

introduce an effective potential —Z(R)e*/r by which
the two-center Coulomb field can be replaced in the
context with the monopole approximation [12] in the
K-shellionization theory. In the adiabatic perturbation
theory the transition operator is the time derivative of
this potential, i.e. proportional to (dZ(R)/dR) dR/dt. We
find an exponential decay of the shift AZ(R)=Z—-Z,
with R as can be seen in Figure 4. Thus, when taking the
R-dependent energy and wave functions from our
variational model we obtain a consistent description
within the monopole approximation.

To summarize, we have described a method for the
calculation of the ground state energy and wave
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function of quasimolecular systems, intended to be
applied within the monopole approximation for K-
shell ionization. We have shown that by a two-
parameter variational calculation valid for all systems
with (Z; +Z,) x <1 the 1so energy is reproduced up to
109%,. We have derived an effective charge and thus
related some properties of a two-center potential to
those of a monopole potential.

1 would like to thank Dr. M. Kleber for stimulating discussions.
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