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We describe a simple analytical model for the ground state energy of an electron in a two- 
center potential. An effective charge Z ( R )  is derived which corresponds to the monopole 
approximation of this potential. As an example, we study the (H, H) and (Br, Zr) systems. 

1. Introduction 

The theory of K-shell ionization in adiabatic heavy-ion 
collisions requires knowledge of the electronic energy 
E(R)  and wave function 0(R) as a function of the 
separation R between projectile and target nucleus. The 
application of an exact two-center calculation [1] is, 
however, very cumbersome. Therefore several approxi- 
mations have been introduced such as the replacement 
of E(R) and 0(R) by their values in the united atom limit 
(R = 0) [2] or at the distance R d of closest approach [3]. 
Recently a perturbative expansion of the binding 
energy at R a combined with a variational calculation 
where the extension x -  * of the l s  wave function is 
optimized, had also been performed [4]. 
In this paper we derive an approximation for E ( R )  by 
taking a spherically symmetric wave function ~Ps(R) 

with the origin at a distance x from the target nucleus in 
the direction of R, and by optimizing x and x for fixed R. 
In Section 2 we calculate the ground state energy non- 
relativistically and give in Section 3 an extension to the 
relativistic case. In Section 4 follows a discussion of the 
functional dependence of E, ~c and x. As an example the 
systems (H, H) and (Br, Zr) are considered. 

2. Charge Cloud Model  in the Nonrelativistie Case 

There are quite a few approaches to the determination 
of the energy of an electron in a diatomic system by a 
variational calculation, mainly applied to (H, H) or 
other light nuclei. They range from a simple semiclassi- 
cal model where the electron is described by a homo- 
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geneously charged sphere [5] to very refined calcu- 
lations which use spheroidal wave functions for the 
electron. These functions contain one [6] or two [7] 
variational parameters which correspond to a variable 
nuclear charge or to a variable location and extension 
of the electron distribution respectively. 
The model described below does not claim to give an 
optimal fit to the energy of the electron. But its 
simplicity helps to extract the physical significance of 
the introduced parameters. It is not confined to sym- 
metric systems and is meant to be applied in slow 
collision processes. 
An electron in the field of projectile and target nucleus 
with charge Z 1 and Z 2 respectively is described by the 
Hamiltonian 

h 2 Z 1 e 2 Z 2 e 2 

H : - 2 m m A  [ r - R - x l  I r -x l "  (2.1) 

The coordinates are shown in Figure 1. The expectation 
value of H is calculated with the l s  wave function 

@s = 7~ -- 1/2 N3/2 exp( - x r) (2.2) 

and depends on the parameters x and x: 

E = h 2/r m 

- Z 1 e 2 [ 1 / ( R  - x )  - e -  2 ~ ( R - x ) ( 1 / (  R _ X) + ~)] 

- -  Z 2 e 2 [ 1 / x  - -  e -  z ~ x ( 1 / x  + ~c)]. (2.3) 

For Z 1 = Z  2 it is symmetric with respect to the in- 
terchange of x and R - x .  K and x are obtained from 
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Fig. 1. Coordinate system for an electron in the field of projectile and 
target nucleus 

minimizing the energy. The limiting cases R = 0 and R 
-- oo coincide with the exact solution. From c~E/Ox = 0 
one finds x = R Z I / ( Z ~ + Z 2 )  for R--*0 which is the 
center of charge, and x = 0 for R = oo which yields 
the boundary condition for the 1 s a energy when 
Z 2 > Z  ~. The second equation OE/Otc=O leads to 
~c=(Z l + Z z ) / a  0 for R = 0  and ~c=Z2/a 0 for 
R = o% where a 0 is the Bohr radius hZ/m e z. 

3. Extension to the Relativistic Case 

An application of the variational principle to the Dirac 
equation meets the difficulty that the Dirac operator 
has no lower boundary [8]. This can lead to an 
overestimate of the binding energy due to the coupling 
of the negative continuum states. In the region with (Z 1 
+ Z 2 )  ~ ~> 1 (~ = e2/h C) a variational calculation of the 
ground state energy is no longer reasonable. For  
charges where the point nuclei are still a good approxi- 
mation one can use the wave function 

tps= N e x p ( -  tc r) r~- ~ { 2._ # 

with 7 = (1 - (h~c/mc)2) ~/2 (3.1) 

where N is the normalization constant and ~, 2 and # 
are variational parameters. In the case of an a tom (R 
--0 or oo) this leads to the exact Dirac 1 s energy and 
wave function. 
The calculation is, however, much simplified if we use 
the Schr6dinger operator  (2.1) with (2.2) but replace the 
kinetic energy in (2.3) by the relativistic expression 

Eki n = (m 2 c r q- h 2 tr 2 c2) 1/2 - -  m (I 2. (3.2) 

This leads also to the Dirac 1 s energy in the atomic 
case, with ~ given by Z/ao(l--(Z~)2) -1/2, ( Z = Z  2 or 
Z 1 -]- Z2).  

4. Results and Discussion 

In Figure 2 the l s  cr energy obtained by minimizing (2.3) 
is compared to the numerical solution of the two-center 
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Fig. 2.1 sa  energy as a function of the internuclear distance. 1 refers to 
the (H, H) system and 2 to the (Br, Zr) system. The solid lines are two- 
center calculations and the dashed lines originate from the va- 
riational model 
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Fig. 3. Center of the electron distribution for the l s~  state as a 
function of the internuclear distance. 1 refers to the (H, H) system and 
2 to the (Br, Zr) system 

problem. For relativistic systems the replacement (3.2) 
is used in order to obtain the correct energies in the 
limiting cases R = 0 and R -- oo. Examples are given for 
(H,H) [9] and (Br, Zr) [10]. We obtain a fairly good 
agreement, the deviations at R/a 2 ~ 2 (a 2 =ao/Z2) re- 
sulting from the deformation of the electron distribu- 
tion which is not included in (2.2). 
Figure3 shows the monopole polarization x of the 
electron cloud as a function of the nuclear separation R. 
In the case of symmetric systems we find a "phase 
transition" for R / a 2 ~ l  which is correlated to the 
symmetry breaking of the wave function [11]. It is due 
to the classical description of the location of the 
electron. In a quantum mechanical treatment with 
symmetrized wave functions the location can not be 
observed. 
It should be mentioned that in the nonrelativistic case 
the quantities E/E 2 (E 2 = - Z  2 e2/2a2), x/R and ~ca 2 are 
only functions of R/a 2 and Z1/Z 2. 
The parameter  x which describes the extension of the 
electron cloud, can be related to an effective nuclear 
charge Z(R). It is defined by Z = ~ a  0 in the nonre- 
lativistic case and by Z=(o:2+(~ao)-2) -1/2 in the 
relativistic case and changes from Z~ + Z  2 to Z 2 when 
R goes from zero to infinity. By means of Z(R) one may 
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Fig. 4. Shift of the effective nuclear charge as a function of the 
internuclear distance. 1 refers to the (H, H) system and 2 to the (Br, Zr) 
system 

in t roduce  an effective po ten t i a l  - Z ( R ) e Z / r  by which 
the two-center  C o u l o m b  field can be rep laced  in the 
contex t  with the m o n o p o l e  app rox ima t ion  [12] in the 
K-she l l  ion iza t ion  theory.  In  the ad iaba t i c  pe r t u rba t i on  
theory  the t rans i t ion  o p e r a t o r  is the  t ime der ivat ive  of  
this potent ia l ,  i.e. p r o p o r t i o n a l  to (dZ(R)/dR) dR~dr. We 
find an  exponen t ia l  decay  of the shift A Z ( R ) = Z - Z  2 
with R as can be seen in F igure  4. Thus, when t ak ing  the 
R - d e p e n d e n t  energy and wave funct ions f rom our  
va r i a t iona l  m o d e l  we ob ta in  a consis tent  descr ip t ion  
within the m o n o p o l e  app rox ima t ion .  
To summarize ,  we have  descr ibed  a m e t h o d  for the  
ca lcu la t ion  of  the  g r o u n d  state energy and  wave 

funct ion of  quas imolecu la r  systems, in tended  to be 
app l ied  within the m o n o p o l e  a p p r o x i m a t i o n  for K-  
shell ionizat ion.  W e  have shown tha t  by a two- 
p a r a m e t e r  va r i a t iona l  ca lcu la t ion  val id  for all systems 
with (Z 1 + Z2) ~ < 1 the l s a  energy is r e p roduc e d  up  to 
10%. W e  have der ived  an effective charge  and  thus 
re la ted  some proper t i e s  of  a two-cen te r  po ten t ia l  to 
those  of  a m o n o p o l e  potent ia l .  

I would like to thank Dr. M. Kleber for stimulating discussions. 
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