
J. Phys. B: Atom. Molec. Phys., Vol. 12, No. 23, 1979. Printed in Great Britain 

LETTER TO THE EDITOR 

Equivalence of the adiabatic approximation and the Born 
approximation for excitations in slowly colliding 
asymmetric systems 

D H Jakubassa and P A Amundsen 
Institute of Physics, University of Oslo, Oslo, Norway 

Received 20 August 1979 

Abstract. Within a full quantum-mechanical description we show that the recoil term in the 
Born approximation can be identified with the perturbation by the target motion in the 
first-order adiabatic approximation if Z , / Z 2  + 0. Moreover, when the excitation is restric- 
ted to small internuclear distances, the approximations are equivalent. 

For the calculation of ionisation or excitation of atoms by heavy particles in slow 
collisions two different methods based on first-order perturbation theory are commonly 
in use (Briggs and Taulbjerg 1978). The (distorted-wave) Born approximation is 
applicable as long as the projectile charge (2,) is much smaller than the target charge 
(Z2). The adiabatic (Born-Oppenheimer) approximation can be used when the 
collision velocity (U) is much smaller than typical electronic velocities of the initial state. 
For a slow, asymmetric collision both methods are applicable and should thus be 
equivalent. This equivalence has recently been proved in the semiclassical (or impact 
parameter Born) approximation (Amundsen 1978a), where the nucleus-nucleus 
interaction is treated classically and independently of the electronic degrees of freedom. 
The important point in the proof was to include the internuclear recoil term in the 
Hamiltonian of the Born approximation, as the target atom constitutes a non-inertial 
frame of reference during the collision. In the present letter we extend the proof to a 
fully quantum-mechznical treatment of the excitation process. Atomic units ( h  = me = 
e = 1) are used throughout the paper. 

The Hamiltonian of the problem can generally be written 

H = HN + He + HR (1) 
where HN = TN+ VN describes the relative motion of the nuclei corresponding to an 
internuclear potential V N ,  and 

He = T'+ Vl(r  - aR) + V2(r + PR) (2) 
is the electronic part, where a and p = 1 - LY defines the choice of origin for the electron 
coordinate r along the internuclear axis R. HR represents the recoil contribution which 
has to be included if a and p do not correspond to the heavy-particle centre-of-mass 
frame, (Y = a0 = M2/(M1 + M2),  Ml and M2 being the projectile and target mass, 
respectively. As in the semiclassical approximation (Amundsen 1978b) the centre of 
coordinates for the electron can be moved from the centre of mass along R by unitary 
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operators (uniquely defined up to a phase): 

U = exp[-i(a - a o ) ~ .  p ]  exp[ip-l(a - ao)p .  r ]  

,u = M;1 +Mi '  << 1 
(3) 

where P and p are the momenta conjugate to R and r, respectively. This trans- 
formation of the Hamiltonian leads to the term HR which is given by 

HR = ~ - ' ( c u  -ao)rVRVN(R) (4) 
to the leading order in ,u-l. This is identical to the exact semiclassical result by virtue of 
the equation of motion ,uR = -VRVN(R). 

In the Born approximation the unperturbed electronic wavefunctions are chosen to 
be eigenfunctions $T(r) ,  corresponding to an energy E T ,  of Te+ V2(r)  centred at the 
target, so that a = 1. One then expands the total wavefunction as 

The nuclear wavefunction ,ym(R) (energy E,) is an eigenfunction of HN.  Inserting this 
expansion into the Schrodinger equation one finds the first order transition amplitude 
from an initial state to a final state xhf c f#  i) as 

where the last term is the recoil term. 
In  the adiabatic approximation one expands instead the total wavefunction after a 

set of eigenfunctions $y (R, r )  (energy E Y ( R ) )  of He centred at the centre of charge of 
the heavy particles, i.e. a = Z 2 / ( Z 1  +Z2) .  By an expansion similar to equation ( 5 )  the 
first order transition amplitude becomes 

+xfxi(%$fM Ivil$Y) - ($7 IHR /$M))] 
- 6'(Ef - Ei + E ~ M  (RI - EM (R))(VREM (R ))xTxi($fM IVR I$?)}. (7 )  

The term involving HR vanishes for collision systems where the centre of mass coincides 
with the centre of charge. 

The first term of equation (7)  can be rewritten by using 

+ ($7I(VRV2(rfPR)I$M)). (8) 

In the asymmetric limit Z1/Z2 << 1, the term involving V2, i.e. the term arising from the 
motion of the target nucleus, can be cast into a form that corresponds to the recoil term 
in the Born approximation. In this limit we can replace $M by lLT and e M ( R )  by eT, 
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because the difference is of the order of Z1/Zz. (It is true that these wavefunctions are 
centred at different origins, but the corresponding translational factors also represent 
corrections of the order of Zl/Zz.) We can thus write 

($3” I (v, v z )  I $Y ) = P (43” I (vr vz) I +Y ) 
= @ ( E T  - ET)’(+TIrI+T> + ~ ( ( W Z J ’ ) .  (9)  

In the last step we have also used that 4: is an eigenfunction of T, + Vz  and replaced the 
acceleration form of the dipole matrix element by the coordinate form. The matrix 
element in equation (9) is now independent of R, so that the R integration in equation 
(7) can be carried out for this term, yielding the dipole matrix element: 

Combining the target term of equation (8) with the term containing HR,  we thus arrive 
at a term identical to the recoil term of equation (6). 

As the second and the last term of equation (7) are of the order of (21/22)2 and thus 
can be neglected in the asymmetric limit, it remains to prove that the first (projectile) 
term of equation (8) corresponds to the perturbing potential in equation (6). To do this 
we note that for an inelastic process the transition amplitude obtains its main contribu- 
tions from distances of the order of 

where AE is the energy transfer. For the adiabatic approximation to be applicable, U 
should be small compared with typical electron velocities of the initial state. If AE is of 
the order of the binding energy of the initial state, equation (11) shows that R is then 
much smaller than the initial shell radius. We can therefore expand Vl  in the first term 
of equation (8) as 

V R V l ( r - a R )  = - a V , V l ( r - a R )  

= - a V , V l ( r ) + O ( R ) .  (12) 

As the factor p u . - l V R ~ i  in equation ( 7 )  is proportional to v and thus by equation (11) 
proportional to R ,  we can neglect terms of the order of R in this expansion. Inserting 
this into equation (7), the projectile contribution gives rise to the amplitude 

= a 2 7~ i 8 (Ef - Ei + ET - E T  1 (xf I R IXi )( $7 I (v, Vi ( r ) )  I +T ) (13) 

Finally we can make a Taylor expansion of Vl( r  - aR) and write 

-aRV,V1(r)  = V l ( r  - aR) - V l ( r )  + O ( R 2 ) .  (14) 
Inserting this into equation (13), the term containing V l ( r )  will vanish due to the 
orthogonality of the nuclear states, and taking a + 1 we are left with the first term of 
equation (6). The proof is thus complete. 

As a final remark we note that in the derivation of equation (13) together with 
equation (14) we nowhere needed the fact that Zl/Zz << 1. As equation (1 1) is generally 
valid, we can perform this step for any charge ratio and also include the target term. The 
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only modification is that $y should not be replaced by $:, but instead by wavefunctions 
corresponding to the united atom limit of $?, $YA. Also in this small-R limit the 
second and the last term of equation (7) will vanish, and we are left with the quantal 
version of Briggs’ model (Briggs 1975) 

= -2.rri8(Er-Ei+6YA -E~A)(X&YAiVl(r-aR)+ V 2 ( r + p R ) + H ~ I ~ i $ ? A ) .  
(15) 

We would like to thank J S Briggs for a stimulating discussion. 
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