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Abstract. The energy and angular distribution of projectile electrons emitted in asymmetric 
collisions is calculated within the quantum mechanical electron impact approximation. The 
rise of the differential cross section in the backward direction is shown to follow closely the 
behaviour of electrons elastically scattered from the target. As an example, (H, Ne) and 
(H, Ar) collisions are studied and the results are compared with experiment. 

1. Introduction 

The ionisation of projectiles in heavy-ion collisions has been extensively studied in 
connection with the determination of the average charge state of a projectile traversing 
a target (Betz 1972). Apart from total cross section measurements also differential cross 
sections have been investigated in order to obtain more information about the colliding 
system. The momentum distribution of the initial electronic state, for example, can be 
deduced from an observation of the energy distribution of the emitted electrons (Burch 
etal 1973). Experiments have now also been carried out on the angular distribution of 
the electrons (Duncan and Menendez 1979), which can be used as a tool to study the 
properties of the target atom. 

For the calculation of the electron loss the first-order Born approximation can be 
applied provided that the velocity t~ of the projectile is larger than the orbiting velocity 
ue of any of the electrons of the projectile-target system. Thereby one usually includes 
the contribution from the excitation of target electrons (Bates and Griffin 1955) by 
means of a closure approximation. For these high projectile velocities, the angular 
distribution of the emitted electrons shows a smooth decrease with angle (Drepper and 
Briggs 1976). If, however, U < ve  a rise of the differential cross section in the backward 
direction is observed (Duncan and Menendez 1979) which cannot be reproduced by the 
Born approximation even if one includes the second-order term. To explain this 
behaviour the binary encounter approximation (elastic scattering model) has been used 
where the projectile electron is described as a free electron which scatters elastically 
from the target, and the corresponding cross section is then weighted with the velocity 
distribution of the electron in its initial state (Burch et al 1973). Actually, in this 
approach there are also deviations from the data both in the angular and energy 
distribution of the electrons. 
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An advantage of the quantum mechanical description over the binary encounter 
approach is the correct incorporation of momentum conservation in the whole system. 
There are two possibilities for an approximate treatment of the three-body problem, 
depending on the nuclear charges. In systems where the projectile (charge Zl) is 
heavier than the target ( 2 2 )  the electron loss can be described by ionisation in the rest 
system of the projectile followed by a transformation to the laboratory (target) system. 
The final electronic state is thereby an eigenstate to the projectile (Drepper and Briggs 
1976). On the other hand, if the target field dominates the projectile field (2, < 2,) the 
electron loss is more readily expressed as charge transfer to the continuum. Thereby it 
is important to go beyond the first-order Born approximation. An adequate way to 
include higher-order terms in the target interaction is given by the electron impact 
approximation which is the quantum mechanical analogy of the binary encounter 
approach. An additional inclusion of one interaction with the projectile leads to the 
impulse approximation (McDowell and Coleman 1970) which determines the high- 
velocity behaviour for charge transfer (Briggs 1977). 

In this paper the cross section dzcr/dEf d n f  for electron loss differential in electron 
energy and angle is calculated within the electron impact approximation which is easier 
to handle than the impulse approximation. It should hold for strongly asymmetric 
systems with intermediate projectile velocities such that $muZ ( m  = electron mass) is 
larger than the electronic binding energy in the initial state, and comparable with the 
excitation energies in the target. Section 2 contains the derivation of the cross section, 
where the elastic electron-scattering cross section is used to describe the interaction 
between projectile electron and target. Effects of inelastic electron scattering are taken 
into account in § 3. d2cr/dEf dRf is evaluated in the cases of H impact on Ne and Ar 
(8  4) followed by a comparison with experiment and discussion (d  5 ) .  

2. Electron loss in the electron impact approximation 

We proceed along the lines previously developed in connection with radiative ion- 
isation (Jakubassa and Kleber 1975). As we consider systems with Z1 << Zz the ejected 
electron is described by an eigenstate to the target. The electron impact approximation 
can be obtained by starting from the transition matrix element in the plane-wave Born 
approximation 

aft = (Xf(Rf)$f(4 vT(r)lxt(m4L(rtN (2.1) 
where x ~ , ~  are the nuclear and $,,, the electronic wavefunctions and Ri,f the centre of 
mass coordinates in initial and final state (figure 1). V&) stands for the interaction 
between projectile electron and target. 

e -  

Figure 1. Coordinate system for a three-body problem consisting of projectile (211, target 
(2;) and electron. Ri,f connects one particle with the centre of mass of the other two 
particles. 
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Introducing the Fourier transform d,(k1) of the initial electronic state i,6,(rl) one can 
perform the integration over R and express (2.1) by electronic properties alone 

i ( k , i  mv/h) r  a f ,  = h(kl)(2.n)-3/2 I d r  $7 (r) Vdr )  e 

h’ 
= -- (2.n)-’dl(kl)f(kI +multi ,  kf, Off) (2.2) 

where we introduced the scattering amplitude f for the scattering of a plane wave with 
momentum hk, +mu into a final state with momentum hkf. elf is the scattering angle 
(between k, + mu/h and kf). When $ f ( r )  is described by a plane wave, f represents the 
first-order Born approximation for an electron scattered from the target potential 
VT(r). For strong potentials, however, one has to include higher orders in the 
perturbation. This is easily done by replacing the incident plane wave by the exact 
scattering state &(r )  of the target with initial momentum hk, + mu such that f becomes 

m 

f = -(2.n)* I dr  $7 ( r )  Vdr)&(r) .  (2.3) h 

Inserting (2.3) into (2.2) one arrives at the electron impact approximation: the 
projectile electron behaves as quasi-free in the target field and the initial momentum is 
weighted by its probability amplitude 4 1 ( k l ) .  The difference to the elastic scattering 
model lies in the fact that besides momentum conservation in the projectile-target 
system, the electron impact approximation allows for inelastic Scattering via (2.3). The 
differential cross section for electron loss is given by 

(2.4) 

where Kf is the wavenumber of the relative nuclear motion in the final state. Using 
momentum conservation we can eliminate the nuclear quantities and write 

(27d4 d u  = - laf,1’ S ( q  - E , )  dkf dKf 
hU 

(2.5) 
due -=- ‘’U hkf I dkiIdi(ki)/’ __ (k i  + mu/h, kf, Oif)S(Ef-  El - i m v 2 -  huki) 

dEfdflf  mu dfl 

where we introduced the electron scattering cross section dcr,/dfl= If[’. Ei is the 
energy of the initial electronic state and Ef = h2kf2/2m. In order to establish the 
connection between the electron loss cross section and the electron scattering cross 
section we make use of the fact that the momentum distribution 14,(ki)1’ is strongly 
peaked for ki + 0 such that we can take due/dfl  outside the integral at the minimum 
value ki = kize, where ki, is given by energy conservation and U is chosen as z direction. 
The remaining integral yields the Compton profile J, ( k , )  (which equals 
(8/3.n)ai(k?,af  + 1)-3 with ai = h z / ( m Z l e 2 )  for the hydrogenic 1s state). In this peaking 
approximation Oif reduces to the angle Of (between kf and U )  i.e. the ejection angle of the 
projectile electron. We obtain 

1 
k ,  = - (Ef - Ei - imv  ’). 

I Z  hu 

We now proceed with the calculation of the electron scattering cross section. The 
replacement of the state &(r) by a Coulomb wave only gives good results if the average 
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electron energy $mv2 is larger than the 1s binding energy of the target (Jhanwar et a1 
1978) since it leads to a smooth decrease off  with angle. If, however, $mv2 coincides 
with excitation energies in the target then the resulting resonances and interference 
effects can only be described by an exact solution of the Schrodinger equation. 

An exact evaluation of the scattering amplitude (2.3) is very involved. Actually, if 
f m v 2  is much larger than the initial binding energy Ei the difference lki + mv/hl- kf is 
small compared with kf in the Et. region where the cross section (2.6) is large. Then, as a 
first approximation, one may obtain f by means of the elastic scattering theory. Inelastic 
effects will be discussed later. 

In order to find the elastic scattering amplitude we use the method of partial waves. 
In this approach, f can be expressed in terms of the phaseshifts 81 which are obtained 
from the asymptotic behaviour of the wavefunctions obeying the radial part of the 
Schrodinger equation 

with k = ki, + mv/h .  The scattering potential VT(r) is chosen to consist of a term due to 
static screening, V,,, and one due to polarisation, Vpol (exchange effects are small in the 
velocity region considered here and therefore neglected) 

2 z 2 e 2  2 ar VT(r) = -- (ai  bir e-'i') - 
r i = l  2(r2 + d2)3 0 

The constants ai, bi, ai and pi are fitted to a Hartree-Fock potential (Strand and 
Bonham 1964), a is the dipole polarisability (Fraga et a1 1976) and the screening 
constant d equals 3h2k / (8mA)  where A is the mean excitation energy of the target. We 
take A =  2.687 e4m/h2  for Ne and 0-93 e4m/h2  for Ar (which roughly corresponds to 
the s binding energy of the outermost shell). 

When the scattering energy is comparable to inner-shell binding energies many 
partial waves are needed to obtain convergence. Following Jhanwar et a1 (1978) one 
can reduce the numerical efforts by recalling that for high angular momenta 1 > N 
( N  - 10 for Ne and - 15 for Ar) the phaseshifts are only determined by the polarisation 
potential and can be calculated (analytically) in the Born approximation. Thus it is only 
necessary to solve (2.7) for 1 s N .  The contribution to f for 1 > N  is then obtained by 
calculating the scattering amplitude fpol due to Vp0l in Born approximation (fpol = 
m m  e-"(3 -x)/(16h2d), x = 2kd sin &I) and subtracting the corresponding N lowest 
l-expansion terms given by the phaseshifts vpo' : 

When calculating SI  from the large r behaviour of Rl(r) the convergence is appreciably 
speeded up if one-first determines the phaseshifts belonging to VT = 0 at fixed r (they 
vanish for r + CO) and subtracts them from the phaseshifts of VT(r) to obtain SI at r. We 
compared If[' with the experimental electron scattering cross section (Jhanwar et a1 
1978, DuBois and Rudd 1975) in the region k - m v / h  and found good agreement. 

3. Inelastic effects 

The calculation of the inelastic electron scattering within the electron impact approxi- 
mation is very complicated since an exact evaluation of the scattering amplitude (2.3) 
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involves multi-electron processes. A possibility of describing the inelastic scattering in 
the one-electron model is given by the impulse approximation, which can be obtained 
from the post form of the plane-wave Born approximation ((2.1) with VT(r) replaced by 
Vp(ri)) along the lines used in 0 2. In this approximation, the double-differential 
electron loss cross section turns out to be 

-- d2u -sf I dkoS(E~-Ei-$”-hvko) 
dEfd& h3v 

where Vp(ko- ki) is the Fourier transform of the projectile field and $f and & are both 
exact scattering functions of the target with momentum hkf and hki + mv, respectively. 
The additional coupling to the projectile field introduces thereby an extra integral over 
momentum which complicates the evaluation considerably. We therefore restrict 
ourselves to give an estimate of the inelastic effects within the electron impact 
approximation. 

When inserting the elastic scattering cross section into (2.6) we find that in this 
approximation the angular distribution of the emitted projectile electrons is just given 
by the electron scattering cross section. In order to estimate the corrections originating 
from kf being unequal to ki,  + mv/h we recall that the inelastic scattering cross section 
depends only on the momentum transfer qin = Ikf-(ki,e, + mv/h)l and the angle 
between 4in and kizer + mv/h,  where the dependence on qin is the dominating one, while 
the elastic cross section depends only on qel = 21% sin 28. So we incorporate the main 
part of the inelastic effects by making the substitution qel + qin 

1 1 

Figure 2. Double-differential cross section for 
electron loss in (H, Ne) collisions with impact energy 
0.31 MeV as a function of emission angle 6) with the 
emission energy Ef as a parameter. Also shown is 
the single-differential cross section (right-hand 
scale). Broken curves are calculations using the 
elastic electron-target scattering cross section, full 
curves include inelastic effects (via equation (3.2)). 
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i.e. 

k = k,, + mv/h  (3.2) 
1 

2k 
sin$e-+-(k; +k2--2kfk cos 

in the scattering amplitude (2.9). This reduces the electron loss cross section mainly 
near 0" and in the backward direction, and shifts the minimum to slightly larger angles as 
can be seen from figures 2 and 3 where the double-differential electron loss cross section 
is displayed as a function of electron emission angle 0,. 

Figure 3. Double-differential cross section for 
electron loss in (H, Ar) collisions with impact energy 
0.5 MeV as a function of emission angle 0, for 

0 20 100 110 various emission energies Er. Broken and full curves 
have the same meaning as in figure 2. 0, 

4. Electron loss in the case of H + Ne and H + Ar collisions 

We consider collisions with a projectile energy of 0.31 MeV for Ne targets (cor- 
responding to $mu2 = 170 eV = -1/8E1,(Ne)) and of 0-5 MeV in the argon case (i.e. 
Tmv = 272.4 eV= -l/ l6ElS(Ar)).  For these conditions the electron impact approxi- 
mation should be well suited. 

From (2.6) it follows that the projectile electrons are mainly ejected with velocity 
around 21 since then ki, attains its minimum value. This well known fact is shown in 
figure 4. Actually the peak energy E,,, is not only shifted slightly due to the binding 
energy lEil but is also dependent on the emission direction 0,. While for high projectile 
energies (where the Born approximation is valid) one finds a monotonous decrease with 
0, (Drepper and Briggs 1976) the dependence on 8, shows structure for medium-energy 

1 2  
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Figure 4. Double-differential cross section for electron loss in (H, Ar) collisions with 
impact energy 0.5 MeV as function of the emission energy Ef at 0, = 10" ( a )  and 170" ( b ) .  
Broken and full curves have the same meaning as in figure 2. The 'inelastic' curve at 170" is 
multiplied by a factor 1.2 to give the same peak height. The data are from Duncan et a1 
(1979) and are normalised to theory. 

projectiles (figure 5 )  which is the larger the lower ;mu' is compared with lElsl. This 
originates from the rapid change of the electron scattering cross section with energy and 
angle and is thus a target effect. 

The cross section integrated over energy, du/dOf, is shown in figure 2. Its angular 
dependence follows closely the double-diff erential cross section near the peak energy. 
In order to study the velocity dependence of dm/dOf we therefore plotted d2u/dEf dOf 
at Ef = $mu' in figure 6 for various velocities U .  For increasing U the backward rise of 
the cross section becomes weaker which is correlated to the behaviour of the elastic 
electron scattering cross section. For comparison we show also the Born result 
(obtained with the potential (2.8)) for the highest velocity, which overestimates the 
cross section for small angles and lies below the present result for large 8,. In all our 
calculations we used the peaking approximation (2 .6) .  The deviations from the result 
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Figure 5. Peak energy E,,, of the emission spectrum for (H,Ne)  collisions ( a )  at 
0.31 MeV and for (H, Ar) collisions ( b )  at 0.5 MeV as a function of emission angle 0, 
Broken and full curves have the same meaning as in figure 2. The data are from Duncan et a1 
(1979). 
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Figure 6.  Double-differential cross section for electron loss in (H, Ne) collisions as a 
function of emission angle 0, where the emission energy Er equals i m v 2 .  The velocity 
dependence is indicated by choosing $mu2 as a parameter. The full curves are calculations 
including inelastic effects, the broken curve shows the Born approximation for comparison. 

obtained with (2.5) are very small except for Ef<< imv2 (where also the inelastic effects 
become more important) and for small angles 13, =s 10". At Of = 0 the peaking approxi- 
mation overestimates the cross section by a factor of two. 

5. Comparison with experiment and discussion 

Recently detailed experiments have been performed on projectile electron emission in 
collisions of H with Ar at 0.5 MeV. Duncan and Menendez (1979) measured the 
angular distribution of the emitted electrons and found a strong rise in the backward 
direction which they tried to explain with the elastic scattering model. Figure 7 shows 
their results together with our calculation. Although our theory reproduces the 
qualitative features there exist deviations. There is no great difference between the 
electron impact approximation and the elastic scattering model in the angular dis- 
tribution since it is in both cases determined by the electron-target interaction. Actually 
part of the deviations between the two theories may result from a different evaluation of 
the elastic electron scattering cross section. The discrepancies between theory and 
experiment canncjt be explained with inaccuracies in calculating the electron scattering 
cross section or with a slowing down of the projectile electron before scattering. 
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Figure 7. Differential cross section for electron loss 
in (H, Ar)  collisions at 0.5 MeV as a function of 
emission angle 8,. The broken curve is a calculation 
using the elastic electron-target scattering cross 
section, the full curve includes inelastic effects. The 
data as well as the results from the elastic scattering 
model (A) are from Duncan et al (1979). 

The experimental energy distribution of the emitted electrons at fixed angle is 
compared with (and normalised to) the theory in figure 4, and good agreement is found. 
The peak energy as a function of angle is compared with the theory in figure 5 .  While 
this dependence cannot be explained by the elastic scattering model which yields a peak 
at gmv for all angles, the electron impact approximation is able to reproduce the 
experimental trend. Unfortunately there exist no data points for intermediate angles to 
test the theoretical predictions. 

One should remark that the electrons ejected around zero degrees (Of< 3") result 
from a different process which dominates the charge transfer to the target continuum at 
O f = O  (Duncan and Menendez 1977, 1979). Even in highly asymmetric systems as 
considered here the electron can end up in an eigenstate of the projectile, or an outer 
target electron may be captured into a continuum projectile state. If the relative 
velocity zlf between electron and projectile is very small, the probability for emission 
into this final state is proportional to the normalisation constant 2n-Zle2/(hvf) of the 
Coulomb wave. The transformation to the laboratoryframe leads to a divergence given 
by lkf-mu/hl-' (Drepper and Briggs 1976), such that this contribution will be 
important for any system. The energy distribution of these electrons is peaked at ;mu2 
and is very narrow. Actually, the shape of the experimental energy distribution at 
Of = 0.4" with a width much smaller than the one calculated from the electron impact 
approximation, can be reproduced just by this normalisation factor. The magnitude of 
this contribution to the electron loss cross section decreases rapidly with angle while the 
width increases such that it becomes negligible for all angles larger than a few degrees. 

To conclude, we have calculated the double-differential cross section for electron 
loss from light projectiles in asymmetric collisions. By using the electron impact 

1 2  
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approximation we showed that the angular distribution of the emitted electrons is 
closely related to the angular distribution of electrons elastically scattered from the 
target with an energy around :mu2. We demonstrated that it is important to go beyond 
the Born approximation in the evaluation of the electron-target interaction when 
calculating the angular distribution as well as the peak position in the energy dis- 
tribution of the emitted electrons, as long as $mu2 does not exceed the energy of the 
electronic excitations in the target. We find qualitative agreement with experiment 
although the details in the angular distribution cannot be reproduced. Further 
experimental investigations would help to clarify whether these deviations are acciden- 
tal or whether they are due to other physical processes. 
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