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Abstract. The impact parameter dependence of the capture of a target L-subshell electron 
by a light projectile is calculated within the semiclassical impulse approximation (SCIA). 
The anisotropy of the resulting target 2p vacancies is strongly dependent on impact 
parameter and projectile energy. As an example, (p, Ar)  and (p, Ne) collisions are studied 
and the capture cross sections are compared with experimental data. 

1. Introduction 

Inner-shell electron capture by fast projectiles is a field of current interest in atomic 
physics. The study of charge transfer has been extended recently to cases with a large 
asymmetry between the nuclear charges Z1 and Zz of the collision partners. For very 
high collision energies, the total capture cross section is dominated by the capture from 
the target K-shell, and a considerable number of experiments have been performed on 
total cross sections as well as on impact parameter ( b )  distributions (Macdonald et a1 
1974, Cocke et a1 1976, Radbro et a1 1979, Horsdal Pedersen et a1 1979). For collision 
velocities o below the electronic orbiting velocity of the target K shell, capture from 
higher shells becomes increasingly important. The first measurements were carried out 
on the L-shell capture cross section (Rodbro etal  1979, Horsdal Pedersen and Loftager 
1981), as well as to some extent on the L- and M-subshell capture cross sections, by 
studying the resulting charge state distribution of the target atom (Horsdal Pedersen 
and Larsen 1979). 

Theoretical investigations have mostly been limited to the transfer of K-shell 
electrons in light targets (Mapleton 1972). The transfer of electrons from higher shells 
of heavy targets has only been calculated within the Brinkman-Kramers theory (e.g. 
Nikolaev 1967), and recently also using a two-state approach (Lin and Tunnel1 1979), 
but the validity of these theories is questionable especially at high collision energies. 
There also exists a second-order Born calculation for capture from higher shells, but 
only in the limit of very fast collisions (Lapicki and Losonsky 1977). 

A theory which should be valid not only for fast collisions, but also for slow, 
asymmetric ones, is the impulse approximation (McDowell and Coleman 1970), 
formulated in its semiclassical version by Briggs (1977). It is a first-order theory in the 
(weak) projectile field, while the (strong) target field is included to all orders by 
introducing a set of intermediate target continuum eigenstates $:, such that charge 
transfer can be described as ionisation to a high-lying state with a subsequent capture by 
the projectile. Stimulated by the success of this theory for capture from the K shell 
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(Jakubassa-Amundsen and Amundsen 1980) it is extended in this paper to the capture 
of L-shell electrons. Section 2 contains a derivation of the capture probabilities, and in 
§ 3 total cross sections and zero impact-parameter capture probabilities are evaluated 
in the case of proton-argon and proton-neon collisions, respectively, and compared 
with experiment. The impact parameter distribution of the subshell capture prob- 
abilities is calculated in § 4, and the anisotropy of the resulting target vacancies is 
deduced. Concluding remarks follow (8 5). Atomic units (t i  = m = e = 1) are used 
throughout this paper unless otherwise indicated. 

2. SCIA for capture from the L shell 

In the semiclassical impulse approximation the transfer amplitude from an initial target 
state (CIT to a projectile bound state $7 is given by 

where Vp is the projectile field and (k) is a plane wave with momentum k. In this 
notation, the wavefunctions are time dependent and refer to the target rest frame. 
When the internuclear motion is described by a straight-line path, R = b +ut, (2.1) can 
be cast into the form (Jakubassa-Aniundsen and Amundsen 1980) 

There, use has been made of the Fourier representation of Vp and of the change of 
variables 4 0  = k -s. pfP is the Fourier transform of the final state (in the projectile rest 
frame) and AE = EfP -ET is the energy difference between final and initial electronic 
state. The ionisation matrix element in (2.2) can be calculated analytically for any initial 
state if hydrogenic wavefunctions are used, as it can be expressed in terms of derivatives 
of the integral (McDowell and Coleman 1970, p 364) 

I = d r  exp(-ik * r)lFl(iv,  1, i(kr + k - r ) )  exp(is r )  exp(-Zr) (2.3) 

with respect to Z or (and) the transferred momentum s (for fixed final momentum k). 
IFl is a confluent hypergeometric function and 7 = &/k;  if Z = 2 2 ,  I is proportional to 
the 1s ionisation matrix element. Therefore it is convenient to introduce spherical 
components s+, s- and sz (with s* = 2-1'2s kin 6 , "  exp( f ips)) where the z direction is 
chosen along U, such that 

s * r = s+r- + s-r+ + s,z. (2.4) 
For a 2p, m initial state, for example, one needs the derivatives dI/ds,(for m = 0) and 
dI/ds, (for m = *l). The matrix element follows as 

($io+,/ exp(is * r ) l $ L ~  

I 
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c1= (m2+ m - 1)/(27T) k = (q; +s2 + 2qos cos 8s,qo)1/2 

s 2  - ( k  +iZ2/2)’ 
(2 + iq)  + (2 -iq) 

2 2 4  + q; 

2:/4 + q;  M Z  = iq(1 - iq)  + (1 + i77)(2 + iq )  
s2 - ( k  + iZ2/2)’ (2.5) 

with A = z for m = 0 and i for m = *l ,  and r denoting the gamma function. 
It is further possible, as for a 1s initial state, to evaluate the intergrals over the angles 

(p,, and cps in (2.2) analytically (as we consider a 1s final state). For the 2s initial state, no 
additional dependence on these angles is introduced by the ionisation matrix element. 
For the 2p, m = 0 state, the additional dependence on cp, enters through 

s, = s (cos cos a,, + sin a,,,, sin a,, cos cps) 

and the integration over cp, can easily be done. In order to extract the cp dependence of 
the matrix element (2.5) in the case of a 2p, m = i l  state, we write 

Mlqo+ - M2sI = 2-l” exp( f icp,,){Mlqo sin a,, -Mzs sin a,, exp[fi(cp, - cp,,)]} (2.6) 

and express cos(cps - qq0) by means of the addition theorem: 

cos as,,, - cos a,, cos a,,, 
cos(cps - cp,,) = sin a,, sin 6,” (2.7) 

Inserting this into the last term of (2.6) gives the simple rational expression 

sin 6,, exp[*i(cp, - cp,,)l 
= cos 1 9 , ~ ~ ~  sin a,, - cos 79,, sin 6,,, cos cps * i sin 8,v,40 sin cps (2.8) 

which allows an analytical evaluation of the cp integrals. While the contribution of the 
last term in (2.8) vanishes when integrated over cps, which leads to the same absolute 
value of the transition amplitude for m = +l and -1, the contribution of the second 
term in (2.8) is proportional to 

CY =z: +q;+v2+s2-2qov cosaqo+2q”sx-2vscosasox 

p = -2vs sin aqo(l (2.9) 

with x = cos 4,,,. The integral over cpso yields the Bessel function .TI due to the factor 
exp(*icp,,) in (2.6). Thus the transition amplitude follows as 

a f i ( m  = Q) = - - ( z ~ z ~ ) ~ / ~  
25/2 m m 

dqo 40 Jo(q0b sin a,,)/ ds 
T V  I,mm 0 

1 

x I-, dxMo{MlcrqO cos I ~ ~ ~ - M ~ S [ C Y X  cos S,,--P(l -x2)1/2 sin S,,]} 
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2(2:/4+qi) ++iZ2k(2 +iT)2  

(2.10b) 

The three integrals have to be evaluated numerically. It is straightforward to show that 
for an arbitrary initial state the transition amplitude can be reduced to an expression of 
the type (2.10), which is, however, rather lengthy for the higher shells. To prove this, 
one can make use of the recurrence relations of the Legendre polynomials and follow 
the lines of the appendix of Jakubassa-Amundsen and Amundsen (1980). 

From (2.10), the total cross section 

(2.11) 

can easily be calculated by using the orthogonality of the Bessel functions 

1 

40 
Iom b dbJA(qob sin a,,)Ji(qbb sin S&)=-S(qo-qb). (2.12) 

Ni is the number of initial subshell electrons. As the transition probabilities are very 
small, the summation over the initial electronic states is not in conflict with the Pauli 
principle for the capture into the projectile K shell. 

3. Numerical results and comparison with the BK theory and experiment 

We have evaluated the capture cross section from the L subshells into the K shell by 
means of (2.11) with (2.10). Hydrogenic wavefunctions with Slater screening (Z2- 
4.15) and experimental binding energies were used. Figure 1 shows the cross section for 
the capture of Ar 2p electrons by protons as a function of collision energy. In the SCIA 
theory, the cross section has a maximum at an energy which is roughly determined by 
the resonance condition AE = i u 2  where the lower integration limit qmin in (2.10a) 
becomes zero. This follows from the behaviour of the ionisation matrix element (2.5) 
which is a strongly decreasing function of qo such that the transition amplitude becomes 
smaller when qmin increases. Thereby one should recall that from a physical point of 
view the transition probability is largest when the momentum transferred to the 
electron, qEC= (E: +fs2-E')/v, has its minimum value which is also found at 
PE = +u2 .  As in the case of capture from the K shell, it is qEC that determines the shape 
of the transition probability, leading to a smooth dependence on energy. 
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Figure 1. Cross section for electron capture from the 2p subshells of Ar in collisions with 
protons as a function of projectile energy E. The full curves denote SCIA calculations, the 
broken curves are Brinkman-Kramers results. 

Figure 1 also shows the results of the Brinkman-Kramers (BK) theory which are 
obtained when 1,4;f,+~ in (2.2) is replaced by a plane wave. The first-order theory greatly 
overestimates the cross section for low collision energies. Moreover, in the case of a 
2p, m = 0 initial state, the BK cross section has a zero at the resonance energy 
(E  = 0.43 MeV).This is due to the fact that the ionisation matrix element becomes 
independent of the m0mentum.s in the BK approximation, and is just given by the 
Fourier transform Cp'(q0) of the target wavefunction which (for 2p, m = 0) is propor- 
tional to the vanishing z component of momentum, qoz = -AE/v ++U. The (unphysical) 
zero thus results from the lack of an additional coupling (as included in a higher-order 
theory) to a collision partner with which the momentum can be shared. The difference 
in the energy distribution of the subshell capture cross sections between the BK and the 
SCIA approximation indicates that the empirical BK scaling factor 5 which is derived 
from the high-energy cross section ratio between the second Born approximation 
(which agrees for very high energies with the impulse approximation) and the BK theory 
(Lapicki and Losonsky 1977) no longer gives a correct description of the higher-order 
effects at lower energies. As far as the total L capture cross section is concerned, it is 
overestimated in the BK theory by a factor much greater than three in the resonance 
region. On the other hand, a comparison with the few existing L-shell data (figures 2-4) 
cannot discriminate between the two theories. 

Figure 2 shows the L-subshell capture cross sections and a comparison of the total 
cross sections for K and L capture with experiment for (p, Ar) collisions. In the case of L 
capture there are much larger discrepancies between the SCIA and the experimental 
data than for K capture. The deviations can only partly be explained by capture into 
higher projectile states (which are included in the data). A calculation of the capture 
from the 2p, m = O  state into the 2p, m = 0 projectile state along the lines of the 
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Figure 2. Cross section for electron capture from the 
K and L shell of Ar in collisions with protons as a 
function of projectile energy E. The full curves 
denote the capture from the L subshells into the 1s 
state, as well as the K and the total L capture cross 
section into the 1s state. The dotted curve is the 
capture from the 2p, m = 0 into the 2p, m = 0 state, 
and the chain curve is the total L capture including 
the contribution from excited final states. The 
broken curves are the Brinkman-Kramers results for 
capture from the K and L shell. The experimental 
data are from Rerdbro et al (1979; m) and from 
Macdonald et a1 (1974; 0). 

preceding section shows that at lower energies the capture into excited states can no 
longer be neglected (figure 2). This indicates the importance of wavefunction-matching 
effects between initial and final states in slow collisions. As it is very time consuming to 
include all excited states in the calculation, we estimated their contribution by assuming 
the cross sections for capture into the three L subshells to be roughly equal, as well as an 
unchanged relative importance of the initial subshells. This procedure leads to the chain 
curve in figure 2, producing a shift of the maximum to lower energies, in better 
agreement with experiment. Another source of discrepancy between theory and 
experiment is probably the use of hydrogenic wavefunctions in the calculations. It has 
been shown in the case of L-shell ionisation of Ar by protons that more accurate 
wavefunctions may drastically change the ionisation probability (Aashamar and 
Amundsen 1981), and this correction is much larger than for K-shell ionisation. As the 
ionisation matrix element enters into the SCIA theory of charge exchange, similar effects 
are also expected there. On the other hand, there may be an uncertainty in the 
experimental results as they neglect the difference in the angular distribution of Auger 
electrons resulting from the decay of the target L-shell vacancies either produced in a 
capture process or in a direct ionisation process (Rprdbro et al 1979). 

In figure 3 the subshell capture probabilities (into the 1s state) at zero impact 
parameter are given in the case of (p, Ne) collisions, and the total capture probability 
from Ne is compared with recently performed experiments by Horsdal Pedersen and 
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Figure 3. Capture probability at zero impact Figure 4. Energy dependence of charge state dis- 
parameter from the K and L shell of Ne in collisions tributions of Ar ions resulting from electron capture 
with protons as a function of projectile energy E. The by protons (A, 4 = 2; B, 4 = 3; C, 4 = 4). The full 
chain curves denote the capture from the 2p and 2s curves denote SCIA calculations, the broken curves 
subshells, and the full curves are the capture prob- are the Brinkman-Kramers results. The experi- 
ability (into the 1s state) from the K shell as well as mental data are from Horsdal Pedersen and Larsen 
the sum from K and L shell. The broken curves are (1979). 
the corresponding Brinkman-Kramers results. 
Experimental data for the K shell (A) and for total 
capture (*) are from Horsdal Pedersen and Loftager 
(1981). 

Loftager (1981). At the lower collision energies, the main contribution comes from the 
2s and the 2p, m = 0 initial states (the.2p, m = 1 contribution is zero at b = 0 as it 
contains the Bessel function J1), while for energies E 3 1 MeV the capture from the K 
shell becomes important because only the 1s state provides the high components of the 
momentum distribution that are needed for the transition. In the Ne case, the SCIA 

reproduces the L-shell capture data better than for Ar. This is probably due to the fact 
that the ratio of the electronic L-shell orbiting velocity to U is much smaller than for Ar, 
which reduces the influence of wavefunction effects. 

Figure 4 shows the charge state distributions of Ar ions formed in electron capture 
by protons, i.e. the cross section for detecting an Ar ion with atomic charge q 
normalised to the total capture cross section. It can be calculated from the ratio of the 
2s and 2p subshell capture cross sections, using the fact that the probability, Nq, of 
detecting the charge state q if one L or M vacancy is created during the collision, is 
known experimentally (Horsdal Pedersen and Larsen 1979), and the probability for 
M-shell capture can also be taken from experiment (K-shell capture is negligible, see 
figure 2). The probability for observing charge q is 

c(q)lc+ = N q ( 2 s ) d u  +Nq(2pb2p/c +Nq(M)ude (3.1) 
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with uzp/u = (1 - uM/u)/(u2s/u2p+ 1) and u2Ju = (u2s/u2p)u~p/u where we have used 
the fact that the sum of the normalised capture cross seotions from L and M shells equals 
one, and u = Xq u(q). There is good agreement with experiment for the cases q = 2 and 
3,  while for q = 4 only the relative dependence on energy can be reproduced, indicating 
that the ratio u2s/u2p is somewhat too low. Again, the agreement may be improved by 
using more accurate wavefunctions, as the influence of the other target electrons on the 
2p state is much stronger than on the 2s state. 

4. Impact parameter dependence and anisotropy 

More detailed tests of collision theories can be obtained by studying the impact 
parameter distribution of the transfer probability, as well as the anisotropy of the 
resulting target subshell vacancies. This anisotropy can be expressed by means of 
alignment and orientation parameters which on one hand are related to the subshell 
transition amplitudes and cross sections (Fano and Macek 1973) and on the other hand 
are directly accessible to experiment as they determine the polarisation of light emitted 
during the subsequent decay of the target vacancies, as well as the anisotrop? and spin 
polarisation of Auger electrons which are an alternative decay mode (Cleff and 
Mehlhorn 1974). The alignment parameter A?' is given by 

I -1 

A?' = [ 3 m 2 -  1(1+ l ) ]Pm(l ( l  + 1) 1 Pm) 
m m 

= 1 - Pm = o  for 1 = 1 - - 
Pm = 0 + P/m 1 = 1 

(4.1) 

where Pm = N t ] a p i / 2  is the subshell capture probability. For an equal population of the 
magnetic sublevels after the charge transfer, A?' vanishes which would lead to an 
isotropic emission of Auger electrons. 

In our test case p-Ar we found a great difference in the L-subshell transition 
probabilities, and thus a large alignment. Figure 5 shows the impact parameter 
dependence of the capture probabilities, and in figure 6 the alignment as a function of 

b l f m )  

Figure 5. Transition probability for electron capture from the L subshells of Ar  in collisions 
with protons as a function of impact parameter at collision energies of ( a )  0.3 MeV and ( b )  
1 MeV. 
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Figure 6 .  Alignment parameter A?' characterising the anisotropy of the Ar 2p subshell 
vacancies resulting from electron capture by protons, ( a )  as a function of impact parameter 
for collision energies: A, 0.3 MeV; B, 1 MeV; C, 2 MeV. ( b )  for fixed impact parameter: D, 
3.06; E, 2.14; F, 1.22 (in units lo4 fm) as a function of E. 

impact parameter as well as collision energy is given. These calculations are performed 
for the case of a final Is state, but for capture into the 2p, m = 0 state we found a very 
similar b dependence (for a 2p, m = 0 initial state) indicating that there may be very 
little change in anisotropy if the excited projectile states are included. The non- 
monotonous impact parameter dependence of the 2s capture probability is correlated 
to the node in the 2s wavefunction, and the second maximum in the b distribution 
becomes very pronounced when the momentum transfer ~ E C  is close to its minimum 
value ( E  = 0.56 MeV). At lower or higher energies the structure disappears, which is 
related to the fact that q& should be larger than the node radius 2 /Z2 to make its 
influence visible. For the 2p case, the impact parameter dependence can be explained 
qualitatively by recalling that the 2p wavefunction in coordinate space as well as in 
momentum space extends parallel to the beam axis (for m = 0) or perpendicular to it 
(for / m (  = 1). For small b, one thus has mainly capture from the m = 0 state (yielding a 
large, negative alignment). For larger b the Iml= 1 contribution becomes equally 
important (A?' increases), as the overlap between the projectile state and the target 
Im/ = 1 state increases (to decrease again for large b) .  To account for the energy 
dependence of A?', one should note that for small energies the momentum matching is 
important, leading to the behaviour indicated above, while for high collision energies 
larger momenta can be transferred, which means an increased probability for capture 
from \ml= 1 states for small b and from m = 0 states for large b. 

5. Conclusion 

We have calculated the charge transfer probability from the target L subshells in the 
semiclassical impulse approximation, but without any further approximations. While 
for collision velocities near or above the electronic L-shell orbiting velocity the capture 
into the projectile ground state dominates (for a light-heavy collision system), capture 
into the projectile L shell becomes important at lower velocities. A comparison of the 
total cross section for the (p, Ar) system as well as the zero impact parameter capture 
probability in (p, Ne) collisions with experimental data shows good agreement in the 
energy dependence although the absolute values are somewhat too low. This may be 
due to the insufficiency of hydrogenic wavefunctions for the higher shells which are 
much more affected by deviations from the Coulomb field than the K shell. In the 
impact parameter dependence of the capture probabilities we found large differences 
between the various subshells, which will result in an anisotropic emission of Auger 
electrons in the subsequent decay of the target vacancies. Experimental data on the 
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impact parameter distribution of the subshell transfer probabilities or on the anisotropy 
of Auger electrons would be highly desirable to obtain a final answer concerning the 
applicability of the SCIA for L-shell capture in asymmetric systems. 
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