
J. Phys. B: At. Mol. Phys. 18 (1985) 757-774. Printed in Great Britain 

Electron capture across a nuclear resonance in the strong 
potential Born approximation? 

D H Jakubassa-Amundsent and P A AmundsenQ 
$ Physik-Department, Technische Universitat Munchen, 8046 Garching, Germany 
P NORDITA, Blegdamsvej 17, 21 Copenhagen 0,  Denmark 

Received 16 May 1984, in final form 20 September 1984 

Abstract. The strong potential Born theory for charge transfer in fast, asymmetric ion-atom 
collisions has been extended to allow for nuclear resonant scattering using distorted nuclear 
waves. In the absence of a nuclear resonance, the semiclassical result is recovered. A large 
variation in the capture probability is found when the projectile energy passes through the 
resonance. As examples, we present results for the capture from the target K shell in the 
collisions of protons with 22Ne and 28Si, as well as for capture from the K and L shells of 
58Ni in collisions with protons, and of I6O, "Ne and 28Si by He2+ impact. 

1. Introduction 

Over the last few years the old problem of finding a good perturbation theory for 
electronic charge transfer in atomic collisions, corresponding to the Born approximation 
for excitation and ionisation, has finally found an acceptable solution with the emer- 
gence of the strong potential Born approximation (SPB, Macek and Shakeshaft 1980, 
Jakubassa-Amundsen and Amundsen 1980, 198 1, Macek and Taulbjerg 198 1, Macek 
and Alston 1982, Jakubassa-Amundsen 1984). The SPB, or various approximations to 
it, reproduces experimental results very well for K capture in asymmetric ion-atom 
collisions both for total cross sections and for the impact parameter dependence 
(Horsdal Pedersen et a1 1982a, b, 1983), and we have recently shown that the same is 
true for capture at large projectile scattering angles, using a semiclassical sudden 
approximation to the SPB (Amundsen and Jakubassa-Amundsen 1984a). 

During roughly the same period rapid development has also taken place in the 
new field of measuring interference effects between atomic ionisation and nuclear 
scattering (Blair et a1 1978, Chemin et al 1981, 1982, 1983, Meyerhof et a1 1982), and 
a good theoretical basis for interpreting these experiments has been laid (Blair and 
Anholt 1982, Feagin and Kocbach 1981, McVoy and Weidenmuller 1982). These kinds 
of experiments are interesting because they probe the time development of the atomic 
scattering amplitude during the collision process, and also because of the information 
they can give on nuclear resonances, some of which are not readily accessible by other 
methods (Anholt er a1 1982). For the same reason, the effect of nuclear resonant 
scattering on the capture process is an interesting subject too, and we have recently 
pointed out that the SPB predicts much larger interference effects for capture than those 
which have been measured for ionisation (Amundsen and Jakubassa-Amundsen 1984b). 
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An important observation, originally due to Blair (cf Blair et a1 1978), is that 
although the interference effects under consideration have a perfectly natural and valid 
classical interpretation as arising from a time delay in the nuclear scattering process 
(cf Ciocchetti and Molinari 1965), the actual experimental situation is more adequately 
treated by a quantum mechanical description of the scattering process. Since the 
observation of time-delay effects will only be possible at large scattering angles, the 
quantal plane-wave SPB theory (Macek and Shakeshaft 1980, Macek and Alston 1982) 
has to be extended to include distorted internuclear wavefunctions. However, as the 
region where the nuclear scattering takes place is small on an atomic scale, knowledge 
of the asymptotic nuclear functions is sufficient. This leads to a considerable simplifica- 
tion of the calculations. 

In applying the theory of electron capture to large angle scattering with a nuclear 
time delay, there are two extra complications in addition to the use of distorted 
internuclear waves. One is the proper inclusion of recoil, the effect of which on an 
electron bound to the projectile (projectile recoil) is so large that a perturbative 
treatment is invalid (Kocbach and Briggs 1984, Amundsen and Jakubassa-Amundsen 
1984a), and which will also cause target excitations (target recoil) which can be handled 
perturbatively. The other problem is the inclusion of the so-called sticking term (Blair 
and Anholt 1982; Feagin and Kocbach 1981 call this term the 'nuclear volume term'), 
which describes the contribution to the ionisation amplitude from the period when 
projectile and target form a compound nucleus. A proper derivation of the SPB capture 
amplitude including these two effects by direct analogy with the semiclassical treatment, 
generalising the Macek-Alston formulation, turns out to be rather involved. Instead, 
we start with the Faddeev (1961) equations for the full three-body problem, in which 
case all the pertinent terms emerge in an orderly fashion. 

In this paper we give a detailed derivation and extended discussion of the results 
reported previously (Amundsen and Jakubassa-Amundsen 1984b). In § 2 the quantal 
version of the SPB theory is formulated, and in § 3 the transfer amplitude is evaluated 
in the case of capture from the target K shell. We thereby treat the simplest case of 
an isolated nuclear resonance (§  4). In § 5 we present a discussion of our numerical 
results obtained for K- and L-shell capture from 0, Ne, Si and Ni by protons and 
alpha particles. A short conclusion follows (§  6). Atomic units ( h  = m = e = 1)  are 
used unless otherwise indicated. 

2. Quantum mechanical description of SPB 

We shall consider the capture of an electron of a heavy target atom (charge 2,) by a 
light projectile (charge ZP). In the independent electron model the Hamiltonian for 
the collision system is 

H =  TN+ V,(R)+ T,+ vT(rT)+ Vp(rp) (2.1) 

where HN = T, + V ,  describes the internuclear motion, while T,, V, and V, are the 
kinetic energy and potential in the target and projectile field, respectively, of the 
electron under consideration. The coordinates R, r, and rp are displayed in figure 1. 
The exact transition amplitude for an inelastic process can be written in the form (see 
Taylor 1972, ch 18) 

w,=(4ilvP+ VNI4J (2.2) 



Electron capture across a nuclear resonance 759 
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Figure 1. Coordinate system for a three-body problem consisting of projectile (PI, target 
(T) and electron (e). The centres of mass of the projectile-electron and the target-electron 
systems are denoted by S,, and S,,, respectively. 

where c$~ is an eigenstate of TN + HT ( HT = T, + VT), Vp + VN is the scattering potential 
of the initial channel and $7 is the exact scattering solution to the three-body problem 
fulfilling the boundary condition that the electron is asymptotically in a bound projectile 
state while the projectile is in a quasi-elastic scattering state. 

For asymmetric collision systems, Zp<c ZT, one may expand $7 in terms of the 
weak field Vp. Using the Faddeev equations (Faddeev 1961) for the representation of 
$7 the zero- and first-order approximations in Vp are given by 

where the Green’s function is defined by G& = ( E  - HN - HT- i&)-’ and E is the total 
energy of the collision system. The final-state wavefunction & is a solution which 
includes the full internuclear Hamiltonian (eigenstate to HN+ Hp; Hp= T,+ Vp). As 
9, describes a state with an electron bound to the projectile at t + m ,  the effect of 
projectile recoil is thus already contained in 4,- (see below). 

When (2.3) is inserted into the transition amplitude (2.2) and all terms of equal 
order in Vp are collected, a formula analogous to the usual two-potential formula (see 
e.g. Taylor 1972) is obtained 

where Qi is an exact solution to HN+ HT. The first term WF’ is of zero order in Vp 
and describes the electron capture through the internuclear potential. It is the quantum 
mechanical version of the target recoil amplitude (cf Feagin 1982 for the corresponding 
term in the case of ionisation). The first-order term W$’ is the Coulomb capture 
amplitude. In the limit of V, = 0, this term agrees with the plane-wave SPB approxima- 
tion of Macek and co-workers (1980, 1982), while Wg’ vanishes. We point out that 
in formula (2.4) both the target field and the internuclear potential are retained to all 
orders. Thus it can be applied to asymmetric collision systems of medium or high 
projectile velocities. 

For the evaluation of (2.4) it is crucial, as in any quantal treatment of three-body 
problems, to use the exact electronic and nuclear coordinates of the problem which 
for rearrangement collisions are different in the entrance and exit channel (cf figure 1): 

R, = R +  a r p =  R + a ( r T -  R )  
m 

m + M ,  
cy=- 
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where m, Mp and MT are the mass of the electron, the projectile and the target nucleus, 
respectively. They give rise to important translation factors. 

= ( 1  + GATVN)+, we insert a complete set of eigenstates of 
HT into the defining equation and use (2.5): 

To find solutions for 

91 ( l  + c exp(iK~ * R)cp~(rT)(cp~lexp(-iPK, * rT)lPf) 
n 

where we have used the defining equation for the internuclear off-shell wavefunction 
iKz, whose energy, w,, = E - E:, differs from its on-shell value by an amount E:- ET 
determined by the strong potential. Here, ET and E: are the electronic energies in 
the initial and intermediate target states, respectively. However, if the collision is not 
more violent than that the matrix element (cpilexp(-iPK, rT)/cpT) can be treated in 
the dipole approximation, the contributions to (2.6) from n # i will be proportional 
to Mp/’MT and therefore of the order of V,. When 9, is inserted into the transition 
amplitude (2.4), these contributions will be multiplied by another power of V,. It 
would thus be formally consistent to drop these terms in a lowest-order SPB approxima- 
tion. There is, however, no technical advantage in dropping these contributions, 
provided we approximate the off-shell wavefunctions iK,( w,,, R )  by the corresponding 
on-shell wavefunction. The error this is likely to introduce will again be multiplied 
by VpMpIMT and thus is of magnitude ( V,)’. 

For the function I+!Ifi an expression similar to (2.6) holds, with the target states cpz 
replaced by projectile states. In this case, the nuclear scattering state is off-shell by 
an amount the scale of which is set by the weak potential. However, here and in the 
following we shall need the explicit assumption that the nuclear scattering amplitudes 
f ( K ,  6) vary slowly on the energy scale of the weak potential, i.e. we shall assume 

(2.7) 

Thus, nuclear off-shell effects caused by the weak potential will consistently be neglected 
in the following. This is possible because, as will be discussed in the next section, we 
shall really be interested in the nuclear wavefunctions in their asymptotic region where, 
by definition, the normalisation of the off-shell states is the same as for on-shell states 
even in the presence of the internuclear Coulomb potential. With these remarks in 
mind, one can approximate the internuclear states in (2.6)-and its analogue for cClr-by 
on-shell wavefunctions (eigenstates of HN, defined with respect to the heavy-particle 
reduced mass p) .  Using the completeness relation one then finds 

= ( 1  + GICNTVN)+r = C D T ( ~ T ) X ~ ) ( R )  exp(-iPK, rT) 
(2.8) 

I+!I~ = (1 + G N P v ~ ~ ~  = cpfP(r , )x&)(~)  exp(iaKf. rp). 

Here GNP = ( E  - H N  - Hp- i&)-’, cpT and cpfp are the electronic initial and final bound 
states, respectively, and xK, and ,yKI are internuclear states of momentum K, and Kf 
A derivation of the result (2.8) with the use of on-shell internuclear states has recently 
been given by VCgh (1983). 

The presence of the translation factors exp(icuKf. rp) and exp(-iPK, - rT) in (2.8) 
is related to the recoil which acts on the electron. The first factor is responsible for 
the projectile recoil effect, i.e. the fact that an electron which is bound to the projectile 
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prior to the nuclear scattering, may have a large probability of changing its state when 
the projectile is scattered. This projectile recoil is proportional to the target mass and 
therefore a nonperturbative effect as MT >> Mp. 

With the help of (2.8) the function (CIF’- can be evaluated by inserting a complete 
set of eigenfunctions to H,+ T, into (2.3) 

where the intermediate free electronic state 14) is chosen to be in the target frame of 
reference. As demonstrated in appendix 1, the application of 1 + G&VT leads to an 
electronic off-shell state $q(w), defined by 

Insertion into (2.4) then gives the result 

x(xk’ exp(-iPK. ~ T ) I / J ~ ( w ) (  VNlqoT exp(iKi * R )  exp(-iPKi * rT)) 
(2.11) 

These formulae are the starting point for further evaluations. Both amplitudes W$” 
and W p )  are expressed as a product of an excitation matrix element (resulting from 
the action of V, and V,, respectively) and an overlap term, which describes the electron 
capture after excitation. 

3. Evaluation of the transfer amplitude 

An important simplification in the quantum mechanical treatment of atomic processes 
arises from the different length scales of the nuclear and the atomic wavefunctions. 
In general, the electronic potentials and functions vary slowly over an internuclear 
distance R 6 R N  where the nuclear wavefunctions deviate strongly from their 
asymptotic form. Thus it is convenient to decompose the nuclear states according to 

where the asymptotic states ,yg have been expressed in terms of the scattering amplitude 
f which depends on K and the angle 8 K , R  between K and R. The logarithmic phase 
from the Coulomb part of V ,  can be shown to be relatively unimportant (Rosenberg 
1983) and has been neglected in the scattered wave. 
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In the following we shall need matrix elements of operators A(r ,  R )  peaked at 
r = R. These matrix elements will get their main contribution from regions where x 
may be replaced by xas. However, for a resonance xi” will also be important, but since 
the elect5onic wavefunctions are slowly varying in the region where xi” # 0, we can 
replace A( r, R )  by A( r, 0) in all terms involving xi”. Thus, using the orthogonality of 
the nuclear states for different energies and the definition of the S matrix (Taylor 
1972), all matrix elements can be expressed by the asymptotic nuclear functions alone: 

Here, S(K, K’) is the nuclear scattering matrix and EK = K2/2pi  the energy of the 
state xK. If, instead of (3.2), the matrix element is taken between two ingoing (or two 
outgoing) states, S(K, K’) has to be replaced by 6(K - K’). With the help of (3.2), the 
target recoil amplitude W$” and the Coulomb capture amplitude W g )  can be readily 
evaluated. 

3.1. Target recoil amplitude 

Let us first consider the excitation matrix element in the definition (2.1 1) of WF’. The 
electronic part, ($,(w)lexp(iP(K - K,)rT)lpT), may be approximated by expanding the 
transition operator up to first order, because P - m / M ,  is a small quantity (dipole 
approximation). As the off-shell state $ q ( ~ )  is not orthogonal to the initial state py, 
the zero-order term in the expansion does not vanish originally. However, with the 
usual choice of $,(U) as a renormalised Coulomb wave (‘Macek and Shakeshaft 1980) 

$,(U) = e x p ( - ~ 7 / 2 ) r ( l  -i77)(2q2)-’”(w - q2/2-is)‘”p;f 77 = Z,/q (3.3) 

only the first-order expansion term survives. It should be noted that the approximation 
(3.3) is only reasonable at short distances. Asymptotically, $,(U) and cp;f have the 
same normalisation. In the present case the momentum transfer q will typically be of 
the order of uf(the average electron velocity when it moves with the projectile), which 
will cut off the contributions to the matrix elements at distances larger than q - l =  U?’. 
Thus, this approximation is reasonable for intermediate and fast collisions ( U, b ZT), 
which is the region where nuclear resonances are likely to be found. 

The nuclear part of the excitation matrix element (xk’I V,lexp(iK, * R ) )  can be 
expressed by the scattering amplitude. As shown in appendix 2, we thus obtain 

(xk’ exp(-iPK. r T ) $ q ( w ) I  v,l~T exp(iK, + R )  exp(-iPK, rT)) 

The evaluation of the overlap term which enters into both WP’ and W&” in (2.1 1) is 
more involved. The electronic part simply yields the Fourier transform pFp( K )  of the 
final bound state 

-.L- J” dr, pj+‘( rT- R )  exp(iK * rT) = cp?p( K )  exp(iK * R )  K = q - aKf-  PK. 
(2T)3/2 

(3.5) 
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cor  the integration over R, the relation (3.2) has to be used, with the electronic operator 
A(R)-the electronic coordinate r is already integrated out-given by exp[i(q 7 PK)R]. 
When evaluating the sticking term, which arises from the terms involving A(r ,  0) in 
(3.2), a slight complication arises because exp(iK. R )  from equation (3.5) does not 
satisfy the criterion of being peaked at r = R, necessary to derive (3.2). However, we 
observe that from the conservation of the total energy E, 

(3.6) 

where ET and EfP are the energies of the initial and final electronic states, the kinetic 
energy (u2/2) of the transferred electron is contained in the final energy K:/2pf of 
the internuclear motion. Since the sticking term is a correction to the transfer amplitude, 
and exp(iK R )  inccrporates a further correction to this term, weAcan neglect it provided 
we replace Kf by Kf = Kf - crK, in all terms associated with A(r,  0). This procedure 
is in the same spirit as the neglect of the off-shell effects in the nuclear wavefunction. 

If the asymptotic wavefunctions are inserted from (3.1), the R integral can be 
carried out with the help of 

27r 
1 KR 

IomdR exp(iQR)= d ( Q ) + i P ( l / Q ) .  

exp(iK * R )  = -[exp(i KR) S2( d - f ) - exp( -iKR) S2( d + f )] R + W  

(3.7) 

In the first relation which is only valid for large R, f denotes the direction of K.  
During the evaluation of the matrix elements, all terms involving sums of nuclear 
momenta in the exponent (like exp[i(K + K’)R]) can be discarded because they 
describe the very unlikely process of the projectile backscattering on the electron. In 
the same spirit the (small) electronic momenta are only retained to first order 

(3.8) 
if differences of the (large) nuclear momenta are involved, but neglected otherwise. 
This leads to the following expression for the overlap term ( K ~  = q - PK) 

w =  (XK, ‘Pf exp[iQKf(r~-R)]/X(,-) exp(-iPK. rT)q) 

I K + K I  = K + K .  f 

(-1 p 

The terms which contain a product of scattering amplitudes, i.e. which are of the order 
of f2, correspond to a double nuclear scattering initiated by the electronic capture 
process. As the amplitude for large-angle deflection is small, these te‘rms can be 
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dropped. Similarly, when W is inserted into the expression for WK', only the (three- 
dimensional) &function term is needed because the recoil matrix element (3.4) is linear 
in f: 

From the time-reversal invariance of the scattering amplitude we have 

P'-" 8 K , - K ' )  =fT" 8 K , K  1. (3.10) 

In order to compare with the semiclassical result, we express the nuclear momenta in 
terms of the initial and final projectile velocities 

K =  I P t U ,  Kf = PPf  (3.1 1 )  

and discard small terms of the order of m /  Mp or m /  MT in the resulting expression. 
Moreover, as the starting formula (2.4) is the first-order expansion term of the transition 
amplitude in terms of the weak projectile field, it is consistent to neglect also the terms 
proportional to Mp/MT because MP/MTS Zp/ZT. In particular, K then reduces to 
q - up Thereby we have used that the target recoil term due to the proportionality to 
PK (cf equation (3.4)) is already of the order of Mp/MT. 

It is important, however, to neglect the above-mentioned terms only after any 
differences of nuclear momenta have been evaluated. With this in mind, the following 
relations can be found from the energy conservation (3.6): 

Pf = Pt + 1 
1 

PU,V 
U, - v f = - ( A E  + u2/2) 

(3.12) 

where A E  = E ; -  ET and vi = vf = U has been used when no differences are involved. 
The 6 function from the first term in (3.9) determines the intermediate momentum 
K = K,- K ,  = K f -  q, so that the off-shell energy from (2.10) becomes w = 
E T + A E  - v2/2+ qu, With this, the target recoil amplitude finally reduces to 

(3.13) 

As in the case of ionisation, this formula may be interpreted in terms of the 
causal development of the collision process. In the last term, the nuclear scattering 
amplitude occurs with the incoming momentum Ki, and thus the nuclear scattering 
takes place before the projectile has lost momentum to excite the electron. On the 
other hand, in the first term the nuclear scattering takes place with an intermediate 
momentum K = K, - q of the internuclear motion after excitation of the electron to 
the state $ , (U) .  However, since K f - q  # K, the capture should not be regarded as 
having taken place yet. Thus this term corresponds to the semiclassical amplitude for 
excitation before, but capture after, the nuclear scattering (Amundsen and Jakubassa- 
Amundsen 1984a). Similar interpretations can also be given to the Coulomb capture 
amplitude, evaluated below. Note that the projectile momentum space wavefunction 
(pfp occurs with the same argument, q - U, for both amplitudes. This is the manifestation 
of the projectile recoil effect (Kocbach and Briggs 1984, Amundsen and Jakubassa- 
Amundsen 1984a). 

Due to the presence of p;(q - U,), the values of q will have a narrow distribution 
around U, with a width of the order of 2,. The application of Briggs' peaking which 
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implies the replacement of q by U, is thus consistent with our perturbation approach 
in the small parameter Z,, and also with the use of the on-shell limit (3.3) for $,(w) 
and the condition (2.7). It has been applied to most of the SPB calculations reported 
so far (cf Macek and Alston 1982, Amundsen and Jakubassa-Amundsen 1984a). With 
this approximation, (3.13) reduces in the special case of capture from the target K 
shell into the projectile 1s state (with energy E;= -Z’,/2) to the simple form 

(3.14) 

where the scattering angle 6 is the angle between U, and uf The scattering energy E, 
is given by Ef= (K, - q)2/2pu, = E, - ( A E  + v2/2) (with E, = Kf/2p , ) .  Thus the energies 
of the intermediate and the final internuclear states differ only by O(2;) .  

3.2. Coulomb capture amplitude 

The second contribution to the transfer amplitude, Wgi, can be evaluated with the 
same techniques. If the Fourier representation is used for the projectile field V,= 
--Zp/1rT- RI, the excitation matrix element turns out to be 

M=((x!G’ exp(-iPK. rT) (CIq (W)IvPI (P iXK,  exp(-iPKi. r T ) )  
T (+I  

(3.15) 
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This has to be inserted, together with the expression (3.9) for the overlap term W, into 
the equation (2.1 1 )  for WX’. The result can be arranged in terms which are of different 
order in the scattering amplitude f :  The zero-order term which arises from the product 
of the three-dimensional 6 functions in W and M describes forward scattering and 
yields the main contribution to the total cross section, but can be neglected for 
large-angle scattering. Also, similarly as in the evaluation of the recoil amplitude, all 
terms quadratic in f can be discarded. The two contributions to the linear terms in f 
arise from either the 6 function of M (or W) together with the first-order terms in f 
of W (or M ) .  This corresponds to the possibility of capture (or excitation) before 
and after the nuclear scattering. The resulting expression may be decomposed as 

W$’= W;+ W:+Rf; (3.16) 

where W,; collects all terms which survive when no resonance is present 

r 

r 

(3.17) 

Here, the approximation (3.3) has been inserted for the off-shell state. As compared 
with the impulse approximation, where $ , ( w )  in (3.15) is replaced by cp;, the structure 
of this expression is much more complex due to the off-shell phase factor which induces 
a coupling of the electronic and nuclear motion. Physically, this is related to the causal 
development of the transfer process. 

All terms in (3.17) which are proportional to f + ’ ( K f - q ,  6) or f’+’(Ki- ur, 6) 
correspond to excitation before, but capture after, the nuclear scattering, while the 
terms containing f +’(KZ, 6) arise from both excitation and capture after the scattering. 
Such contributions were also present in the target recoil amplitude. However, the third 
kind of terms which are multiplied byft’(Kr, 6) are specific to W; and describe both 
excitation and capture before the nuclear interaction. It is these terms which have 
been influenced by the projectile recoil. 
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The term W: is the sticking term which arises from the excitation matrix element 
in the inner region R s RN: 

W:=T dq ( p F p ( q - u f )  e x p ( - q / 2 ) r ( l + i ~ )  
4~ 2pi Pi I 

W O  = A E  - v2/2 + * U? (3.18) 

It is proportional to the difference of the scattering amplitudes and is therefore only 
nonvanishing as long as f varies appreciably with energy. This is also true for the 
remainder Rfi  which collects all terms not yet considered: 

(3.19) 

The difference between the energy denominators of the terms in (3.19) is given by 
q - uf, i.e. is small of the order of 2,. Due to the mutual cancellations, the remainder 
is of higher order in ZP than Ws or W:, and therefore very small. When Briggs' 
peaking, q = U,, is applied, Rfi vanishes identically. 

With the peaking approximation, the sticking term can be evaluated in a way similar 
to that for the target recoil amplitude. As wO>O, the only contribution comes from 
the principal value term in (3.18). For capture of a target K electron into the 1s state 
of a hydrogen-like projectile, one finds 

(3.20) 

with the same definitions as given below (3.14). 

3.3. Comparison with the semiclassical formula 

In the absence of a resonance, or more precisely, if the nuclear scattering amplitude 
varies slowly on the energy scale of ET, so that f"( Ei, 6) =f+)( E,, a), it can be taken 
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outside all expressions as a common factor. In this case the sticking contribution W; 
vanishes and the target recoil becomes proportional to the corresponding semiclassical 
expression, with the proportionality constant --f+)( Ei, $ ? ) / ( 4 7 ~ ' ~ ~ ) .  The reduction of 
WJ to the semiclassical result involves an error of the order of 14 - url - Zp which 
occurs in the last term of (3.17). Additional terms of this order have already been 
neglected, since the SPB theory is a first-order expansion in Zp. Incidentally, Briggs' 
peaking approximation gives a strict proportionality of Ws;' with the semiclassical result 
(with the same constant as for WJfi"'). Thus the present quantal distorted-wave SPB 

reduces to the semiclassical theory in the zero impact parameter approximation, and 
the further evaluation of the transfer amplitude can be taken over from this case, as 
given by Amundsen and Jakubassa-Amundsen ( 1984a). In particular, the final form 
of WF is easily deduced from equations (3.7) and (3.1 1 )  of that work. 

Although explicit formulae have only been given for the capture from the target K 
shell, the evaluation of the capture amplitudes from higher shells is straigh Forward. 
When calculating the excitation matrix elements entering into (3.13) and (3.15) with 
the help of parametric differentiation of the ls, ionisation matrix element (Jakubassa- 
Amundsen 1981), the same integrals emerge as given in the appendix of Amundsen 
and Jakubassa-Amundsen ( 1984a), although the resulting formulae for the capture 
amplitudes are somewhat more lengthy than for K capture. 

4. Charge transfer at isolated resonances 

In order to demonstrate the influence of a nuclear resonance on the capture probability 
we restrict ourselves to isolated resonances. Neglecting the background phase from 
the nonresonant scattering by the short-range part of V,, as well as multichannel 
contributions to the resonance amplitude, the nuclear scattering amplitude for elastic 
scattering can be written in the form (Taylor 1972) 

exp(2ic+,) e x p [ - 2 i ~ ~  In(sin 6'/2)] 77k 

2 K '  sin26'/2 fcou, = - 

where T k  = ZpZTp,/ K ' ,  c ~ !  are the Coulomb phaseshifts of angular momentum 1 and 
Pi is a Legendre polynomial. Equation (4.1) is valid for s , , ~  proton resonances as well 
as for impinging particles with spin zero. The resonance is described by a Breit-Wigner 
term characterised by the resonance energy ER, the partial width rP for the decay of 
the compound system via its entrance channel and the total width r. For all resonances 
discussed below, rp is equal to r. Further, E '=  K"l2p. 

When inserting (4.1) into the capture amplitude from the previous section, we make 
use of the fact that the Coulomb amplitude fcoul is a slowly varying function of K' 
and 6' in the resonance region, and replace K' by the initial momentum K ,  and insert 
the scattering angle for 8'. For the simplest case of an s , , ~  resonance, the resonant 
part of (4.1) is 8' independent, such that f ( K ' ,  8')  appears even in the potential term 
W; only as an ( s  independent) factor. This is no longer true if 1 # 0, and there is no 
principal problem in performing the integrations when an s-dependent intermediate 
scattering angle emerges. However, the dependence on scattering angle is not likely 
to cause a rapid variation of the scattering amplitude, and because the electronic 
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momenta produce only a small shift of the nuclear momenta Ki and K, it is a reasonable 
approximation to neglect the s dependence of 6' and replace it by the scattering angle 
6. In this case the treatment of resonances with higher angular momenta becomes 
very simple and consists only in multiplying the Breit-Wigner factor for s waves by 
(21+ 1)  exp[2i(ul - ~ + ~ ) ] P ~ ( c o s  6). It may occur that in a very small energy region, the 
Coulomb amplitude is nearly cancelled by the resonance term in (4.1) which would 
lead to spurious narrow structures in the transition probability. In this case, the 
background phase has to be included in (4.1). 

5. Numerical results and discussion 

The probability for electron capture at a given scattering angle 6 is found from 

where No is the number of electrons in the initial target state. Since this formula 
reduces to the semiclassical expression discussed elsewhere (Amundsen and Jakubassa- 
Amundsen 1984a, b) if f ( K ,  6) is a slowly varying function of K,  we shall present 
numerical results for nuclear resonant scattering only. Using experimental binding 
energies and Slater-screened hydrogen-like wavefunctions we have evaluated the cap- 
ture from the'K shell of 22Ne, "Si and 58Ni and from the L shell of "Ni by protons 
near an s-wave resonance, and also the capture from the K and L shell of 20Ne, I6O 
and 28Si by alpha particles at a 3- resonance. Only transitions into the projectile 
ground state have been considered as they are strongly dominating for Zp<< Z,, and 
Briggs' peaking approximation has been applied for the calculation of P (  6). 

For the isotope 22Ne there exist three s-wave resonances in the compound nucleus 
(23Na) in a narrow energy region around 1.3-1.5 MeV (Endt and van der Leun 1973, 
p 67). In figure 2 the capture probabilities near the resonance at Ep= 1.513 MeV with 
width r = 2.45 keV are shown as a function of projectile energy. For this case, the energy 
transfer to the electron, 6E = EF-ET+ v 2 / 2 ,  is 1.7 keV which is nearly equal to r. 
Correspondingly, the resonance structure of P( 6) is clearly visible, being about a 
factor of five enhanced over the background at scattering angles around 90". The signal 
is reduced at small scattering angles because the ~ i n - ~ 6 / 2  behaviour of the Coulomb 
amplitude suppresses the Breit-Wigner term. For the other resonances at Ep= 1.35 
and 1.378 MeV the enhancement at 90" is about one order of magnitude ( r / 6 E  = 1) 
and a factor of three (r/ 6E = 3), respectively. It is seen that for backward scattering 
angles the variation of P (  6) across the resonance is so strong that an effect should be 
measurable in a target of natural isotopic composition (= 10% 22Ne). 

Figure 3 shows the calculated transfer probability of K electrons from 28Si in 
collisions with protons near the sl,* resonance at 2.083 MeV (width r = 15.6 keV; Endt 
and van der Leun 1967, p 164). In this case, T / S E  = 5.3 and the change of P ( 6 )  at 
the resonance position amounts up to 40%. This makes it clear that the condition 
r = 6E need not be strictly fulfilled in order to see an interference structure, however, 
the signal is the sharper, the closer T / S E  lies to unity. The variation of P ( 6 )  with 
the scattering angle 6 at fixed EP expresses the dependence of P ( 6 )  a n  the relative 
phase between the resonant part of the scattering amplitude and the Coulomb back- 
ground. 
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Figure 2. Capture probability of "Ne K-shell elec- 
trons by protons as a function of proton energy. The 
CM scattering angle 6 is taken as the parameter. The 
uppermost scale on the left belongs to 6 = 30°, the 
next to 6 = 50" and so on. 
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Figure 4. Capture probability of "Ne K-shell elec- 
trons by HeZ+ as a function of projectile energy. The 
CM scattering angle 6 is: ( a )  63.4" and ( h )  80". 
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Figure 3. Capture probability of **Si K-shell elec- 
trons by protons as a function of proton energy. The 
CM scattering angle 6 is taken as the parameter. 
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Figure 5. Capture probability in collisions of He2' 
with "Ne as a function of projectile energy at 6 = 
63.4". The full curves denote the capture probability 
from the Ne L subshells, the broken curves are the 
K-shell capture probability and the summed contri- 
butions from the K and L shells respectively. 
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In figure 4 we have chosen a resonance in 20Ne which is excited by alpha-particle 
impact ( E ,  = 3.545 MeV, I- = 1 keV; Endt and van der Leun 1973, p 100). As it is a 
3- resonance, the Breit-Wigner part o f f  is weighted with the Legendre polynomial 
P,(cos 6), which has a zero at 6 = 90". Thus the best choice for 6 would be 63.4" or 
116.6" where P3 reaches its extrema. From figure 4 it is seen that for the smaller angle, 
the structure rises a factor of 3.5 above the background which is somewhat smaller 
than for the proton resonances in the case of a similar ratio of r / S E  = 0.8. However, 
a great advantage of the use of heavier projectiles lies in the fact that the capture cross 
section increases strongly with projectile charge (-2;; Jakubassa-Amundsen and 
Amundsen 1980). Thus, for the systeni (CY, Ne) the off-resonance capture probability 
from the target K shell lies in the per cent region compared with approximately 
for proton impact of the same velocity. 

The separation of K capture from other processes requires, apart from the observa- 
tion of the charge state of the scattered projectile, either a high impact velocity (which 
exceeds the orbiting velocity of the target K electron) or a coincidence experiment 
with I( x-rays or Auger electrons. In order to avoid such complications, we have 
investigated the question whether the resonance structure remains visible if electrons 
from higher shells are also included. In most cases, the impact energy is large enough 
so that only K- and L-shell electrons will contribute considerably to the capture 
probability. The obvious drawback of adding K- and L-shell capture is twofold: first, 
as the L binding energy is smaller, the ratio T I S E  gets less favourable (in nearly all 
cases is already larger than the energy transfer for the K shell), and second, the total 
capture probability is a sum over four partial probabilities ( K  shell+L subshells), 
which will tend to wash out the resonance structure. 

A study of L-shell capture from Ne by CY impact shows that at 6 = 63.4" the dominant 
contribution arises from the target 2p, m = 0 state (figure 5). The total KSL-shell 
capture probability P (  6) = 0.15 and shows a 60% variation across the resonance. 

Figure 6 shows P ( 6 )  for CY colliding with I6O near the resonance at 5.486 MeV 
( r = 4 k e V ;  Ajzenberg-Selove 1978, p 165). At this rather high impact velocity, the 
capture from the oxygen K shell is dominating; however, as SEK = 3.2, the variation 
of P (  6) is not so large as for the Ne K shell. The use of hydrogen-like wavefunctions 
may be questionable for the L shell of these light systems, but improved wavefunctions 
will mainly affect the background value of P ( 6 )  and not the resonance structure. 

In figure 7 results are shown for K- and L-subshell capture in the case of the 
'historical' resonance of p + 58Ni at E, = 3.15 1 MeV with width r = 5.6 keV which was 
the first one across which ionisation probabilities have been measured (Blair et a1 
1978). The structure of the L-subshell capture probabilities is seen to be nearly as 
large as for K-shell capture, because in this special case r / S E ,  = 2.2 is roughly the 
inverse of I'/SEK = 0.56, and also the peak position is at about the same energy. Thus, 
even the summed K + L  capture probability shows a large structure and is one order 
of magnitude above the K capture probability. The suppression of the 2p, m = 0 
subshell capture is due to the specific choice of 6 = 90" where excitation perpendicular 
to the beam direction ( m  = 1) is enhanced. In order to investigate resonances with a 
larger width, heavier target systems should be chosen where the binding energy and 
thus 6EK is larger. For alpha projectiles one can probably not go much beyond 28Si 
without risking ihat the compound system decays preferentially via other channels 
than (elastic) alpha emission. For this system we have calculated the L-shell capture 
probability across the 3- resonance at E, = 5.58 MeV with width 10 keV (Stautberg et 
al 1968). In this case, T/SEL (=  12.4) is much larger than for the K shell ( r / 6 E K  = 3.9). 
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Figure 6. Capture probability in collisions of He2+ 
with I6O as a function of projectile energy at 6 = 65". 
Given are the K and L subshell capture probabilities 
(full curves) and their sum (broken curve). 
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Figure 7. Capture probability in collisions of protons 
with 58Ni as a function of proton energy at 8 = 90". 
Shown is the capture probability from the Ni K-shell 
(full curve denoted by K) and from the L subshells 
(broken curves). Also shown is their sum (full curve 
denoted by K +  L). 

Although the resonance effect is rather strong for the K shell, the variation in the total 
(K+  L) capture probability is only about 20% at 6 = 65", and P (  6) = 0.06. At backward 
angles ( 1 15"- 130") the signal is somewhat more pronounced. 

From our chosen examples it follows that the condition r-  6E is more stringent 
for the L shell than for the K shell in order to observe a resonant behaviour of P(6). 
Note that for the L shell the presence of the term v2/2 in 6E makes the 'time-delay' 
effects in capture much larger for broad (on an atomic scale) resonances than is the 
case in ionisation. 

6. Conclusion 

We have developed a distorted-wave SPB theory in a fully quantum mechanical treat- 
ment, which allows the effect of resonant nuclear scattering on the capture of target 
electrons to be included. In calculating some test cases of proton and alpha impact 
on heavier targets we have shown that charge transfer is a promising tool to study 
nuclear resonance effects, because the interference structure is strongly visible on the 
smooth background even in cases where the energy transferred to the electron is not 
equal to the energy scale r provided by the width of the resonance. 

Once this method is established experimentally for known isolated resonances 
which provide a crucial test for the atomic theory for charge transfer-due to the 
sensitivity on the relative phases of the capture amplitudes in the ingoing and outgoing 
channel-more complicated resonances may be investigated in order to get also 
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information on the nuclear scattering amplitudes. A generalisation of our theory to 
other resonances, such as overlapping isobaric analogue states, is, in principle, straight- 
forward. 

Appendix 1 

We prove that the application of ( 1  + GNTVT) on an eigenfunction $K to HN+ T, leads 
to an electronic off-shell function as defined by equation (2.10). We thereby use the 
on-shell approximation for +hK, namely I $ K )  = xk) exp(-iPK. rT)lq). Introducing an 
electronic state $ , ( w )  by means of 

( 1  + GNT vT) $IC = xk) exp(-iPK’ r T )  $ q ( w )  (A. 1 )  

and inserting a complete set of electronic plane waves Ip) before $ , (U)  we obtain after 
multiplication with (G&-’  from the left 

(E-H,-T,-iE)$‘K 

= ( E  - H N -  Te - iE)Xk)  exp(-iPK’ r T ) l P ) ( P l $ q ( w ) )  
P 

- v,xi;’exp(-iPK. r T ) $ ¶ ( w ) .  (‘4.2) 

Using that +bK and xL’exp(-iPK. rT)Ip)  are eigenstates of HN+ T, with energy 
K2/2p,  + q2/2 and K2/2p,  +p2/2,  respectively, all operators with respect to the nuclear 
coordinate R have disappeared. Thus the nuclear function xk) may be dropped: 

( E -  K2/2pj -q2/2- i&)  exp(-iPK* rT)Iq) 

=C (E  - K2/2p.,  - p 2 / 2 - i ~ )  exp(-iPK. rT)Ip) (pI+q(w))  
P 

- V,exp(-ipK. r T ) & ( w ) .  (A.3) 

Upon multiplication by exp(+iPK. rT) from the left and subsequently using that 
p2/21 p )  = T,I p ) ,  we obtain finally after using closure: 

( E - K 2 / 2 p , - q 2 / 2 - i a ) l q ) = ( E - K 2 / 2 p l - T , -  VT-is)$,(w) (A.4) 

which makes clear that $,(CO) is the desired off-shell function. 

Appendix 2 

We show that the excitation matrix element which originates from the target recoil 
can be written in the form (3.4). 

In the dipole approximation, we have to evaluate 

I = ( K  - K ~ ) ( X ~ ’ /  V,lexp(iK, - R ) ) .  (‘4.5) 

As ,yK is eigenstate to the nuclear Hamiltonian HN = TN+ V,, I can be written in a 
symmetrised form, using IxK) = ( 1  + G N  V,) exp(iK. R )  

I = K(exp(iK. R ) J  vNlxK’) - ~ , ( x k ’ l  V,lexp(iK, * R ) )  (A.6) 
where x:) is the ingoing scattering state of HN.  For elastic scattering ( K  = K,) the 
nuclear matrix elements can be expressed in terms of the scattering amplitude 



774 D H Jakubassa-Amundsen and P A  Amundsen 

f + ’ ( K , ,  1 9 ~ , ~ , ) .  For almost elastic processes we thus have 

from which one immediately gets (3.4). 
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