
Z. Phys. A - Atoms and Nuclei 320, 557 564 (1985) 
Zeitschrilt A 4.t~t'~c~ 
f(~r Physik A r l L ~ . J l  I 1 0  

and Nuclei 
�9 Springer-Verlag 1985 

The Nonadiabatic Sliding Model and its Application 
to J-Electron Emission 

D.H. Jakubal3a-Amundsen 

Physik-Department, Technische Universit~it Mtinchen, Garching, 
Federal Republic of Germany 

Received September 27, 1984; revised version October 24, 1984 

The ejection of target K electrons by projectiles which move with an arbitrary velocity 
v is calculated with the help of optimised basis states. These states are variationally 
determined by minimising the time-dependent monopole perturbation. As v increases, 
this prescription provides a continuous transition from molecular states to atomic 
states. It is demonstrated that a molecular description should not only be applied at 
low v, but also for very large energies of the ejected electron even if v is large. 
Calculations are performed for the collision systems Li + Ne and O + A1. 

1. Introduction 

For the treatment of electronic excitation in heavy- 
ion collisions [-1] two models are commonly in use. 
At low collision velocity v, the molecular description 
is appropriate, where the electrons are allowed to 
adjust to the two-center potential at every time, 
while at high velocities the atomic picture can be 
applied. If, however, v is comparable to the orbiting 
velocity of the electron in its initial state, pertur- 
bation theory usually fails and the use of either the 
atomic or the molecular basis requires the inclusion 
of many states in a coupled channel calculation. 
For this intermediate velocity region, variational 
theories offer the opportunity to reduce not only the 
large computational effort, but also to provide more 
insight into the physics of the collision process. 
Thereby, parameters are introduced into the elec- 
tronic wavefunction and determined by minimising 
the matrix elements of the Hamilton operator. Kle- 
ber [2] has chosen a complex time-dependent pa- 
rameter which is found from the solution of an 
Euler-Lagrange equation, and the electronic tran- 
sition probability in zero order is given by the pro- 
jection of the (time-dependent) wavefunction onto 
the desired final state. The first-order correction to it 
which is calculated from the transition matrix ele- 
ment of H-iS~St can, however, become quite large 
[3]. Thus, instead of using a wavefunction which is 
obtained from a classical equation of motion, it may 
be preferred to construct an optimal set of basis 
states from which the transition probability is calcu- 

lated via a full quantum mechanical treatment. This 
basis is found from the minimisation of the coupling 
strength between the states. It can be characterised 
by velocity-dependent parameters which simulate the 
location and extension of the wavefunction [4], or 
by a real time-dependent parameter which describes 
the internuclear motion and serves as an indication 
of the nonadiabaticity of the collision process at 
fixed time [5]. 
The advantage of choosing parameters which de- 
pend only implicitly on time via the internuclear 
separation R as done in the sliding center model [6, 
4], lies in the fact that they allow for a smooth 
interpolation between the united-atom and separated- 
atom limiting cases. This may compensate for the 
drawback that only the global nonadiabaticity can 
be extracted. 

The sliding center model has recently been used 
for the interpretation of experimental results on the 
K-shell ionisation probability in asymmetric col- 
lisions [7, 8], where it was found that for protons 
colliding with heavy targets the atomic picture is 
satisfactory, while for higher projectile charges a mo- 
lecular description is necessary when the adiabaticity 
parameter v/(aKE .... ) falls below 0.5 (a K is the K- 
shell radius and E .... the binding energy of the un- 
ited atom). 
However, the choice of the theoretical picture does 
not only depend on the asymmetry and the velocity 
of the collision system, but also on the energy of the 
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ejected electron. Recently, Bell has discovered by 
examining a large compilation of experimental data, 
that while the total K-shell ionisation cross sections 
scale with the projectile velocity [9], the differential 
cross sections for the emission of high-energy 
a-electrons rather scale with the center of mass ve- 
locity. By using that the average internuclear dis- 
tance /~ which determines the transition to a given 
final state with energy transfer A E may be found 
from R-~ qmin-1 = F/A E, Bell calculated the correspond- 
ing velocity v(/~) from the R - dependent location of 
the electron [6J, and found good agreement with the 
data when this velocity was used in the scaling [10]. 
In this paper we want to give a theoretical foun- 
dation of this result by extending the sliding center 
model to high-lying electronic continuum states. The 
variational principle is reviewed in Sect. 2, and in 
Sect. 3 the differential cross section for electron 
emission is calculated in the first-order Born approx- 
imation by using the optimised basis states, and 
compared with results obtained from the atomic, the 
united-atom and the molecular description (Sect. 4). 
The conclusion is given in Sect. 5. Atomic units 
(h=m=e=l)  are used throughout unless otherwise 
indicated. 

2. Calculation of the Electronic States 

We want to concentrate on collision systems where 
the projectile charge Z e is sufficiently smaller than 
the target charge Z r such that the ejection of K 
electrons is mainly due to direct excitation, while the 
contribution from multistep processes can be ne- 
glected. In this case, the transition probability is 
determined by only two electronic states, the initial 
state and the final state. Rearrangement collisions 
are not considered here. 
In the independent electron model, the Hamiltonian 
H is governed by the two-center potential of the 
electron in the field of the projectile and target nu- 
cleus. For  simplicity, we neglect screening and take 
it purely Coulombic. A parameter 2 is introduced 
into H which determines how much of the time- 
dependent projectile field V v is incorporated into the 
'unperturbed'  Hamiltonian H o [4] 

H= Ho(2) + (1 - 2) Vp (2.1) 

ZT 
Ho()i) = -�89 - ~ +  ; W p - A r  

Zp 
Vp- 

I r - R - x l '  

Mp 
A =  

Here, we have denoted the origin of the electron by 
x = - h R  which is located a distance h from the 
target on the line connecting the projectile and 
target nuclei. As long as x is not coinciding with the 
heavy particle center of mass, a recoil term Ar has 
to be added which arises from the transformation to 
an accelerated coordinate system [11]. A classical 
trajectory R(t) is assumed for the internuclear mo- 
tion, and Me, M r is the mass of the projectile and 
target, respectively. 
In order to construct a variational principle which 
determines the parameter 2, we recall that Demkov 
[12] has shown that the transition amplitude can be 
written in the form 

asi = <Os(oo)l 0~(oo)) 

- i  ~ dt@s(t) lH-i~l tki( t ))  
- - o 0  

(2.2) 

where Oi(t) and @(t) satisfy the boundary conditions 
to coincide with the initial state at t = - m  and with 
the final state at t =  +0% respectively. When the 
functions O:(t) and Oi(t) are exact solutions to the 
Schr/Sdinger equation, the second term in (2.2) van- 
ishes whereas the first term provides the exact tran- 
sition amplitude. If, instead, trial functions are in- 
serted, a:i as calculated from (2.2) is stationary with 
respect to variations in Oi(t) and Of(t) [12]. When 
these trial functions are chosen as eigenstates to 
some Hamilton operator H0, the first term in (2.2) 
vanishes due to the orthogonality of these states, 
such that the transition amplitude evaluated from 
(2.2) coincides with first-order perturbation theory 

as i=- i  ~ dt(OI(t)](H-Ho)-i~lq:i(t)).  (2.3) 
- - o o  

It follows immediately that also (2.3) is stationary 
with respect to variations in the wavefunctions and 
can thus be used for the variational determination of 
the 'best '  wavefunctions. 
In our case, the wavefunctions are characterised by 
the parameter 2. In order to make 2 real, the ab- 
solute square of the transition amplitude has to be 
used as the variational functional. It also turns out 
that /l is very sensitive to strongly oscillating time- 
dependent phases of the wavefunctions which may 
lead to unphysical results. Rather than using (2.3), 
we therefore determine 2 by dropping these phases, 
such that the variational functional consists in the 
time integral of the coupling strength alone [4J 

d ~ c~ I ~ i )  2 ! dt(~fl(1-~.)V,,-i~7 =0 (2.4) 
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where 0i and 0I  do not contain time-dependent 
phases. Still, these functions may be viewed as (or- 
thogonal) trial functions, such that the criterion of 
stationarity also applies to (2.4). The functions 0i 
and @ depend on time via the internuclear sepa- 
ration R. As a consequence, they are symmetric with 
respect to time reversal, such that the time integral 
can be confined from 0 to oo. 
The way how to determine 2 may also be viewed as 
an extension of Stevenson's 'optimised perturbation 
theory'  [131 to time-dependent problems. Stevenson 
obtains a fast convergence of the perturbation ex- 
pansion of some physical observable by introducing 
a dummy variable into his theory. From the fact 
that the exact result must not depend on this vari- 
able, the 'best '  approximation A (") within a given 
order n of perturbation theory is found by requiring 
that the derivative of A (") with respect to the vari- 
able be zero or minimal. This criterion of 'minimal 
sensitivity' determines the variable and consequently 
A ("). In the example discussed here (n=l ) ,  Ste- 
venson's prescription can thus be mathematically 
confirmed by a variational principle, similarly as for 
time-independent problems when n = 1. 
The minimisation of the coupling strength given in 
(2.4) provides a balance between the two operators 
(1-2)Vp and 8/8t. The limiting cases are readily 
identified: For  slow collisions where 8/8t--*0, 2 must 
tend to 1 to reduce the potential perturbation, which 
means that the full potential is incorporated into 
H 0. For  fast collisions, the effect of O/St can only be 
reduced by choosing 2--*0 such that r and Of be- 
come time-independent (atomic picture). 
In the general case, 0i and @ are eigenfunctions to 
a two-center potential. However, these states are dif- 
ficult to handle, especially when continuum states 
are involved. Therefore we approximate the eigen- 
functions to H 0 by another variational calculation. 
For  the ground-state wavefunction 01, we use a 
spherically symmetric one-center function character- 
ised by a parameter Z 

O,(r) =~-~ Z 3/2 e- z, (2.5) 

The parameters Z(2, R) together with x(2, R) which 
has been introduced into H o are determined by min- 
imising the ground-state expectation value of H0(2 ) 
with respect to z and x [6]. The resulting two cou- 
pled equations for Z and x can easily be solved for 
fixed 2 if the variables p = Z R  and x=hR  are intro- 
duced 

Z=2Zpe 2p(1-h)[1 + 2 p ( 1 - h ) ]  

+Zre-2Ph[1 +2ph i ,  (2.6a) 

Z r h 2 
2Zp ( l - h )  2 

1 - e -  2o(1-h)[2p(1 - h )  + 2/)2(1 - h )  2 + 1] 
1 -e-ZPh[2ph+2p2h2+ 1] 

(2.6b) 

by finding h(p) from (2.6b) and then Z(p) from (2.6a) 
which subsequently determines R = p/Z. The limiting 
values for Z and h can be directly deduced from 
(2.6): For  R-*0, Z = ( 2 Z e +  Zr) (1-2R22ZeZr) ,  

h = 2Zp/(2 Zp 4- ZT) 

+ + zob ,  

which coincide with the 'united atom'  charge and 
the 'center of charge' (with Zp reduced by 2) at R 
=0,  whereas for R~oo ,  Z=Zr-(922Z2p)/(8ZSR4) 
and h=(32Zp/(4Z~R3), denoting the case where the 
electron is localised on the target. 
For the approximation of the final wavefunction Of, 
we make use of the fact that it is orthogonal to 0~ 
and take it as a Coulomb wave to the same charge 
Z(2, R). 
When calculating 2 from (2.4) with these functions, it 
is important to note that the 8/8t operator affects 
only the monopole part of the final state because r 
is chosen to be spherically symmetric. In order to 
retain the balance between the two operators in 
(2.4), it is therefore also necessary to disregard any 
contribution of higher multipoles of Of when the 
matrix element of V e is evaluated. An improvement 
would consist in introducing more parameters into 
Ol which allow for higher partial waves and thus for 
a better adjustment to the (non-spherical) two-center 
potential. 
The numerical details for the evaluation of (2.4) are 
given in the next section in connection with the 
calculation of the differential cross section. For  the 
test system Li--*Ne which has an asymmetry of 
Zp/Zr=0.3, and which is light enough to make a 
nonrelativistic calculation meaningful, the parameter 
2 is shown in Fig. 1 as a function of the projectile 
velocity relative to the united-atom orbiting velocity 
v .... = Z p + Z  r. The impact parameter of the collision 
process was taken to be zero. At fixed energy E s of 
the emitted electron, 2 decreases monotonically from 
1 (molecular basis) to zero (atomic basis) when v 
increases, with the steepest descent at v~v  .... when 
ET equals the united-atom energy E .... . For  large 
values of El, 2 remains close to 1 even at higher 
velocities. 
This behaviour becomes more evident in Fig. 2 
where at fixed v, 2 is shown as a function of El. 
While at v~v  ..... the basis is close to the molecular 
one for any Er, it is not true that for v>>Vu.a., the 
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Fig. 1. Variational parameter ), as a function of the collision 
velocity relative to the united-atom orbiting velocity v ..... calcu- 
lated for K-shell ionisation of Ne by Li impact. The curves are 
for electronic energies E I of 0.2 keV, 1.56 keV and 10 keV, re- 
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Fig. 2. Variational parameter 2 as a function of the electron 
energy relative to the united-atom binding energy E,.,., calculated 
for K-shell ionisation of Ne by Li impact. Curves are shown for 
collision velocities of 4, 13 and 40 atomic units, respectively 

basis is always well represented by the atomic one. 
Instead, for sufficiently high EI, 2 will eventually 
approach 1, irrespective of the magnitude of v. The 
transition from the atomic to the molecular basis 
occurs approximately at Es,~v 2 for this collision 
system. 
This behaviour can easily be understood from (2.4) 
by noting that the matrix element of the operator 
O/~?t can be transformed into a matrix element of 
-6Ho/Ot(Es-E~)  -1 where E~ is the energy of the 
initial state. For  EI>>IE~I, this matrix element is thus 
proportional to v/E I. From this it follows that a 
large E s has the same consequence on 2 as a small v. 

3. Calculation of the Differential Cross Section 

In first-order Born approximation, the transition 
amplitude for the ejection of 6-electrons from the K- 
shell is given by 

% 
Z Z r 

= - i _ o ~ d t ( ~ f ]  r [ r - x ]  

- A r  - i  ~-  10i) J ( o  

Zp 

I r - R - x l  

F ( t ) -  dt(Es-Ei( t))  (3.1) 
o 

where Oi and Os are solutions o f / r  = - A / 2 - Z / r ,  
such that the difference between H o and /to has 
been included as perturbation. 
It is convenient to make a partial wave expansion of 
both 0s and the two-center Coulomb field [11] and 
introduce the form factor integrals 

Or(R)= 

dq [ ZpJl( q(R -- x)) + (-1)l ZTJl(q x) - Z bl, o] Fl( q, Z) 
o 

F~(q, Z )=  

~ r2 drrlelkS'lFl(l + 1 - i t  h 2l+2 ,  -2iksr)jl(qr)e -zr 
o (3.2) 

where the term -Zgh,  o arises from the monopole 
field Z/r in (3.1). Further, k s is the momentum of the 
ejected electron, q=Z/ks ,  Jl is a spherical Bessel 
function and 1F1 a confluent hypergeometric func- 
tion. The contribution from the Coulomb potentials 
in (3.1) can then be written in the following way 

, (2k,), Y,=(gl 
~ ' ; ' -  ~ , =  (-21+1)~ 

dt C,(Z)Q,(R)e ir('} Yl* (fl) 
- o o  

Ct(Z) = Z3/2 e ~"/2 IF (l + 1 + iq)l e ~' (3.3) 

where a l = a r g F ( l + l - i r l  ) is the Coulomb phase 
shift. 
The internuclear coordinate R(t) is determined from 
the Rutherford hyperbola. Choosing a coordinate 
system where the z-axis is perpendicular to the line 
connecting the two nuclei at the distance of closest 
approach (i.e. at t=0),  the spherical harmonics 
Ym(R) exhibit symmetry properties with respect to 
time reversal. For  example, II10 (1/) = (3/47~) 1/2 R J R  is 
odd in t, while Yll(R)= - (3/8n)l /2Rx/R is even in t. 
One can make use of this symmetry by reducing the 
time integration interval to one from 0 to oo. 

The contributions to arl from the time derivative 
and from the recoil field in (3.1) are easily evaluated. 
The result is 



D,H. Jakubal3a-Amundsen: Nonadiabafic Sliding Model 561 

@i = _ i 4 ~  o~ dt Co(Z);Z 
7Z 0 

/ 2ik ~-2+i,1 
" [ ( Z - i k y ) - 4 ( l + ~ )  ]sinF(t) 

161/2 _ 
@i- - kf L Y, m(f~y) ~ dtZCI(Z) 

t~ _ o o  

. [ 1 1 (1 2ikf -2+i" 

- fiR Yf~ (~)} e ir"~ (3.4) 

where the latter expression can also be reduced to 
an integral from 0 to ov by using t h a t / ~  a n d / ~  are 
odd, and /~x , /~  even in t. 
For the differential cross section, the square of ay~ 
has to be integrated over impact parameter b. When 
the direction of the emitted electron is not observed~ 
there is an additional integral over f2kf, such that 
one obtains, taking into account the presence of two 
K-electrons 

da =4~ky S bdb ~ df2k, ta)- i ' ~ 2 + afi + afil (3.5) 
dEy o 

which reduces with the help of 

dOk~l~ Y~(kz)Az~12 = ~ IAzml e 
Im lm 

to an incoherent sum of the multipole contributions. 
If one is interested in the doubly differential cross 
section, the functions Y~,~(~T) have to be rotated 
through half the scattering angle at each impact 
parameter, such that the ejection angle OI coincides 
with the experimentally observed angle between ky 
and the beam axis v. 

4. Numerical Methods and Results 

While the form factor Fz(q, Z) reduces to a simple 
analytic expression for nonrelativistic wavefunctions, 
the integration over q in the form factor integral 
QI(R) has to be done numerically. We have calculat- 
ed QI(R) at fixed values of R until it converged to 
the large-R behaviour which for I =< 1 is given by 

Qo(R)--R -4 

Q~(R)~R -2, R>R~ (4.1) 

and used a spline-like interpolation routine for the 
calculation of Qz(R) for R<R c. For the time inte- 

means 

d 
t = - -  

/9 

R = d  

R~ = d  

grals in (2.4), (3.3) and (3.4) it is convenient to in- 
troduce a pseudo-linear coordinate which is ob- 
tained from the usual hyperbolic coordinate w by 

of z = e exp w, such that 

( ~ ~2 1 

"c g2 \ 

1 + ~ + ~ - )  

(4.2) 

with d =ZpZT/(2Eom ) (Eem is the center of mass scat- 
tering energy) and e=(l+(b/d)2) 1/2. The -c integral 
extends from e to infinity. Fast convergence is ob- 
tained if it is split when -c corresponds to R,.~3a K, 
and the second part done with a much larger step 
width than the inner part. 
The energy phase factor F(t) defined in (3.1) is evalu- 
ated simultaneously with the transition matrix ele- 
ment at each successive instant of time, thus avoid- 
ing the evaluation of an additional integral. Thereby, 
we used for the energy E i of the initial state the 
following formula 

tZ  [ 1 Ei(R)=O T - 2 Z p  il--h) R 

--e-2ZR l-h  ((1 )] -h)R +Z 

0 = 0~ + ~ ( 0 , -  0s) (4.3) 

which is obtained from the ground state expectation 
value of H o modified by the screening constant 0 for 
which a linear interpolation in Z is chosen, such 
that the limiting values O(Zr)=Os, O(Zp+ZT)=O . 
are obtained. 0~ and 0, are the ratios of the experi- 
mental binding energy to the hydrogenic energy. 
For the determination of the wavefunctions, we have 
taken a Slater screened nuclear charge. The func- 
tions Z(R), h(R) and Ei(R ) are calculated with the 
help of interpolation routines. For large R, the cor- 
responding analytic expressions were chosen. In the 
case of Ei(R), one finds from (4.3), Ei(R)=O~(-Z2/2 
-2Zf/R)+O(R-4). The derivatives dZ/dR, dh/dR 

and dZh/dR 2 entering into (3.4) are directly ex- 
pressed in terms of h, Z and R by means of a 
differentiation of the implicit equations (2,6). 
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Fig. 3. Differential cross section for K-shell ionisation of Ne by Li 
impact as a function of collision velocity at Ef=0 .2keV.  Shown 
are the results from the sliding center calculation (full curve), 
from the separated-atom and molecular calculation (broken cur- 
ves) and from a united-atom calculation (chain curve) 

The differential cross section for the ejection of a K 
electron from Ne by Li impact is shown in Fig. 3 as 
a function of the collision velocity. The electronic 
energy E I=0 .2  keV is chosen rather small such that 
it represents an important contribution to the total 
cross section. At very high velocities, the sliding 
center theory coincides with the result of an atomic 
calculation which can be obtained by setting ), =0  or 
rather by using the standard formulas of an SCA 
calculation [11]. It is clearly seen that a description 
with fixed target wavefunctions fails when v falls 
below ZT, i.e. the orbiting velocity of a K electron. 
In the limit of very low velocities v, the theory 
coincides with a molecular calculation, obtained by 
choosing 2 =  1. Then, at very small internuclear dis- 
tances, the location of the electron distribution is in 
the center of charge which roughly coincides with 
the center of mass, such that the recoil contribution 
to the transition amplitude should approximately be 
zero. Incidentally, the recoil field gives a rather large 
contribution when the whole internuclear trajectory 
is taken into account. This follows from the be- 
haviour of h(R) which varies linearly with R (for 
R ~ 0 )  and therefore departs rather fast from the 
center of charge. Thus, also the velocity of the elec- 
tronic rest frame changes rapidly from the center of 
charge velocity to the lab velocity when the two 
nuclei separate. Which velocity eventually will be 
decisive for the electronic excitation process depends 
on the average internuclear separation R = v / A E  
[10]. 
The recoil contribution is, however, largely cancelled 
by the dipole term of the Coulomb potential for 
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LLT 
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-o 1.0 

05  

I I I I I I I 

Li § Ne 
v = t 3  

\ 
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Fig. 4. Differential cross section for K-shell ionisation of Ne by Li 
impact, calculated in the separated-atom description and the mo 
lecular description (full curves) as well as in the united-atom 
picture (chain curve), relative to the differential cross section 
du(2)/dEy from the sliding center model as a function of electron 
energy 

these small collision velocities. It is therefore impor- 
tant to include the recoil term in the transition 
amplitude. For  high velocities, on the other hand, 
the recoil is negligible because then the internuclear 
trajectory is well represented by a straight line. 
An approximation to the molecular theory which 
has been applied quite frequently, consists in replac- 
ing the molecular functions by time-independent 
united atom functions localised at the center of 
charge [14]. The result of such a calculation is also 
shown in Fig. 3. It deviates from the molecular 
theory even at rather low velocities for the small Ef 
considered here. 
We also have calculated the dependence of the dif- 
ferential cross section on the electronic energy at 
fixed velocity. As da/dE l decreases by about seven 
orders of magnitude in the energy region considered 
here, we have preferred to plot in Fig. 4 the ratio of 
the differential cross section calculated in the vari- 
ous limiting cases relative to the sliding center re- 
sult. For  an intermediate velocity (v/v .... =1), the 
separated atom description breaks down at energies 
about ten times the target K-shell binding energy, 
whereas the molecular theory works rather well ex- 
cept for the lowest E l . On the other hand, very high 
energies are required to make a united-atom de- 
scription reasonable. 
At an energy of about 3-4 times the united atom 
binding energy, all theories give rather close results. 
An inspection of this energy region reveals that it 
corresponds to the binary encounter peak which for 
zero electron emission angle has its maximum at E l 
=E~+vlcf. The cross section in this region is mainly 
determined from a binary collision of a free electron 
with the projectile. This makes its independence of 
the various descriptions plausible. 
In our calculations, only monopole and dipole tran- 
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sitions have been included. The give the dominant 
contribution to the differential cross section except 
in a rather extended region around the binary en- 
counter peak. A comparison with an atomic SCA 
calculation [15] for the L i + N e  system at v=v .... 
shows that the higher multipoles give a 10 % contri- 
bution at the smallest electron energies, but a rather 
constant enhancement by nearly a factor of 2 for 
1 <E:/E .... <20. The influence of higher l decreases, 
however, when v is lowered. 
In order to give an idea how the sliding model 
compares with experiment, we have calculated the 6- 
electron distrfbution for the system O16+A1 at a 
collision velocity v=11.2 which is nearly equal to 
the target K-shell orbiting velocity. For this system, 
data are available from Bell and coworkers [10, 16] 
for the doubly differential cross section. These data 
imply a sum over electrons emitted from all shells, 
but at the high energies E: considered, K-shell ion- 
isation provides the dominant contribution. The L- 
shell electrons are estimated to account for about 
10-30% of the experimental intensity. Therefore, a 
comparison with theoretical K-shell cross sections is 
meaningful. 

Similarly as for the L i + N e  case, monopole and 
dipole transitions acount only for about half the 
cross section in the energy region between 15 and 
50keV, which we have found by comparing 
d2r in the separated-atom case with calcu- 
lations [10] using the Trautmann-R6sel code [17]. 
It is seen from Fig. 5 that these calculations show a 
fall-off with E: which is much steeper than the ex- 
perimental data. The united-atom curve shown in 
this figure has been calculated with l<  1 transitions 
only, but has been multiplied by a factor of 2 to 
account for the contributions from the higher mul- 
tipoles. Its slope is closer to the data, but a factor of 
3 is missing in intensity. 
The calculations within the sliding model also 
shown in Fig. 5 should only be considered as ap- 
proximate results. Contrary to the calculations 
which use a fixed charge for the electronic wavefunc- 
tions, the Coulomb phases exp (io-~) which depend on 
Z introduce a strong oscillatory behaviour into the 
time integrals. This is of little consequence for the 
singly differential cross section dot~dE:. However, for 
the doubly differential cross section d2~/dE:df2: 
where the relative phases are decisive, it turns out 
that the inclusion of only l__<l transitions leads to 
strong variations in the slope of d2~r/dE:dQ: which 
will only be washed out if all relevant multipole 
transitions are included. Thus we have calculated the 
angular averaged cross section (4~)-lda/dE: and 
multiplied it (besides the factor 2 for higher /-tran- 
sitions) with the ratio of the doubly to the averaged 
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Fig. 5. Cross section for 6-electron production in 50MeV O ~6 
colliding with AI at an electron emission angle ~ : =  5 ~ as a func- 
tion of E:. The full curve gives the K-shell ionisation within the 
sliding center model, the chain curve is the result of the united- 
a tom picture, the broken curve is done with the Trautmann-R6se l  
SCA code [10], and the data are from Bell et al. [10] 

singly differential cross section obtained in the 
united-atom limit (which falls from 1.9 to 1.6 for 
g : = 5  ~ when E: increases from 15 to 50 keV). We 
would like to point out that for this rather sym- 
metric collision system the nonadiabaticity parame- 
ter 2 is already 0.9 for E:= 15 keV which is about 3 
times the united-atom binding energy (increasing to 
0.97 for E:= 50 keV), thus showing that a molecular 
description is appropriate. However, the difference 
between the sliding result and the united-atom cal- 
culation indicates that in this intermediate velocity 
region, molecular wavefunctions should be used, 
rather than the time-independent united-atom func- 
tions. 

5. Conclusion 

For the calculation of K-shell ionisation electronic 
states have been used which were obtained from 
minimising the transition matrix elements. By study- 
ing the dependence of the differential cross section 
d~/dE: on collision velocity and energy of the eject- 
ed electrons, the applicability of various standard 
models could be tested. As expected, it was found 
that for high collision velocities and those electron 
energies which determine the total cross section o-, 
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the electron can well be described by (target-cen- 
tered) target wavefunctions, while for slow collisions 
molecular wavefunctions have to be used, where care 
should be taken that for collision systems with mo- 
derate Zp/ZT, a description with united-atom wave- 
functions located at the center of charge should only 
be applied when v is very low. 
However, at high velocities, the separated-atom pic- 
ture breaks down if E I is very much larger than the 
binding energy of the initial electronic state. Then, 
even in these fast collisions, a molecular theory has 
to be used. This contradicts the obvious picture that 
the electrons will never have time to adjust to the 
two-center field. Rather, the relevant internuclear 
distances are so small, that the target electron nev- 
ertheless is strongly perturbed by the projectile. For 
increasing v, the electron energy required for a mo- 
lecular description increases very fast, Ei~v 2, and 
not linearly with v what would be expected from a 
mere inspection of the minimum momentum transfer 
qmin=AE/v. This may be viewed as a compromise 
which takes into account the shortening of the col- 
lision time with growing v. 
Test calculations have been performed for the col- 
lision system L i + N e  the asymmetry of which 
(Zp/Zr=0.3) is low enough to make a Born calcu- 
lation meaningful, but high enough to allow for a 
proper distinction between the united-atom and the 
separated-atom description. This distinction is still 
more evident for the system O16+A1 (Zp/ZT=0.6). 
A comparison with existing experimental data shows 
promising agreement if the sliding model is used. 
A deficiency of the choice of a simple monopole 
variational wavefunction in our model calculations 
is that dipole transitions which are rather important 
for the higher impact parameters, are not included 
in the determination of the parameter 2 which ex- 
presses the nonadiabaticity of the collision process. 
Therefore, especially if the ionisation of higher shells 
is considered, one should choose variational wave- 
functions which are a better approximation to the 
two-center potential in order to obtain quantitative 
results. Qualitatively, however, the above mentioned 
behaviour will remain unaffected. 
In cases where a first-order treatment is not suf- 
ficient, e.g. for systems with level matching, the opti- 
mised basis states can be used in multistep calcu- 
lations. Even then, the determination of the parame- 
ter 2 through minimising the coupling strength be- 
tween the initial and final state is reasonable, not 
only because (for fixed 2) the eigenstates to Ho(2) 
are orthogonal, but also because the initial and final 

states have a dominant influence on the transition 
amplitude. 
An improvement is likely to be achieved if, in the 
spirit of Stevenson's work, the important inter- 
mediate states are allowed to contribute to the 
choice of 2. Thereby, while keeping the final state 
~j~(t) as eigenstate to H0(2 ) in the defining equation 
(2.2) for the transition amplitude, the initial state 
O~(t) may be chosen to include higher-order terms in 
the perturbation (1-2)Vp. As long as care is taken 
that the overlap term (@y(oo)l@i(oe)), if nonzero, is 
retained in the transition amplitude, the variational 
principle still holds, such that 2 can be found from 
making the higher-order transition probability sta- 
tionary. However, this will drastically increase t h e  
numerical effort. 

I should like to thank F. Bell for stimulating this project, and 
P.A. Amundsen for helpful discussions. This work was supported 
by the GSI Darmstadt. 

References 

1. Meyerhof, W.E., Taulbjerg, K.: Annu. Rev. Nucl. Sci. 27, 279 
(1977) 

2. Kleber, M.: J. Phys. B l l ,  1069 (1978) 
3. Krause, J., Kleber, M.: Quantum Electrodynamics of Strong 

Fields. Greiner, W. (ed.), p. 489. New York, London: Plenum 
Press 1983 

4. Jakubaga, D.H.: Z. Phys. A - Atoms and Nuclei 290, 13 
(1979) 

5. Theis, J., Reinhardt, J., Miiller, B.: J. Phys. B 12, L479 (1979) 
6. JakubaBa, D.H.: Z. Phys. A - Atoms and Nuclei 285, 249 

(1978) 
7. Anholt, R.: Z. Phys. A - Atoms and Nuclei 295, 201 (1980) 
8. Morenzoni, E., Anholt, R., Andriamonje, S., Meyerhof, W.E.: 

Phys. Rev. A29, 2440 (1984) 
9. Bell, F.: Nucl. Instrum. Methods 192, 103 (1982) 

10. Spies, R., B6ckl, H., Bell, F.: On the description of K-shell 
ionisation by heavy ion impact. Preprint 1983 

11. Amundsen, RA.: J. Phys. B 11, 3197 (1978) 
12. Demkov, Y.N.: Soy. Phys. JETP 11, 1351 (1960) 
13. Stevenson, P.M.: Phys. Rev. D23, 2916 (1981); Nucl. Phys. 

B 231, 65 (1984) 
14. Briggs, J.S.: J. Phys. B 8, L485 (1975) 
15. Amundsen, P.A.: Private communication 
16. Bell, F., Trollmann, G., B/Sckl, H., Betz, H.-D.: J. Phys. B 15, 

1487 (1982) 
17. Trautmann, D., R6sel, F.: Nucl. Instrum. Methods 169, 259 

(1980) 

D.H. JakubaBa-Amundsen 
Physik-Department 
Technische Universit&it Mtinchen 
Theoretische Physik 
James-Franck-Strasse 
D-8046 Garching 
Federal Republic of Germany 


