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Within a simple semiclassical model it is shown that the presence of an external Coulomb field induces only slight changes in
the energy of a resonant electron-positron state unless for extremely small distances, while the width increases strongly with the

field strength.

A great puzzle in present day physics is the inter-
pretation of narrow lines in the spectrum of posi-
trons emitted in very heavy ion collisions. Originally,
these experimental investigations had been moti-
vated by theory [1,2] which predicts a spontaneous
production of positrons as soon as the charge Z of
the combined nuclear system exceeds a critical value
(Z..=173). The knowledge of both Z and the time
where the colliding nuclei are sufficiently close
together, allows for an estimate of the structure of
the resulting positron lines. The successful search for
positron lines [3,4] has been followed by a long series
of experiments which investigated in detail the posi-
tion and width of the lines, as well as their variation
with system parameters [ 5]. It has, however, turned
out that the presence of the lines for collision systems
with Z extending down to the subcritical region
(163<Z<188), as well as the tiny width of about 70
keV, are in serious contradiction with the original
picture of spontaneous positron production. More
advanced theories which included nuclear resonance
phenomena [6,7] or allowed for multiple electron
excitation in a molecular-type picture [8] ran into
difficulties as it became evident that the position of
the lines did hardly change with Z. Thus, different
production mechanisms have been suggested, among
them the intermediate formation of a new particle
[9,10] or a three-lepton resonance [ 11].

The recent observation of lines with the same
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energy in both positron and electron spectra recorded
in coincidence [12] stimulated an alternative expla-
nation in terms of a decaying magnetic resonance of
the e* e~ binary system [13]. It was suggested [14]
to describe the e*e~ pair by the relativistic spinor
equation [15]

{ca, - [py+(elc)A, ) +cay-[p, — (€/c)A4: ]

+B8,mc? +B.mc? + Vo —Eyw(r)=0, (1)

where indices 1 and 2 refer to the electron and posi-
tron, respectively, Vo= —e?/r is their mutual Cou-
lomb interaction where r=r,—r, is the relative
coordinate of the pair, and 4, ,=efi(6, ,Xr)/2mcr?
is the vector potential in a simple static approxima-
tion [14], ¢ being the spin operator. It should be
stressed that the Dirac-type equation (1) is a rather
crude approximation to the quantum field theoreti-
cal many-body problem where the coupling between
electron and positron proceeds in a highly nonlinear
way through the radiation field. Effects like retarda-
tion or creation of additional pairs can thus not be
described by (1) with the above choice of the inter-
action; it has, however, been shown in the specific
case of an additional self-field that nonlinear cou-
pling need not affect the existence of resonance states
[16], and that some global effect of pair creation may
be incorporated by means of a finite-range interac-
tion between the two particles under consideration
[15].

So despite of its deficiencies, eq. (1) may be used
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as a starting point for the investigation of magnetic
resonances. The equation for the 16-component spi-
noir w(r) can be expressed in terms of 4 coupled
equations for the 4-component quantities .=
FIQF, ys=F ®G,, y,=G,®F,and y;=G,® G,
where F and G denote the large and small compo-
nents of the one-particle Dirac spinor, respectively,

Dy, +Dyys+ (2mc? + Vo —E)w, =0, (2a)
Dy +Doy, +(—2mc?+ Vo —E)ys =0, (2b)
Dyws+Dawe+(Vo—E)w, =0, (2¢)
Do+ Dyws+(Vo—E)y, =0, (2d)

where D, , =cp, ,+6,, +e2hr- (6, X6, )/ 2mer?.

Using the symmetry properties between electron
and positron, a solution of (2) has been searched for
by splitting eqs. (2c¢) and (2d) into four separate
equations which only couple two functions each [ 14].
With the assumption that both particles have equal
energy these equations are

Do+ §(Vo—E)—mc?]y, =0,
Dywo+ 3 (Vo—E)—mcly, =0, (3a)
D2W3+[%(V0—E)+mczl‘//y=0,

ﬁlWJ+[%(Vo—E)+mCZJV//3=0- (3b)

The elimination of y, and v, from (2a) with the help
of (3a) yields an equation for ¥ alone. In a similar
way, (2b) leads to an equation for ; when (3b) is
used. Both resulting equations are per construction
symmetric with respect to the interchange of ¢, and
&,. Their solutions can be classified according to the
total angular momentum j=I+s with I=rxp,
= —rXxp, and s=4(0,+0,). Taking j=0 (the only
case for which so far a resonance has been found),
the angular part of y,, (and ) is given by the single
state |1sjM>=|{1100>. With the ansatz
Was=/fas/1100) one is left with the radial equation
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[ v (czi N 2c? 2—a>
2[5 (Vo—E)F mc*]? dr r 6mr?

1 ( Ld2 207 d
- T S\t —
1 (Vo —E)F mc? dr® r dr
2¢*  4-—a 1 )
T 2mr? T 2mAert

-[%(Vo—E)imCZ]]ﬁx.(s:O- (4a,b)
In this expression, the upper sign belongs to eq. (4a)
for f,, and the lower sign to eq. (4b) for f;. Further,
Vi=dV,/dr, and a= —4 is the angular eigenvalue of
the tensor force 3(o,F)(6, F)—6,+6, and simul-
taneously of the related operator (6, -r)(6,°V )+
(o5°r)(o V) occurring later. The elimination of the
first derivative of f, leads to a Schrodinger-like equa-
tion with an effective, energy-dependent potential
which supports one resonance state. The energy of
that state was found by numerical quadrature to be
1.58 MeV [14], compatible with twice the experi-
mental positron peak energy.

In this letter the question is investigated whether
in an external Coulomb field where the e " e~ pair has
to be created, the resonant state actually survives.
Also, the consistency of egs. (2) and (4) is com-
mented on.

As one is interested in the creation of a resonance
in heavy-ion collisions, the external field is chosen to
be the two-center Coulomb field which depends on
time through the internuclear coordinate R. The lep-
ton—-nucleus interaction is taken of the form

Ven(p) ~1ip,
~1/Rg, p<Rx, (8)

p> Ry,

where Ry is the nuclear radius. In order to avoid the
introduction of additional degrees of freedom into
the equation for the electron-positron pair we shall
restrict ourselves to spin-zero nuclei. Further, the
monopole approximation to the two-center field is
chosen. This is justified because pair creation requires
strong fields which are only available at small R where
the monopole term of the potential dominates. With
this approximation, the potential still depends on the
relative orientation of the pair with respect to both R
and r,, the vector connecting the midpoints of the
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Fig. 1. Position of the electron-positron pair relative to the two
nuclei (with charge Z, and Z,, respectively) at equilibrium.

pair and the nuclei (cf. fig. 1). This orientation will
be chosen in such a way that the potential acquires
its minimum value, with r antiparallel to r, and per-
pendicular to R. Moreover, the distance 7, is deter-
mined by minimising the monopole field which in
the region around the minimum is given by

L1
ro+ir Ry

Vi(r, ro,R)=Z(

+

(Iro—f"H'fR—RK)z)' (9)

2|ro—4riRRx

Equal radii R of the two nuclei have been assumed.
One is thus left with a potential which only depends
on R and r, while for each value of the two variables
ro is computed numerically from dV,/dr,=0.

In order to investigate the behaviour of the elec-
tron-positron pair in this external field, we resort to
the adiabatic approximation and calculate the wave-
function in the combined field V="V,+ ¥V, at fixed R.
After replacing V; in eq. (4a) by V and eliminating
the first derivative of f, by means of the transforma-
tion f,=(E+2mc?-V)"p,/r a Schridinger-like
equation for ¢, is obtained with an effective
momentum p(r, E) given by [14]
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c2p*(r, E)=2[En(E) — Uea(r, E)]
2
V—-E 2c?
= (-——2—) —m2C4 — —r‘z—

4—a 1
2mrd  2m3c?rt

1 (02 14
T E-V+2me*\ 2

32y v 4 2-a)V
4(E—V+2mc?) r omr? )’

(10)

where the effective energy E.g=3($E2—m?3c*) and
potential U,y have been introduced. In the WKB
approximation, the energy E of the resonant state is
obtained from the quantisation of the action integral
¢, while its width I' is proportional to the barrier
penetrability [17]

TFmax

sE)= | par=in,

’min

r

F=(2d¢/dE)"exp(—2 J‘ ip| dr). aan

Fmax

In this expression, Fm;,, Fmax and r; are the three clas-
sical turning points. An interesting property of the
effective momentum (10) is its weak dependence on
energy in the region r;, 7S 7max Where the resonant
state is localised. This means that an increase of the
effective energy implies a similar increase of the
effective potential. As a consequence, the pair equa-
tion has to be solved very accurately for the wave-
function (going beyond WKB) in order to get a
reliable estimate of the resonance energy. For this
reason, the value of g in eq. (4a) has been adjusted
to —4.7 such that both energy and turning points
from ref. [14] could be reproduced in the case of
infinitely separated nuclei (R—o0) where E and I
attain the values of the isolated ¢* e~ pair.

Fig. 2 shows energy and width of the resonance as
a function of R for the two systems Pb+Pb (Z=164,
Rx=7fm) and U+U (Z=184, Rk =7.32 fm). When
the nuclei approach each other, E increases slightly,
and eventually drops very fast when they come into
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Fig. 2. Energy E (left scale) and width I” (right scale) of the e*e™ state as a function of the internuclear distance R. Full lines, Z=164,

dashed lines, Z=184. For more details, see text.

contact and exert a strong attractive force on the pair.
The energy depends not only weakly on R (for
R>2Ry) but also weakly on the combined nuclear
charge. The reason for this behaviour is the localisa-
tion of the resonant state at extremely small dis-
tances (rmax~5 fm). There, the magnetic force
between electron and positron exceeds by far the
external field such that the influence of the latter is
weak as long as the two nuclei do not penetrate each
other.

The situation is quite different as far as the width
of the resonance is concerned. Through its depend-
ence on the outer turning point which lies at rather
large distances (decreasing with R from 400 to 40
fm) I" shows strong variations with R as well as with
Z. Moreover, while the energy depends only slightly
on the particular choice of the potential inside the
nucleus (as long as it is finite), I” is very sensitive
already at R considerably larger than 2Ry. In partic-
ular, the vanishing width around R=2Rg (dotted line
in fig. 2) is an artifact due to the (spurious) diver-
gence of the second derivative of the potential at R
(cf. eq. (8)) which enters into the effective momen-
tum (10) in the region of the outer turning point.
Rather, the width will follow the dash-dotted line if
a smooth potential is chosen. However, a precise
knowledge of the potential inside the nucleus is
required to determine the width for small R suffi-
ciently accurately.
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Having established the survival of the resonant
state in an external Coulomb field, the next point is
its production in heavy-ion collisions. it will take
place via (at least) a second-order process because
the pair wavefunction vanishes at r=0. Taken into
consideration that Z/137 exceeds unity this means
no severe reduction of the production probability. In
terms of the adiabatic monopole approximation used
above, one of the couplings to the vacuum will pro-
ceed via the time-variation of the monopole Cou-
lomb field (which is included in the wave function),
while the other coupling is induced by the potential
not included in the wavefunction (the dipole part in
our case of an /=1 resonance). It should be noted
that the cross section for positron emission which
eventually has to be calculated in order to compare
with experiment, depends significantly on the decay
probability of the resonance, i.e. on its width [18].

However, such calculations are not meaningful at
this stage. The reason lies in the fact that the mag-
netic resonance discussed above lacks its mathemat-
ical foundation as the respective wavefunction cannot
be derived from the original equations (2).

In order to prove this, it is assumed that the solu-
tion of (4) is also a solution of (2). If this were true,
the functions ¥, s=/os]1100> with f,; from (4)
should obey the additional conditions which are
obtained from eqgs. (3a) and (3b) by eliminating y,
and ;. These conditions can be expressed in terms
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of two coupled equations for v, and w5 which are
symmetric in ¢, and @,. It is straightforward to show
that also the solutions to these equations can be
classified according toj. Thus, the angular part of v,
and y; is correctly given by the state | 1100). If this
particular state is inserted, one of the coupled equa-
tions becomes a trivial identity, while the other one
leads to a supplementary condition on f, and f;:

1 d 1
(Vo —E) —mc? (ra_r- +2- mczr)ﬁ"

1 d 1
= §(Vo—E)+mc? <r€;+2_ mc2r>f‘5' ()

Upon operating with d/dr on (5) and eliminating all
derivatives with the help of (4a), (4b) and (5), the
relation between f,, and f; turns into

3 (Vo—E)—mc?1fs=[3(Vo—E) +mc*1fe.  (6)

This relation can be used to replace f; in (4b) by £,
which leads to the following equation,

Va dmc?\ , d
{2V+V_ [(H V. )C ar
2¢? 2mc? 2—a
+-r_(l+ V_ )_Gmrz]

mc* ., of 1 1
iz [V"’ Vo <2V+ Y )]

1 (,d 27d 2
< a B

TV rdr r?
4—-a 1
_ - = 7
+2mr3 2m2c‘2r4) V—+—}f;{ 0, ( )

with V. =4 (V,—E) £ mc?. This equation is similar
but not identical to (4a). The terms containing the
second derivative of f, coincide in (4a) and (7),
whereas the terms proportional to df,/dr do not, and
there are no common solutions to (4a) and (7). The
consequence of this is that the radial function f, from
(4a) is not solution to the original equations (1) or
(2).

Although new calculations which avoid any
manipulation on the structure of (2) seem to indi-
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cate that the resulting potential does not support a
resonant state for j=0 [19], the possibility of find-
ing magnetic resonances is of course still open. For
such investigations, it would be advisable to use more
elaborate equations than (2) as a starting point.

With this situation, the above discussion of the
resonance from eq. (4) reduces to a case study. How-
ever, as all magnetic resonances tend to be confined
to spatial extensions of nuclear, rather than atomic
size [13,14], the implications of the model case will
have a general validity. This concerns the fact that
the energy of the resonant state is strongly correlated
with its value in the field-free case, whereas the width
increases by more than one order of magnitude when
the Coulomb field is switched on (with an estimated
peak value around 50 keV). Thus, if a true magnetic
resonance should show up at an energy around 1.6
MeV, so that it could be considered as explanation of
the experimental positron peak at ~300 keV, the
width would not be inconsistent with the experimen-
tal observation provided that in the field-free case, I”
were well below this value.

I would like to thank P.A. Amundsen, B. Miiller
and P. Kienle for enlightening discussions.
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