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Abstract. A quantum mechanical formulation of the distorted-wave Born theory is 
presented, taking full account of the internuclear potential. Upon expansion in terms of 
one of the two electronic potentials, the strong-potential Born theory is rederived. Thereby 
an additional term emerges which had not been considered previously and which has 
considerable influence on the capture probability at large scattering angles. 

The distorted-wave Born (DWB) theory as introduced by Taulbjerg and Briggs (1983) 
gives a consistent description of charge transfer in energetic near-symmetric ion-atom 
collisions provided that sufficient care is taken to avoid divergencies (Macek 1987) 
which emerge in the case of Coulomb potentials (Dewangan and Eichler 1985). The 
DWB theory consists of the first term in an expansion of the exact scattering amplitude 
in terms of a distortion potential, which is defined through the choice of strong-potential 
Born wavefunctions as distorted waves in the initial and final channels (Burgdorfer 
and Taulbjerg 1986). By means of construction, the DWB theory is symmetric with 
respect to the two electron-nucleus potentials. A first-order expansion in one of the 
potentials yields the familiar strong-potential Born (SPB) approximation (Macek and 
Shakeshaft 1980, JakubaBa-Amundsen and Amundsen 1980) which has been success- 
fully applied to asymmetric collision systems (Macek and Alston 1982, Amundsen and 
JakubaBa-Amundsen 1984a, McGuire and Si1 1983). 

So far, the internuclear potential has not been taken into account in the DWB 

formulation. However, when charge transfer occurs in a reaction where the projectile 
and target nuclei form a compound system with a decay time of the order of the inverse 
energy transfer to the active electron, the internuclear potential must explicitly be 
included in a correct description. It has been taken into consideration in a quantum 
mechanical formulation of the SPB theory (Amundsen and JakubaBa-Amundsen 1984b, 
JakubaBa-Amundsen and Amundsen 1985), and structures in the capture probability 
were predicted in the case of resonant nuclear scattering. Subsequent experiments 
verified these predictions (Schemer et a1 1985, Horsdal et a1 1986); however, some 
discrepancies between theory and experiment at large scattering angles remained 
unexplained. 

In this letter we present another derivation of the quantum mechanical SPB theory 
by first extending the DBW formulation to include the internuclear potential V ,  to all 
orders. For the sake of simplicity, we restrict ourselves to the case of a pure three-body 
problem and consider the transfer of a target electron into a bound state of the projectile. 
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For rearrangement collisions, the Hamiltonian H is split differently in the entrance 
and exit channel 

H = TN + VN + T,+ VT+ vp= H, + V, = Hf+ v’ (1) 
where TN and T, are the kinetic energies of the relative nuclear motion and of the 
electron, respectively, while Vp and VT denote the potential of the electron in the 
projectile and target field, respectively. The distorted waves x;” or x;-’ in the entrance 
or exit channel are taken as eigenfunctions to HI or H,, respectively. In close analogy 
to Burgdorfer and Taulbjerg (1986) we choose 

H, = H - VTG‘,f’Vp V,  = v,G‘,+’ V, 

Hf=H-VpG‘,-’VT V, = v,G‘,-’v, 

Gy’ = [ E  - ( TN+ T,+ V,) i i ~ 1 - l  

(2) 

where the Green function GY’ for the potential V, ( A  = N, P, T) is defined by 

& + O  (3)  
E being the total energy of the system (including the energy of the internuclear motion). 
Note that H, and H,- are not Hermitian. 

The strong-potential Born functions are defined in the following way (JakubaBa- 
Amundsen and Amundsen 1985) 

x(+’ I = ( 1 + G &! v,) ( 1 + G :; V, ) $ I  = ( 1 + G “+,! v,) $, , 
xi-’ = (1 + GL; vT)(l  + G‘,-; vN)+’ = (1 + G“;! vT)+fN. (4) 

In these expressions, 4, is the eigenfunction to TN + T, + VT and 4, is the eigenfunction 
to TN+ T,+ V,, while and $fN in addition include the internuclear potential VN. 
The Green function 

It can easily be verified that xi” indeed is the eigenfunction to H,. To this aim, 
the solution to H, is expressed by means of the Lippmann-Schwinger equation in 
terms of 

contains the potential VA+ V,. 

( 5 )  x(+’ I = @iN+Gi+’(VP- VTG‘,C’VP)$~N 

where GI+’ is the Green function to H,. With the help of appropriate propagator 
relations (such as G = Go+ G,VG for H = Ho+ V), Gi+’ can be written in the following 
way 

Gi+’= GC;+ Gf+’( VT- V,G~’V,)G‘,+,! 

= Gg; + Gj+’ VTG‘,+’. ( 6 )  
Upon insertion into the term Gj+’V,$,, of ( 5 ) ,  the SPB expression (4) is recovered. 
The proof for xi-) proceeds in a similar way. 

The exact transition amplitude for electron capture is given by (Joachain 1975) 

w, =(x;-’l v;l*:+’)+(x;-’l K O -  Vr’l4J (7 )  
where V,, = V, + V, is the asymptotic perturbation in the initial channel. The second 
term in (7) is the surface term which accounts for the transfer induced by the final 
distortion V,- V’, (with V,, = V, + VT). Replacing the exact three-body scattering state 
Yri+’ by the distorted wave xi” one arrives at the distorted-wave Born theory: 

W : ~ ~ = ( X : - ) ~  V,G‘ ,+’V,IX~+’)+(+~~/  vN+ ~ p +  V T G C ~ V , ~ ~ ~ ) .  (8) 
Thereby the surface term has been simplified by means of appropriate propagator 
relations. It can be shown that WFwB indeed is symmetric in the potentials Vp and VT. 
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In the case of asymmetric systems, e.g. Zp<< 2, (where Zp and 2, are the charges 
of the projectile and target, respectively), one may expand VTG‘,+’VpI~$+’) in (8) up 
to first order in Vp, which according to (4) corresponds to replacing xi” by (CliN. Then 
one arrives at the SPB approximation in its prior form, which can be written as a sum 
of three terms: 

Ws;PB = wy + wy + w p  
w$” = (x$-)I v N I  4i) w$’ = (x$-)l vPl $IN) (9) 

wgl) = ($fN/ VPI!biN - 4i)- 
The charge transfer induced by the recoiling nucleus is described by Wg’, while W:) 
denotes the capture mediated by the projectile field. In contrast to the two-potential 
formula for excitation, there appears in the case of rearrangement collisions a third 
term, WY’), which is of Brinkman-Kramers type. It vanishes for V, = 0 and may thus 
also be related to recoil; due to the presence of Vp it shows, however, a different 
dependence on scattering angle 19 than Wp’. We would like to note that this term 
also emerges in the derivation of the SPB theory from the Faddeev equations; it has, 
however, been overlooked previously (JakubaBa-Amundsen and Amundsen 1985). 

Using the same techniques as in JakubaBa-Amundsen and Amundsen (1985), W f ’ )  
is found to have two contributions, a recoil term W;(O1) which survives in the semi- 
classical limit, i.e. when the nuclear scattering amplitude f”( K,  6) varies slowly with 
energy on the scale of the energy transferred to the electron, plus a sticking term W;(Ol) 

which is related to the inner part of the internuclear wavefunction and consequently 
describes transfer while the two nuclei stick together. Explicitly, one has in the case 
of pure Coulomb fields (in atomic units h = m = e = 1): 

i d ( A E  -v2/2+q!f)+ 
A E  -v2/2+qvf 

In these expressions, cp:(p) and cpJ(p )  are the electronic target and projectile bound- 
state wavefunctions, respectively, in momentum space, and $ denotes the Fourier 
transform of the bound-state function cp(r) multiplied by l /r .  The energy difference 
between the final and initial electronic states is abbreviated by A E  = E ; -  ET, K ,  = p,v, 
and Kf = ppf are the nuclear momenta and p, and pf are the reduced masses in the 
entrance and exit channels, respectively. Equations (10) and (11) is accurate up to 
the order of m/ M (the mass ratio between electron and nucleus) such that U, = vj = U 
equals the beam velocity. Also, a weak q dependence in the scattering amplitude has 
been neglected as well as a contribution to the sticking term resulting from the overlap 
of the internuclear wavefunction with a plane wave within the nuclear radius. In the 
case of hydrogenic wavefunctions, the expressions (10) and (11) can be reduced to 
one-dimensional integrals which are readily evaluated numerically. 
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In order to investigate the influence of Wg” on the capture amplitude, we have 
calculated electron capture from the carbon K shell by 1 MeV protons into the ground 
state as a function of the scattering angle. As is evident from figure 1, the inclusion 
of W?” causes a strong decrease of the capture probability at the larger scattering 
angles in contrast to a description where WFl) is omitted. A comparison with experi- 
mental data from Horsdal Pedersen (1987) and Scheurer et a1 (1985) clearly favours 
the theory based on equation (9). 

There is thus a strong indication that Wjol) should not be neglected in future 
large-angle SPB calculations. However, as concerns the numerical evaluation of W F B ,  
a problem arises due to the fact that W?’+ W;)  have hitherto been evaluated in full 
peaking approximation which seems (at least for Wlfi”) hard to relax, while WF” is 
calculated from (IO) and (1 1) without approximation. Taken into consideration that 
both terms are roughly of the same magnitude but different in phase, the inaccuracy 
of the peaking approximation may be strongly enhanced. This is presumably the reason 
for some overestimation of the capture probability at  the smaller scattering angles. 

In conclusion, we have shown that a consistent derivation of the strong-potential 
Born theory from a quantum mechanical formulation of the distorted-wave Born theory 
leads in the case of a non-vanishing internuclear potential to an  additional term which 
is also of first order in the weak electronic potential. This term should be included in 
the calculation of capture probabilities because it is of the same order of magnitude 
as the potential and recoil capture contributions considered previously. The result will 
be a decrease of the capture probability with scattering angle at large angles, in closer 
agreement with existing experimental data. 
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I should like to thank E Horsdal Pedersen for the communication of experimental 

3 
Figure 1. K-K capture probability in 1 MeV p + C  collisions as a function of scattering 
angle 19. The full curve denotes a calculation with the inclusion of Wip”, the broken curve 
one without W;:’).  Comparison is made with experiments for p +  CH,: *, Horsdal Pedersen 
(1987); A, Schevrer et al (1985). 
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results prior to publication and P A Amundsen for enlightening discussions. Support 
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