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The current theoretical models for the description of electron transfer in adiabatic, intermediate and 
high-energy collisions are reviewed. Particular emphasis is laid on the recent development of atomic 
theories suited for fast or asymmetric ion-atom encounters. The comparison with other theories and 
with experimental data on total as well as differential capture cross sections is used to determine the 
applicability of a specific model. The selected examples concern capture to bound states, to 
continuum states, radiative transfer as well as capture in the presence of an isolated nuclear 
resonance. 
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I. Introduction 

There is continued interest being devoted to the study of electron capture from target 
atoms by ionized projectiles because this is one of the most intricate problems in atomic 
collision theory. The difficulties in the description of inelastic electronic processes are 
based on the long-range nature of the Coulomb interaction, which does not even 
asymptotically permit the scattered particles to leave the interaction zone. Thus a careful 
treatment of quasi-divergent series is required, and it is crucial to include the correct 
boundary conditions 1 . The additional difficulties occurring for rearrangement processes 
such as electron capture are connected with the fact that there are different perturbations in 
the entrance and exit Channel. Hence an approximative Solution of the three- (or many-) 
body problem in terms of perturbative approaches is made complicated through the 
presence of more than one natural expansion parameter 2. Further problems arise from the 
non-orthogonality of the initial and final electronic states. 

In order to classify the various theories it is useful to divide the collisions into three 
different regions which are characterized by the collision velocity v. A s reference velocity 
the classical orbiting velocity of the active electron in its initial or final State is taken 
whichever is more tightly bound, ve = max ( Z T / n T , Z P / n P ) . The projectile and target 
nuclear charges are denoted by Z P and Z T , and the corresponding main quantum numbers 
by n P and n T , respectively. The three regions are chosen to be the adiabatic region 
(v « v e ) , the intermediate region (v ~ ve) and the high-energy region (v » v e ) . 

In the adiabatic region the collision is sufficiently slow for the electron to adjust itself to 
the instantaneous two-center potential created by the two nuclei , so that an intermediate 
molecular-like complex is formed 3 . The excitation or transfer in this case is caused by the 
Variation of the two-center potential with t ime 4 . In the l imit of very small collision 
velocities there is no difference in the mechanisms for excitation and transfer because both 
processes occur predominantly at small internuclear distances R where the quasi-
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molecular Orbitals have not separated into target- or projectile-centered ones. The relevant 
internuclear distances are determined from the inverse of the momentum q transferred to 
the active electron, R ~ q~x ~ v / A £ , A £ being the energy transfer to the electron, or in 
special cases also from avoided crossings of the tf-dependent energy levels of adjacent 
electronic states. A t somewhat higher (but still adiabatic) velocities larger values of R w i l l 
often be important, and one has to account for the different reference frames of the 
electron in the initial and final Channel by means of appropriate translational factors 5 ' 6 . 
The time-derivative of the molecular orbitals can serve as an expansion parameter in the 
adiabatic regime as long as the relevant atomic matrix elements vary slowly with time, 
which is the case for electronic states wel l separated in energy. 

In the intermediate region a description of the transfer process is complicated because in 
general no appropriate expansion parameter is available which would allow for a 
perturbative treatment or for a restriction to a small number of intermediate states. The 
only exception is the case of very asymmetric collision Systems (i.e. Z P « Z T or 
Z T « Z P ) where an expansion in terms of the weaker of the two internuclear potentials 
can be used 7 . In the general case one has to resort to coupled-channel calculations or to 
variational procedures. The same is true i f more than one electron is transferred and the 
Classification "adiabat ic" or 4 'h igh-energy" does not hold simultaneously for all active 
electrons. 

The high-energy region is again accessible to perturbative approaches. A s the target 
electronic states are only weakly perturbed by the fast projectile (and vice versa), a 
description in terms of target or projectile eigenstates (atomic description) is possible 8 . It 
is this region where the difference between excitation and transfer is most prominent: i f 
the velocity v is sufficiently high, excitation is very accurately described by the first-order 
Born approximation 9 , while for electron transfer at least the second-order Born 
approximation is required 1 0 , which is in accordance with the classical picture that a 
double coll is ion is necessary for electron capture to take p l ace 1 1 . 

In none of the three velocity regions has the ideal theory been found yet, not even in the 
cases where perturbation theory is applicable. In the adiabatic region, there are 
ambiguities in the construction of the translational factors, while the most advanced 
high-energy theories suffer from renormalization problems. 

In this article a survey is given of the current theories for Charge exchange. The 
different atomic perturbation approaches are derived from the exact expression of the 
capture amplitude for a three-body problem. For the lower coll is ion velocities, the 
electronic wave function is expanded in terms of atomic or molecular basis states, which 
results in coupled equations for the transfer amplitude. Variational theories are discussed, 
as are classical and quantum mechanical methods which aim at a direct numerical Solution 
of the Schröd inger equation. For the sake of a transparent presentation of these 
approaches, the restriction to a Single active electron has been made. The extension to 
multi-electron Systems is discussed subsequently, with a special consideration of the 
problems arising from the electron-electron interaction. Modifications in the case of 
relativistic impact velocities are also addressed. 

The ränge o f applicability of the various theories is estimated by means of comparison 
with a huge body of experimental data which have become available through the event of 
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powerful heavy-ion accelerators. There is a rather detailed study of the low-energy region 
in a recent article by W i l l e and Hipp le r 4 so we shall concentrate on the high-energy 
region, as wel l as on the intermediate region in the case of asymmetric coll is ion Systems 
where the atomic perturbation approaches can be tested. A n attempt is made to compile 
the results contained in a great number of original papers as well as to update the review 
a r t i c l e s 2 ' 6 - 8 1 2 on this rapidly developing field. 

The last section deals with an example concerning the interplay between atomic physics 
and nuclear physics: i f the transfer process is influenced by a nuclear reaction, it can serve 
as an atomic clock to measure nuclear reaction t imes 1 3 . A s compared to the interference 
of direct processes such as excitation or ionization, with nuclear r eac t ions 1 4 , 1 5 the transfer 
process allows for the study of a larger variety of nuclear resonances. This is mainly due 
to the fact that the electronic energy transfer which serves as a time scale for the nuclear 
reaction, depends strongly on the collision velocity. On the other hand, such interference 
phenomena provide a unique possibility of probing the atomic transfer amplitudes during 
the col l is ion. Atomic units ( h = m = e = 1) are used unless otherwise indicated. 

IL Theoretical Models 

The description of atomic processes is greatly simplified by the fact that the mass m o f 
the electron is much smaller than the mass M of the nucleus. Therefore, the energy 
transfer A £ to the electron is in most cases only a negligible fraction of the nuclear 
coll is ion energy Restricting ourselves for the moment to the presence of a Single 
electron, we have in the case of Charge transfer from the target to the projectile 

A £ = ef - e, + v 2 / 2 = - Z p / l n p + Z l / 2 n l + v 2 / 2 « E-t , 

1 . 1 M P M T -
E i = - ^ v 2 = - P T v 2 , d l 1) 

2 2 M p + M T 

where M P and M T is the mass of the projectile and target nucleus (in units of w) , 
respectively. It is thus generally possible to neglect the influence of the inelastic electronic 
processes on the motion of the nuclei and one may define a classical path for the heavy 
part icles 1 6 . This reduces the quantum mechanical problem to a semiclassical one, where 
the electronic degrees of freedom are governed by a time-dependent electronic 
Hamiltonian, with the time dependence resulting from a given classical trajectory for the 
relative internuclear motion. There are only a few exceptions which do not allow for such 
a semiclassical description. These concern collisions with extremely low impact energy, 
as wel l as interference effects between amplitudes which arise from different classical 
trajectories. In the fol lowing, the semiclassical picture is chosen as long as it is equivalent 
to the quantum mechanical one. 

1. Atomic Three-Body Models 

In the simplest case of two nuclei and a Single electron, the classical treatment of the 
internuclear motion reduces the three-body problem to the motion of the electron in the 
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time-dependent fields of the projectile and the target nucleus. Nevertheless, many of the 
intricacies of the füll three-body problem remain because the correct boundary conditions 
have to be taken into consideration and it is not possible to represent the exact scattering 
wave function of the electron by means of a tractable closed expression. The wave 
function can, however, be obtained from the three-body approaches with the 
nucleus-nucleus interaction put equal to zero. The formal Solution can either be defined by 
the Lippmann-Schwinger integral equa t ion , 7 , or by the sum of three functions which obey 
the coupled Faddeev equations 1 8 . 

A s the scattering wave function enters into the exact transition amplitude, the methods 
for evaluating this function can immediately be used to calculate the transition amplitude. 
In the fol lowing, the exact transition amplitude is cast into a form suitable as a starting 
point for approximative treatments. After a discussion of the relevant potentials, the 
current atomic theories w i l l be derived from it. 
1.1. E q u i v a l e n t F o r m s o f the T r a n s i t i o n Amplitude 

In the semiclassical approximation the electronic Hamiltonian H e consists of the kinetic 
energy Te plus a time-dependent interaction W. For direct reactions, it is useful to split H e 

into an unperturbed part H 0 which defines the asymptotic states, and a small perturbation 
V. For rearrangement collisions, the Splitting of H e is different for the initial Channel / and 
the final Channel / , causing the perturbation to be not necessarily smal l : 

H e = Te + W(r, /) = H i 0 + Vi 

(1.1) 
= H / o + Vf. 

It is important to note that the initial and final states, <p, and <py-, which are eigenstates to 
HJO and H f 0 , respectively, are originally defined in different reference frames. In order to 
construct a transition amplitude it is necessary to transform to a common reference 
System. Let us according to F i g . 1 define a reference frame which is centered on the line 
connecting the two nuclei and displaced from the projectile by a vector xy. This frame is 

Fig. 1. Coordinates for the three-body System consisting of projectile (/>), target (T) and electron (e). r and r ' 
denote the location of the electronic initial and final State, respectively, at a given internuclear Separation R. 
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called "projectile correlated" frame and all quantities defined in this System are denoted 
by a prime. Likewise , the center of the "target correlated" reference System is displaced 
from the target by a vector x , , and all quantities referring to this System are unprimed. 
Through an appropriate choice of JC, and x f a selection of special reference frames can 
easily be made; in particular, a non-zero JC, and x f allows for the possibility of sl iding 
coordinates for <p, and <pf. 

The transformation U from the target correlated frame to the projectile correlated frame 
is an extended Gali lean transformation 

1 
U = exp —/ ät-(R + i / - xy ) 2 ) x e x p ( - / ( R 4- x,- - x f ) r ' ) 

x exp(/(R + X,- - x 7 )p) . (1.2) 

It consists of a translation in coordinate space (p is the conjugate momentum to r ) , a 
transiation in velocity space plus an energy translation 1 9 . In case of a linear motion 
(R = 0), U reduces to a Gali lean transformation. 

The transformation of an arbitrary wave function (defined in the target correlated 
frame) into the projectile correlated frame and vice versa thus reads 

<A'(r', t) = £ < K r , t) , 

(13 ) 
<Kr, t) = £ V ( r ' , t) , 

where the second relation follows from the unitarity of U. 
In the fol lowing, the target correlated reference frame (i.e. the frame of <p,) is chosen 

for the evaluation of the transition amplitude. A n y quantities without primes are 
understood to be defined in this frame. 

Let $ + ) be a State which at early times (t - » - oo) coincides with the State <p;, and 
a State which asymptotically ( t —> +<*>) develops into the State <pf. The transition 
amplitude from $ + ) to iß ) can be written in the general f o r m 2 0 

dt(täT\t)\He - i 3 f | $ + > ( 0 > , t - + oo . (1.4) 

This form of the transition amplitude bcomes evident by considering two special cases: i f 
(/^ + ) and are exact Solutions to H e the second term vanishes and the transition 
amplitude reduces to the form well-known from scattering theory 2 1 . If on the other hand, 

and are stationary Solutions to H e which, being defined in the same reference 
frame (r = r ' , i .e. R + x, = X / i n F i g . 1) are orthogonal, the first term vanishes and a ß 

attains the form of molecular perturbation theory 2 2 . 

In order to cast (1.4) into a form suitable for perturbative treatments we assume at first 
that ^ + ) and are exact Solutions to H e , i .e. 
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( i d t - H e ) W ) = 0 (1.5) 

wi th = <#+ ) or </f}-). 
Next we introduce an arbitrary Splitting of the Hamiltonian in the entrance and the exit 

Channel 

H e = H i + Vi = H f + V f (1.6) 

where H t or H f need not necessarily be hermitean (//, ± H ? , Vx, ± V ? . . . ) . 
Correspondingly, distorted waves \ i and Xf are defined as eigenstates to //,- and / / / , 
respectively. In the general case, they do not coincide with <pt and <pf, but reduce to them 
asymptotically 

i d x p X t ) = H i X

( i + \ t ) , X

( i + ) ( t - ^ -oo) = cpi 
(1.7) 

i d t x ( f \ t ) = H f x < f \ t \ x (

f - \ t - > + « ) = 9/ • 

In order to derive the post form of the transition amplitude, we shall drop the assumption 
that (/^~} is exact. The prior form is subsequently obtained from an approximation to 

If in (1.4), « /^ _ ) is replaced by X f ~ } and a partial integration is performed in the term 
containing idn one obtains with the help of (1.6) and (1.7) 

f t 
— „D+ OfiO) = 4 + - 1 j _ dtixy\t)Iv/(oi ü+\t))91oo. ( i . 8 ) 

The term a f i * = O t } " ^ - 0 0 ) | < A / + ) ( - ° ° ) ) is called surface term. In order to cast it into a 
more convenient form, the expression 

j ' d t [ ( c p i ( t ) \ H f - i d t \ x ^ \ t ) ) ] * d . 9 ) 

which due to (1.7) is zero, is added and a partial integration is carried out. Recall ing that 
0(+)(_oo) = one finds for t - > oo: 

= - / j _ A ^ W l V / - V / k / ( 0 ) (1.10) 

because at f—» oo, the overlap ( X f ~ \ 0 \ < p M ) vanishes. Equation (1.8) with (1.10) 
constitutes the post form of the transition amplitude. 

In c'omplete analogy, the prior form is obtained from (1.4) by means of replacing $ + ) 

by x ( i + \ and by adding - i d t { < p j ( i ) \ H i - *d,U-+ )(0> to the surface term: 

a f i ( t ) = a f r - i d t ( ^ ~ \ t ) \ V i l x F X O ) , * - > 0 0 

4 ~ = - i 

(1-11) 

d t { < p j { t ) \ V f - V f | x { + ) ( f ) > . 
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A s long as in (1.8) and in (1.11) are exact Solutions to H e , the prior and the post 
form are exact and identical. A n alternative derivation of (1.8) and (1.11) has been given 
by Det tmann 2 3 , however, without consideration of the surface terms. These surface terms 
indeed vanish for the case of H t = H i 0 and H f = H f 0 . Then the distorted waves are 
identical to the asymptotic states <p,, cp/ and one has 

4 + = - 4 ~ = - i j dt{q>j{t) | Vi - Vf\ q>i(t)) = 0 . (1.12) 

In the general case (//, H l 0 , H f H f Q ) however, the surface terms describe the transfer 
resulting from the perturbation V, — V, and Vf — Vf in the entrance and exit Channel, 
respectively 2 1 . 

1.2. Discussion o f the Potentials 
The formulas for the transition amplitude as well as the subsequent approximations are, 

strictly speaking, only valid for short-range potentials. In the following the difficulties 
related to the Coulomb character of the actual potentials are discussed. A l s o the influence 
of the nucleus-nucleus interaction on the transfer cross section is studied, as wel l as the 
occurrence of recoil forces. 
1.2.1. Long-range atomic potentials 

For Coulombic potentials which behave like r " 1 for large distances, the formal series 
expansions do not in general converge. In order to avoid such problems one may treat the 
long-range part separately 8 such that the remaining potentials decay at least l ike r~2 which 
is sufficient for the convergence of the series. Let us demonstrate this for the case of the 
entrance Channel where the perturbation V, contains the Coulomb interaction VP of the 
electron with the projectile. W e take the Splitting H e = H t + V/ in the following way 

H i = H i 0 + W i , V i = V i - W t , Wt=-Zp/R. (1.13) 

For infinite Separation of the nuclei R —> 00, 0 n e has rP « R (where rP is the distance 
between the projectile and target-bound electron, cf. F i g . 1), and VP is compensated by 
— W j . For large but finite Separation, VP — W, and thus V, behaves like 
VP — Wj — — Z P r T R / R 3 — R ~ 2 , such that the appearance of logarithmically diverging 
phases are avoided. O n the other hand, it is easily possible to construct eigenfunctions to 
H i from (1.13) i f the Solutions <p, to H i 0 are known. Inserting the ansatz 

*{+) = e / 5 ( ' V / (1-14) 

into the time-dependent Schrödinger equation (1.7), the phase S(t) is , in the case of a 
straight-line path with impact parameter b, R = b + vf, determined from 

S(t) = -
Z P 

d t W t = —-\n(vR - v2t) . (1.15) 
v 

A straight-line path is in most cases a good approximation for high coll is ion velocities v. 
But even for a Rutherford trajectory, S(t) can be evaluated ana ly t ica l ly 1 2 . A similar phase 
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transformation can be performed for the final Channel, such that both V, and V/are made 

short-range. This procedure has, however, the drawback that these potentials are often not 

physical in the interaction region and, more severely, that difficulties arise in their use as 

expansion parameters, because cancellations can occur in the lowest-order expansion 

terms, which lead to an incorrect behavior of the differential capture cross section. 

Other ways out of the Coulomb-tail dilemma consist in using potentials which are 

ultimately screened; however, this leaves the ambiguity with respect to the determination 

of the Screening parameter. For incomplete Screening, the remaining Coulomb tails pose 

the same problems as in the pure Coulomb case 2 4 . Aiternatively, the divergence problems 

may be circumvented by working with wave functions and matrix elements which are off 

the energy shel l 1 and which have the required convergence properties such that series 

expansions do exist in the mathematical sense. The physical quantities are obtained by 

eventually performing the on-shell l i m i t 2 5 . W e shall return to these methods in a 

subsequent section. 

1.2.2. Nuclear potential 

In the semiclassical formulation the internuclear potential enters only into the defmition 

of the classical trajectory, and a quantum mechanical theory is necessary to estimate a 

further influence. L i k e in the semiclassical case, the nuclear force should not appear in the 

transition Operator, as long as nuclear reactions play no role, and it should not be mixed up 

with corrections of the type Wj from (1.13) for the Coulomb taii . However, the 

internuclear interaction is contained in the asymptotic states which are eigenfunctions of 

both the electronic and the nuclear Hamiltonian. Using the asymptotic form of the nuclear 

Coulomb waves, this results in an additional phase of the transition amplitude 8 

4 = a ß ( H j V b ) 2 i * , j] = Z P Z r / v . (1.16) 

For total cross sections this phase is o f no consequence. However, the calculation of 

differential cross sections requires in the quantum mechanical treatment an integration 

over b which is the component of R perpendicular to the ve loc i ty 2 6 

2 
(1.17) 

The scattering angle is denoted by and m > 0 is the difference between the magnetic 

quantum numbers of the electronic states in the initial and final Channel. For large 

arguments, the Bessel function Jm can be approximated by its asymptotic form. Apply ing 

the method of stationary phase, (1.17) reduces to the semiclassical fo rmula 2 7 

da . n d a R u t h T) 

s r ' * » » - S T * B = ^ C O I M ' ( 1 J 8 ) 

daRath/dil is the Rutherford cross section. A s quasi-elasticity ( A E « E i ) and small 

scattering angles are already required for the formulas (1.16) and (1.17) to hold, the 

da 

d£l 
IfXjV db b l + 2 , V m ( 2 ^ sin & / 2 ) a ß 
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additional condition for the applicability of the stationary phase approximation imposes 
the fol lowing restriction on the validity of the semiclassical theory 

— « # « 1 . (1.19) 
f l i V 

Strictly speaking, (1.18) assumes the calculation of a ß with a straight-line path for R . The 
generalization to Coulomb trajectories is tr ivial , but then there is no longer such a simple 
relation to the quantum mechanical results. 

A numerical investigation 2 7 shows that the equations (1.17) and (1.18) lead to identical 
results for small impact parameters (i.e. large scattering angles). The deviations at large 
impact parameters result from a different decrease of the transfer probability P { b ) with b: 
asymptotically, the quantum mechanical theory postulates a b~4 dependence (which is the 
dependence of the Rutherford cross section) while the semiclassical theory gives a nearly 
exponential decrease. The two theories are compared in F i g . 2 for electron capture from 
the A r K-shel l by 6 M e V protons within several atomic models (to be discussed later), and 
deviations emerge only at rather high b. 

P(b) 

b (104 fm) 

Fig. 2. Capture probability from the Ar K-shell in collisions with 6 MeV protons as a function of impact 
parameter. The experimental data • (Cocke et a/.28) are compared with theories for K - K capture. Quantum 
mechanical calculations: - - - - - CDW (Belkic et a/.29), BK (Belkic et a l . 2 9 ) . Semiclassical theories: 

— IA (Jakubaßa-Amundsen and Amundsen30), SPB (Alston31), BK (Greenland27). 
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1.2.3. Recoil 
If the selected frame of reference does not agree with the center-of-mass System, the 

electronic Hamiltonian contains a recoil potential. The only exception is the case of a 
rectilinear nuclear trajectory where an arbitrary translation along R again leads to an 
inertial frame. The recoil potential can be obtained by means of a transformation from the 
center-of-mass System to the selected reference frame, i.e. by means of the Operator Ü 
from (1.2) with the choice Xj = M P R / ( M P + M T ) . A n application of U to the 
Schrödinger equation (1.5) yields the transformation formula for H e 

H e - > H ' e = UHeÜ+ - i U d t U + . (1.20) 

The evaluation of H ' e is most easily achieved i f U is split into its three exponential factors, 
U = U 3 U 2 U \ , and i f the corresponding transformations are carried out successively . 
Wi th H e = Te + W ( r y t) it follows 

H e = U 3 U 2 [ T e + W ( r ' + a R - x , , 0 - ( a R - x f ) p - idt]Ü}U} 

= Te + W ( r ' + a R - x f , t) + VR\ VR = ( a R - x f ) r ' (1.21) 

with a = M T / ( M P + M T ) . H ' e contains, apart from a coordinate transformation in the 
potential W, an additional term VR which is determined by the acceleration. In two special 
cases, 

(a) the transformation into the target System ( x f = R ) , 
(b) the transformation into the projectile System ( x f = 0), 

this recoil field is explicitly 

y = ( " M ^ / ^ + M r ) R r r , case (a) 
* [ M T / ( M P + M T ) R r P , case (b) 

In many cases, the Charge transfer which originates from this potential cannot be 
neglected. A t large scattering angles, the recoil contribution may even be the dominant 
one ( " k n o c k - o n " capture 3 2 ). 
1.3. Approximations to the T r a n s i t i o n Amplitude 

During the course of time many high-energy approximations have been introduced. 
They were often closely related to the problem under investigation. A consistent 
derivation of these approaches from the formal theory, allowing for an estimate of their 
validity, was given only much later. The connection between some of the methods is 
presented in recent publications 7 3 3 ' 3 4 . In the fol lowing, the derivation and interrelation 
between al l current high-energy theories is carried through, that is to say the Born series, 
the continuum distorted wave series ( C D W ) , the strong potential Born approximation 
(SPB) , the impulse approximation ( IA) , the distorted-wave Born approximation ( D W B ) 
and the eikonal theory (E). A l l methods are either based on an expansion in terms of one 
(or both) o f the electron-nucleus potentials, or in terms of gradient terms which relate to 
the kinetic energy. 
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Before formulating the theories, some important propagator relations are mentioned. In 
these relations, surface terms which arise from the partial integrations implemented in the 
derivation are neglected. Therefore, these relations hold, strictly speaking, only for 
short-range potentials. For an arbitrary Splitting of H e i H e = H x + V A , the retarded 
( G A

+ ) ) and the advanced ( G A

_ ) ) Greens functions to H x can be defined by 

(id, - / / A ( f ) ) G A

± } ( f , O = 8 ( t - t') (1.23) 

with their interrelation [ G [ ~ \ t , t ' ) ] + = G [ + \ t r , t ) . For a time-independent H x , their 
spectral representation reads 2 3 

G?\t, O = - M d<o - J — - e-i(*-<'\ e +0 . (1.24) 

277 J (O — H \ i IE 

A n Operator related to G A is the time-development Operator P A which is defined through 
X \ ( t ) = P A ( r , t')x\(tr) where Xx. i s Solution t o H x . Wi th the help of (1.24), the fol lowing 
relation can be derived for time-independent potentials 2 3 

G i + ) ( f , n = - / O a " f ' A a , ' ' ) d . 2 5 ) 

where 0 is the Heaviside step function. It can be shown that this relation holds also for 
time-dependent potentials. From G A , the Greens function G of the complete H e can be 
constructed, 

G ( / , *') = Gx(t, O + dr G\(t, T ) V A ( T ) G ( T , t') 

= GAU t') + j dr G(t, T ) V A ( T ) G a ( T , r ') , (1.26) 

and correspondingly, the Lippmann-Schwinger equation holds for the exact wave function 

Wt) = Xx(t) + j G(r , t ' ) V k { t ' ) x A t f ) . (1.27) 

A l l these relations may be verified through the application of idt — H e on both sides of the 
equations. 
1.3.1. B o r n series 

The Born series is an expansion of the transition amplitude in terms of the asymptotic 
perturbations V/ and Vf. A s to each order, Vi and Vf enter in a Symmetrie way, this method 
is especially suited for near-symmetric collision Systems { Z P « Z T ) . 

W i t h the Splitting H e = H i 0 + Vt = H f 0 + Vfy the prior form (1.11) of the transition 
amplitude reads 
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aß = - i * < ^ - > ( 0 | V / ( O k , - ( 0 > d-28) 

because the surface term vanishes. For the sake of simplicity, we restrict ourseives to a 

recoil-free motion, such that the total potential W is 

W ( t ) = Vj + Vf\ Vi = Vp 
(1.28a) 

Vf= VT 

where VP denotes the electron-projectile and VT the electron-target interaction. For the 

series representation of the exact State t/>j-), E q . (1.27) is used with the choice Vx = Vf, 

and the Greens function G is expressed in terms of the free Greens function G 0 by means 

of the relation (1.26) with H x set equal to Te. Thus 

Vf\t) = <Pf{t) + dr G\TV, T)Vf(T)cpf(T) 

+ J drdt' G<0-\t, t ' ) [ V j { t f ) + V / f ' ) ] G ( - > ( / \ T)Vf{T)<pf{T) . (1.29) 

Upon expressing G successively in terms of G 0 and inserting this expansion into the 

transition amplitude (1.28), the Born series is recovered. The second-order Born 

a p p r o x i m a t i o n 1 0 , 3 5 comprises the first two terms of (1.29) 

4 ' + 2 ) = *ßK + 4 2 ) > 4 K = "/1 a ( < p f ( t ) | V i ( t ) | ^{t)) 

(1.30) 

a f = - i dt dr { < p f ( T ) \ V f { T ) G \ ? \ T , t ) V i ( t ) \ < p i ( t ) ) 

where is the Brinkman-Kramers ( B K ) approximation 3 6 . The evaluation o f a j | K is 

simple and shall not be repeated here. The time integrals in aj ?

2 ) extend formally over the 

whole region (—oo < t, r < +oo); if, however, G 0 is expressed in terms of P0 by means 

of (1.25), the restriction t < r becomes obvious. For further evaluation, one has to insert 

the projectile final State after its transformation to the target frame of reference (using U 

from (1.2) with JC, = xf = 0) 

cpf(t) = Ü+<p'f{t) = e i R r r e - i i l R e x p ^ j ' R 2 dt^j<p}(rT - R, t) . (1.31) 

W e introduce the Fourier transform 

eiRrT(p}(rT - R, t) = e i R R | dk \k)e~ikR(p}(k - R, t) (1.32) 
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where | k ) = ( 2 7 r ) ~ 3 / 2 exp(zkr r ) and (p the momentum representation of 9 , and make use 
of the spectral representation (1.24) of the free Greens function (with H k = T e ) . If a 
complete set of plane waves | q) is introduced behind G(

0

+) in (1.30) and use is made of the 
time-independence of Vf in the target frame, one finds 

a f = - i | dq dk <k | Vf\ q)eikb<p}*(k - v) 

x 

ef + kv - v 2 / 2 - q2/2 4- is 

A ^ ^ ' ^ q l V / W k / W ) (1-33) 

where E f is the energy of the State (p'f and a straight-line path has been taken for R. 
In a similar way, the third Born term (arising from the third term of (1.29) with G 

replaced by G 0 ) can be e v a l u a t e d 2 2 , 3 5 , 3 7 , and so on. U p to now, only the second Born term 
has been calculated numerically without approx imat ions 3 8 , 3 9 . If a full-peaking type 
approximation is applied to (1.33) which bases on the fact that the momentum function 
<p}(k — v) is strongly peaked at k = v , the high-energy behavior of the s e c o n d 3 5 ' 4 0 , 4 1 and 
t h i r d 3 5 ' 3 7 Born approximation can be extracted. A v ~ 1 2 dependence is found for the 
Brinkman-Kramers cross section for K - K capture, while the second Born approximation 
contains an additional v ~ n term, which is not altered by the third Born approximation. 
The dominance of the second Born theory over the first-order B K theory emerges, 
however, only at velocities which make a relativistic description necessary. 

A t nonrelativistic velocities, the B K theory overestimates the experimental capture 
cross sections up to a factor of three. Recent investigations have aimed at correcting for 
this deficiency not by the second Born , but by taking the Coulomb boundary conditions 
into account. If the Coulomb tails of V,- and Vf are eliminated by a phase transformation as 
discussed in See. 1.2.1, the initial and final states are changed into 

X) 
(+)B _ y^-ÜZp/v) In ( v R - v 2 t ) . ^ ( - ) B _ (^ €/(Z r/v)ln(v/? + v2/) (1.34) 

This gives the following representation of the exact scattering function in place of (1.29): 

^f\t) = *} - ) B(0 + j drG(~\t, r) V r ( r ) + 
R ( r ) 

Xf ( t ) , (1.35) 

which leads to the boundary-corrected Born series i f G ( _ ) is iterated in terms of G ^ _ ) . The 
first term of this series, the boundary corrected (B) first-order theory 4 2 (also called "true 
first B o r n " 4 3 ) is given by 

a f = - i dt <*}->B(f) 
Z P 

* r ) B o > . (1.36) 

This expression leads to a rather good agreement with the data as far as total cross sections 
are concerned (cf. Figs. 3 and 4). However, in the scattering-angle dependence a spurious 
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dip will occur, which arises from the mutual cancellation of the two transition Operators in 
(1.36). This deficiency is well-known from the special case of p + H co l l i s ions 3 8 , where 
an erroneous inclusion of the nucleus-nucleus potential into the B K theory accidentally 
leads to an expression identical to (1.36). Another deficiency of the boundary-corrected 
first-order theory is of course its wrong asymptotic velocity dependence. In order to 
overcome these difficulties, the boundary-corrected second Born theory has to be 
evaluated 3 8 . This theory agrees somewhat better with experimental data than the Standard 
second Born approximation (1.30) at the lower collision ve loci t ies 4 4 . 
1.3.2. C o n t i n u u m Distorted W a v e series ( C D W ) 

Another theory which is suited for Symmetrie coll ision Systems has been developed by 
Chesh i re 4 5 . In contrast to the Born series, this theory is built upon distorted waves xt, Xf 
which include the perturbation in the entrance and exit Channel. A formulation with 
distorted waves aims at a good approximation for the transition amplitude already with the 
lowest-order expansion term of the series. 

Let us write the potentials V, and Vf of (1.6) in the following general f o r m 4 6 

= ( H e - i d l ) | ^ + ) > < ^ + > | , Vf = ( H e - idMx^Xx^l • d -37) 

The C D W theory emerges from the special choice of distorted waves which include both 
the projectile and the target field to all Orders. This choice aims at a fast convergence of 
the series because the long-range Coulomb interactions are avoided in Vf and Vf. 

The distorted waves are construeted as produet of a bound-state function to one 
potential and a continuum function to the other field. If a frame centered at the midpoint 
between projectile and target nucleus is taken as the reference frame, a corresponding 
transformation U is necessary (with JC, = 0, Xf = R / 2 for x ] + ) and x, = /?, x f = R / 2 for 
X f ~ ) in (1.2)). Expl ic i t ly , the distorted waves a r e 4 5 ' 4 7 

*< + ) ( i> , r T ) = e - ^ 8 - ^ ' / 2 - ' " ^ / ^ ) ^ ^ , i>) , 

* } - > ( ! > , r T ) = e - / ^ / 8 + / v r 7 2 - / ^ / ( r P ) ^ - > ( Z r , r T ) , (1.38) 

$ * \ Z y r) = e ^ T i l T iZ/v)lF](±iZ/v, 1, ±ivr - ivr) , 

where r' is the coordinate with respect to the midpoint and , F | is a confluent 
hypergeometric function. The funetions if/^ and are proportional to incoming and 
outgoing Coulomb waves, respectively. However, the distorted waves (1.38) are not 
exact Solutions to H e because of the nonorthogonality of the coordinates r> and rT. Upon 
acting with the Schrödinger Operator onto gradient terms remain as residual 
interaction 4 7 

( H e ~ id,)x?\rp, r T ) = -[VrTq>,(rT)Vrß£](Zi» r P ) } e ' ' ^ s - i v r ^ 2 - i e " . (1.39) 

A similar equation holds for Xf - The gradient terms, i.e. the deviation from the exact 
Solution, diminish with increasing velocity. 
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If the exact wavefunction if/j~\t) is expressed with the help of the Lippmann-
Schwinger equation (1.27) inserting Xf f ° r the prior form (1.11) o f the transition 
amplitude can be written in the following way 

a f i = a f r - i ^ d t ( x {

f - \ t ) \ H e - /d,|*!+>(0> 

— i dt d r ( x (

f - \ r ) \ ( H e - / 6 , ) G ( + ) ( r , t ) { H e - i d t ) \ X ? \ t ) ) . (1.40) 

The C D W series is obtained by iterating G in terms of G 0 . The Standard C D W theory is 
given by the first term of this series which upon Insertion of (1.38) and (1.39) reads 

a c D w i = • J d t e i ( ^ * ) ' ( 9 ^ r p ) f r - \ z T 9 rT)\e-™r'+ri>/2 

x Vrr9i(rr)Vrß^(ZP, i>)> . (1.41) 

The surface term af~ vanishes because x \ + ) contains the target State (pt as a factor 4 8 . A t 
asymptotically high velocities the Standard C D W theory for K - K transfer has the same 
velocity dependence as the second Born approximation 4 5 . However, the high-energy 
behavior is only correct for total capture cross sections, whereas the differential cross 
section exhibits a spurious dip (cf. F i g . 2). L i k e in the case of the boundary corrected 
Born series, one can cope with this deficiency by including the second term of the C D W 
series which is obtained from (1.40) i f G is replaced by G 0 . Only then is the second-order 
Born approximation completely incorporated 4 6 . Note that the Coulomb boundary 
conditions are from the outset satisfied in the C D W theory through the specific choice of 
the distorted waves: upon expanding the hypergeometric functions for large arguments, 
X ( i + ) and X / ~ ) from (1.38) are found to agree at asymptotically large distances R with 
X ( j + ) B and x j m fr°m (1 34), respectively, because then r>—> — R and r T - + R , 
respectively. Hence, it seems that an inclusion of the Coulomb boundary conditions is 
only possible at the expense of an insufficience of the first-order term of the corresponding 
series expansion. 
1.3.3. Strong P o t e n t i a l B o r n Theory ( S P B ) 

For strongly asymmetric coll ision Systems (and we shall assume that Z P < Z T ) the 
weak electron-projectile field VP can serve as a natural expansion parameter for the 
transition Operator; it is , however, crucial that the expansion is only carried so far that the 
boundary condition at t —> oo (where the electron is in a projectile eigenstate) is not 
v i o l a t e d 3 0 , 4 9 . A s starting point for the derivation of the S P B theory we take the transition 
amplitude in its prior form (1.11), and use the decomposition 
H e = H i 0 + Vi = H f 0 + Vf in the following form (including recoil) 

ff/o = T e + V T , Vi = V P - ( A W M ) R i y 
(1.42) 

H'f0 = T'e + V'p + ( M r / M ) R i > , Vf = VT 
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with M = M P + M T . W e have given H f 0 in the projectile reference frame to demonstrate 

that for R i= 0, the recoil potential (1.22) is not small and has to be included in the 

definition of the final State cpf. In contrast, in the target frame of reference, the recoil is 

approximately proportional to Z P and therefore of the same order as VP. This means that 

Vj can serve as expansion parameter. 

The exact wavefunction is expanded in the following way 

dt' dr G\Z\U T)V,(T)G<->(T, t')Vf(t')<pf(t') , 

(1-43) 

dt' Gtf(t, t ' ) V f ( t ' ) < p f ( t ' ) , 

where the function ^ _ ) S P B is of zeroth order in the weak field VP, and G j ö ) is the Greens 

function relating to H i 0 . The S P B approximation for the capture amplitude is obtained by 

insertion of X j ~ ) S P B into (1.11): 

4™ = - i j dt <*}- ) S P B ( r ) | V,(t) | <p,(r)> . (1.44) 

From this formulation it is clear that the Brinkman-Kramers amplitude (which is obtained 

i f X j ~ ) S P B is replaced by <p/0) is not the only term which is of first order in VP, but there 

appears an additional scattering term. Hence, it is not surprising that asymptotically, the 

S P B theory does not reduce to the first-order, but to the second-order Born 

approximation. 

The calculation of A / ~ ) S P B can be achieved by using the spectral representation (1.24) 

of the Greens function G j 0 ~ ) and by inserting (1.31) and (1.32) for the final State function 

<Pf(i) 

* r ) s p B « ) 
i 

2TT 
dk drdco e-w-Ve-^eW»1*2^}^ - R , r ) ^ .(1.45) 

The wave function t/^ J is an off-shell function with energy a ) . It is defined through the 

re la t ion 5 0 

(co - H i 0 - i c ) ^ " > = (co - e/2 - ie)|k>, e -> +0 . (1.46) 

In the case of a non-linear nuclear trajectory, the reduction of the multiple integral (1.45) 

is no longer trivial because the recoil potential introduces a complicated time-dependence 

into (f>f(k — R , T ) , and one has to resort to further approximations 5 1 . In the following we 

shall restrict ourselves to a recoil-free trajectory which is a good high-energy 

approximation for total cross sections, and also for differential cross sections at small 

scattering angles. In this case the time-dependence of cpf is given exclusively by the 
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energy phase e x p ( - / £ / r ) , and the T-integral in (1.45) reduces to a S-function, wh ich 
makes the <t>-integration tr ivial . The transition amplitude (1.44) thus becomes 3 0 

äk e i k b e ^ - ^ } H k - v)<<^ ( k ) (iY)|V,(t)\9,(IY)> 

(1.47) 

E f ( k ) = kv + e f - - v 2 . 

It is composed of two parts, the excitation of the target electron through the potential V, 
into an intermediate continuum State in the target field, and the subsequent capture into a 
projectile State which is expressed through the folding with the projectile momentum 
function (p'f. 

Although the S P B theory goes beyond the second-order Born approximation as it 
includes the strong target field to all Orders, and should thus have a larger region of 
applicability, it suffers—in contrast to the Born series—from a divergence in the elastic 
scattering contribution which orginates from the long ränge of the Coulomb interact ion 5 2 . 
In order to isolate this divergence a complete set of eigenstates < p n 0 to H i 0 is inserted into 
the S P B amplitude (1.44): 

afi *<?//)! V/(0k,-(0> 

d t d r ( < p f ( r ) \ V f ( r ) G ^ \ T , O k ^ O X ^ - o W l V / W k / W ) • (1.48) 

If the representation (1.25) of Gi0 in terms of the time-development Operator P i 0 is used, it 
becomes evident that the r-integral contains the following term 

dt { i p A t ^ V ^ W i i t ) ) (1.49) 

which is the amplitude for the scattering into the states <p„o- In the case of elastic 
scattering, <p„0 = <Pi> the integrand of (1.49) behaves like l / R for \t\ —> oo, which means 
that (1.49) diverges logarithmically at the lower limit t — 0 0 . 

Several methods to avoid such singularities have been suggested in the literature. The 
most obvious one is to use the boundary-corrected ve r s ion 5 2 of the strong potential Born 
theory ( B S P B ) which can be constructed in complete analogy to the case o f the Born 
series, leading to the following transition amplitude 

. . B S P B _ • 
afi — 1 <fc<*;-)BspB(oiv,(o + z P / R \ x r ) B w ) 

x f - ) B S P B ( t ) = xf-)B(» + d r G ^ K t , r ) 
Z T 

X f - ) B ( r ) 

(1.50) 
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It is easy to verify that in this case, the transition Operator Vt in (1.49) is replaced by 

Vi + Zp/R, and the integral converges. A l s o the B S P B theory is a consistent first-order 

theory in the projectile field. It has, however, the drawback that G^\t, r ) ( V T + Z T / R ) 

can no longer be accounted for by means of a Single off-shell function; instead, one has to 

introduce a complete set of target eigenstates, which makes the calculation much more 

involved . A more promising method has been put forward by M a c e k 2 5 who suggests 

work ing with off-shell matrix elements (which are unphysical, but wel l defined for 

long-range potentials), and only eventually to perform the on-shell l imit when calculating 

physical quantities such as the transition probability. In the on-shell limit co —> k2/2, the 

wave function t/£~J from (1.46) behaves l i k e 5 3 

g(k, a>)<pk(rr) , g(lc, co) = 
2co — is — lc 

4(2Ö> - is) 
T ( l - *7 j r )<r 7 7 7 7 7 / 2 

(1.51) 

wi th 7]T = Z T / k and <pk a continuum eigenstate to H i 0 = Te + VT. L i k e for two particles, 

an off-shell function may also be defined for the scattering of three particles, with its 

on-shell l imit governed by a factor g in complete analogy to (1.51). Rather than 

calculating the transition probability from the on-shell expression (1.8), t/>J+) is replaced 

by the off-shell function multiplied with the corresponding renormalization factor g~l 

(such that the on-shell l imit exists). The main difference to the Standard S P B theory lies in 

the fact that not only the wave function, but also the factor g~1 is expanded in terms of the 

weak field VP. Thus, one obtains additional terms by which the divergence is cancelled. 

The advantage of this approach as compared to the boundary-corrected S P B lies in the fact 

that as for the Standard S P B , the transition amplitude can be evaluated by means of a 

Single intermediate off-shell State, and that the structure of the additional terms is very 

simple. However , while the Standard S P B is a first-order theory in VP as it is derived from 

the systematic expansion (1.43) of the scattering states in terms of the weak field, the 

off-shell corrected S P B (OSPB) contains contributions which are of second order in VPf 

arising from the expansion of the renormalization factor: 

a o s P B = | d t ( x ' f - ) S P B ( t ) \ V p ( t ) \ < P i ( t ) ) 

- i I d t ( < p f ( t ) \ V P ( t ) \ < P i ( t ) ) ^ 

7T 
*>(!) + i l n 

E - E T 

4 ( £ - ad 

(1.52) 

with E —» E T = K2/2 + e, where Ä* 2 /2 is the energy of the relative nuclear motion and 

</>(!) the digamma function of argument one. From this one may draw the conclusion that 

unphysical divergences originate from an insufficient inclusion of the coupling to the 

weak field. It should be stressed, however, that divergences do not occur in the near-shell 

limit of the S P B , where (1.51) is used in place of the exact intermediate off-shell State 5 4, 

or in the on-shell l imit (to be discussed in the next subsection), and also not in more 

realistic cases with several target electrons, i f inner and outer Screening is properly taken 
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into account 5 5 . Only i f such nondivergent models differ considerably from experiment 
and from each other, higher-order contributions w i l l indeed be important. 
1.3.4. I m p u l s e a p p r o x i m a t i o n a n d its p e a k i n g versions 

Historically, the impulse approximation (IA) has been obtained from the intuitive 
assumption that in fast collisions with light projectiles, Charge transfer is basically 
described as ejection of an electron with velocity close to the projectile velocity v. The 
allowed velocity spread of the electron is determined from the momentum distribution of 
the bound final State. This consideration leads to the transition a m p l i t u d e 4 0 , 5 6 ' 5 7 

n I A - - i dt^dk e / k b e / ( E / ( k >-^;*(k - v)<<p k(r r)| V / ( O k ( r r ) > . (1.53) 

A comparison with (1.47) reveals that the impulse approximation is obtained from the 
S P B theory by merely replacing the off-shell State ^ k ~ J ( k ) by an (on-shell) target Coulomb 
wave <pk, hence neglecting the energy difference E f ( k ) — k 2 / 2 . The reasoning that this is 
legal for Z P « Z T because the neglected contribution is of second order in VP, should be 
taken with care for Coulomb potentials: from (1.51) it is obvious that the convergence of 
the off-shell State to the on-shell one is non-uniform, because g(k, E f ( k ) ) is Zy-dependent 
and does not tend to unity for Z P / Z T —» 0. The I A treats the boundary condition ef±Q 
incorrectly, and is thus not a consistent first-order theory in VP. However, for high 
velocities the deviations between I A and S P B are generally rather small (cf. F i g . 2 and 
See. III). 

Several peaking approximations have been introduced for the evaluation of (1.53) and 
related expressions. A l l are based on the fact that the momentum function <pf(k — v) is 
strongly peaked at k = v while the remaining integral shows a weak Ä-dependence in this 
region. This is more true the smaller Z T / v and Z P / Z T are. These peaking approximations 
are successively more restrictive (and thus less valid at given Z P y v) : The transverse 
peaking approximat ion 3 0 retains in the function (p^ the momentum component kz which is 
parallel to v, while putting the transverse components to zero. The next version consists in 
retaining the plane-wave factor of unchanged, but putting k = v elsewhere 5 8 . Finally, 
in the füll peaking approximation 4 0 , k is replaced by v everywhere except in epflk — v). 
Then the capture cross section becomes proportional to the differential cross section 
daxon/dk for electron ejection into a State with momentum equal to v 

c r l A 

"(füll 
peaking) = (27T) 3 |(p;(rp = 0 ) | 2 | - ^ l . (1.54) 

This simple forraula is, however, only valid for capture into s states because othervise, 
the final State wave function vanishes at the origin. It preserves the correct asympiotic 
velocity dependence, but merges with the second Born approximation only in the limit 
Z P / Z T —» 0 3 4 , 4 0 . In contrast, the transverse peaking approximation preserves the correct 
asymptotics without restrictions. 
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1.3.5. Distorted-wave B o r n approximation 
The distorted-wave Born ( D W B ) theory 3 3 has been introduced as a Symmetrie version 

of the strong potential Born approximation in order to extend its validity to Systems with 
Z P ~ Z T ^ v. Its formulation is very similar to that for the C D W theory, but with a 
different choice for the distorted waves x ( i + ) and X / ^ • In o r d e r t o derive the D W B theory 
from a C D W - t y p e expansion, the Hamiltonian H e = H t + V, = H f + Vf is split in the 
fo l lowing w a y 4 8 

H i = T e + V T + V P - VTG^VP, Vi = VTG^VP 

(1.55) 

H f = Te + VP + VT - V p G ^ V T , Vf = V p G ^ V r 

with the short-hand notation 

V l G 0 V 2 \ < K t ) ) = d r V x { t ) G 0 ( t , T)V 2 (T) | IA(T)> (1.56) 

In order to calculate the eigenfunetion x<f) t o #/> t n e function X j ~ ) is written in terms of 
<pf, the eigenstates to H f 0 = Te + VP by means of the Lippmann-Schwinger 
equation (1.27), and the appearing Greens function G | _ ) is expressed in terms of G (

7

_ ) via 
the relation (1.26). It then follows that is identical to the S P B approximation (1.43) 
of the exact scattering function; a similar consideration holds for x ( i + ) - E x p l i c i t l y 4 8 

dt' G $ r \ t , O V A t ' W ) , 

dt' GP

+\t, t ' ) V P { t ' ) < p A t ' ) , 

(1.57) 

where GP and GT are the Greens funetions for Te + VP and Te + VT, respectively. The 
series expansion of the transition amplitude is obtained by inserting (1.57) into the general 
distorted-wave formula (1.40) with (1.37) 

a f i = a f i ~ 1 d t ( x y ) S P % ) \ V , ( t ) \ x \ + * P B ( t ) ) 

— I dt dr ( x f - ) S P B ( r ) | V / ( r ) G ( + > ( r , t ) V , ( t ) \ X ^ n ( t ) ) (1.58) 

upon iteration of G in terms of G 0 . The surface term aj{~ does not vanish, but reduces to 
the Brinkman-Kramers ampli tude 4 8 . The distorted-wave Born approximation is the 
lowest-order expansion term, i.e. it consists of the first two terms of (1.58): 
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i J d t W A t ) \ V A t ) \ < P i ( t ) ) 

i dt dr <4- > S P B(01 V A t ) G ? \ t , T) V P ( T ) | ;tf+ ) S P IV)> • d -59) 

Interestingly, the identical form of the transition amplitude can be obtained i f the 
Faddeev-Watson series 2 1 is used and is cut off after the second term. This series which 
can be derived from an iteration of the Faddeev equations 1 8 has mainly been used for the 
description of direct reactions, and has only recently been applied for transfer react ions 5 9 . 

It is easy to see that in the limits Z P / Z T « 1 and Z T / Z P « 1, the D W B theory reduces 
to the prior and post form of the S P B approximation, respectively. Upon collecting a l l 
first-order terms in VP, ^ < + ) S P B has to be replaced by <p,, while to first order in V>, 
^ ( - ) S P B m u s t k e r e p j a c e ( j <pf j h u s 

- i d t <*}-)SPB(01 v P ( t ) | <p,{t)), zP « zT 

(1.60) 

i dt (<pj(t) | V T ( t ) | x ( i + ) S P B ( t ) ) , Z T « Z P . 

A l s o the C D W theory can be obtained from an approximation to the D W B theory: i f the 
on-shell l imit of, e.g. ^ } ~ ) S P B is taken, and in its momentum representation (cf. (1.47)) a 
peaking approximation 5 8 is applied, the resulting wave function coincides with the C D W 
function from (1.38) transformed into the target f rame 3 0 . Note, however, that the 
boundary conditions are changed by this procedure (the C D W satisfies Coulomb boundary 
conditions while the D W B does not). 

A n exact evaluation of the D W B approximation seems rather involved due to the large 
numbers of couplings to the two nuclear fields. Equation (1.59) has only been evaluated 
with the help of peaking app rox ima t ions 5 9 - 6 1 (see F i g . 5) ; it then remains, however, 
unclear which fraction of the deviations between D W B and S P B must be ascribed to 
inaccuracies from the peaking approximations. 
1.3.6 E i k o n a l A p p r o x i m a t i o n 

The Glauber theory or eikonal approximation has originally been developed for 
problems of potential sca t te r ing 6 2 , 6 3 . In this theory the electron-nucleus interaction is 
accounted for by means of a path integral which modifies the energy phase. This treatment 
is only possible i f the coll ision time is short compared to typical electronic transition 
times, i .e. it is a high-energy approximation. For rearrangement collisions, the Glauber 
theory was first formulated by Dewangan 6 4 . 

The eikonal theory (E) in its Symmetrie form can be obtained from a distorted-wave 
series, similar to the C D W or D W B approaches. The eikonal distorted wave can be 
derived from the S P B approximation to the exact scattering function ^f~\ which is 
defined through (cf. (1.43) with (1.26)) 

*}->SPB(0 = cpj(t) + 

D W B _ 

a / r - < B ( p n o r ) = -

A D W B ^ F L S P B ( P O S T ) = _ 

dr G f r \ t , T ) V j { r ) x f - ) S P B ( r ) . (1.61) 
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If ; r } ~ ) S P B ( f ) is written as the product of <pj(t) times an unknown function ftfXt) and use 

is made o f the relation (1.25) between G 0 and the time development Operator P 0 , an 

equation for (p^Kt) is obtained from (1.61): 

<Pf(t)<f>(

E-\t) = <pf(t) + i J dr @ ( r - t)P0(t, r ) V f ( T ) < p f ( T ) ^ - \ r ) . (1.62) 

For the eikonal approximation it is assumed that V j ( r ) and <^ - ) (r) are slowly varying 

functions in space as compared to <p/r) which, if one works in the center of mass frame, 

contains the phase factor cxp(iMT/(MP 4- M T ) R r f ) . For sufficiently large velocities R 

one can therefore neglect the action of P0 on Vf and </>^_) and also consider cpy as a 

quasi-free electron State, i.e. take P0(t, r)<p/r) ~ <pj{t). Wi th these approximations, <p/(t) 

drops out of (1.62). Upon differentiation, one obtains the differential equation for < ^ - ) 

= -iVj(tW£\t) (1.63) 

which is easily integrated. In a similar way, the eikonal approximation to the scattering 

State $ + ) can be derived. For a straight-line internuclear trajectory, the eikonal distorted 

waves are thus given by 

^ j - ) E = ( P f { t ) e i i ~ v t r ) d r = 9 f ( t ) e i ( Z r / v ) l n ( v r T + v r r ) , 

(1.64) 

^ + ) E = (PiiOe'if— V i { T ) d r = (pj(t)€~i(Z'>/v)ln^+vr^ . 

The eikonal series is obtained upon inserting (1.64) into the series expansion (1.40) o f the 

transition amplitude. The Symmetrie eikonal approximation consists of the first term of 

this series 6 5 

•7 S E — —i 
aß — —i 

dt (x{

f-)E(t)\He - id , |*5 + ) E ( f )> . d -65) 

L ike the C D W theory, the eikonal approximation neglects gradient terms. Moreover, by 

comparing (1.64) with the C D W distorted waves (1.38), it becomes clear that the 

Symmetrie eikonal theory is identical to the asymptotic form of the C D W theory 6 5 , and 

that the Cou lomb boundary conditions (1.34) are included. 

If one of the distorted waves x E i n (165) is replaced by the asymptotic State <p, the 

asymmetric eikonal theory 6 6 in its prior and post form is recovered 

a|(prior) = - i j dt <*}-)E(01 V f-(r)| <p,(0> , 
(1.66) 

af(post) = - / dt {<Pf(t)\Vj{t)\x{+)E(t)) . 
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From the above derivation it follows that the Symmetrie eikonal theory is an 
approximation to the D W B or C D W , while the asymmetric eikonal theory is an 
approximation to the S P B (albeit satisfying Coulomb boundary conditions). However, the 
coupling to either of the electron-nucleus potentials inherent in the path integral only 
describes an infinite number of "sof t" collisions, and not " h a r d " collisions as in the case 
of the S P B which includes the same potential exactly. Consequently, the eikonal 
approximation contains the Brinkman-Kramers term, but not the second-order B o r n 
t e rm 6 7 . This leads to an incorrect asymptotic high-energy behavior, although the 
experimental data are well reproduced in a large region of the high-energy regime 
(cf. F i g . 4). 

2. Coupled Channel Calculations in a Finite Basis 

The models described in the preceding section are not appropriate for the lower 
coll ision velocities because the lowerst-order terms of the series expansions are no longer 
sufficient. The strong coupling to the projectile and the target field in slow collisions 
makes it necessary to include both interactions in the electronic wave function i f a fast 
convergence is to be achieved. This can be done in several ways. One method consists in 
writing the wave function as a superposition of target- and projectile-centered atomic 
states, which is expected to give good results for Systems with v ^ ve and Z P « Z T , or for 
Systems with v ^ ve and Z P « Z T , even i f only a few states are included. On the other 
hand, i f Z P « Z T and v ^ ve or Z P « Z r and v « ve, an expansion in terms of 
two-center (molecular) funetions should be preferred. Aiternatively, a combination of 
atomic and molecular basis states may be of advantage. In any case, the basis funetions 
should be carefully selected for each problem of interest in order to get a good description 
of the transfer process with as few basis states as possible. For the formulation of these 
methods, which is given below, we shall use the semiclassical picture and restrict 
ourselves to one-electron Systems, deferring the extension to multi-electron Systems to a 
later section. 
2.1. A t o m i c basis 

It is usually of advantage to include the initial and the final electronic State in the basis 
set. For rearrangement collisions this implies that the basis states are centered at different 
origins and thus are no longer mutually orthogonal. In the general case, the exact Solution 
to the Hamiltonian H e can be approximated as superposition of projectile states (<p%) and 
target states ( < p £ ) 6 8 ' 6 9 

N M 

<A(r, 0 = 2 fl«(')?£ö>, 0 + 2 b m ( 0 < p L ( r T , 0 , ( 2 J ) 
n=1 m=1 

< P T

m ( r T , 0 = ^ ( r r y - ' " ^ - ' ^ ' - ( ' ^ 2 ^ ' , 

where N and M is the number of projectile and target states, respectively, which are 
included in the expansion of i/f, and we assume these numbers to be rather small . In (2.1), 
the reference frame of i/f(r, /) has its origin on the line connecting the projectile and the 
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target nucleus but is otherwise arbitrary. In order to guarantee the independence of the 
capture probability from the chosen reference frame it is important to include the 
translational factors, i.e. the phases resulting from the transformation Ü (eq. (1.2)) in the 
basis funetions (2.1). a 0 R (ßoR) is the distance between the origin and the projectile 
(target), and e„ and eT

m are the energies of the states <p„ and <pT

m, respectively. The initial 
State is denoted by m = / and the final State by n = /. 

When (2.1) is inserted into the Schrödinger equation, i d t \ j t = Hei//, a System of 
differential equations for the amplitudes a n and bm is obtained 

l 2 ä n ( < P k ( 0 \(Pn(t)) + i X t>m(<Pk(t) \ < p l ( t ) ) 
n m 

= E a„(<Pk(t)\VT + V R \ < p p ( t ) ) + 2 b„(<pk(t)\VP + V„\<pl(t)) 
n m 

<pk(t) e {<pp

n{t), < p l ( t ) } . (2.2) 

W e have used H e = Te + VP + VT + VR with VR the recoil field. Equations (2.2) take 
into consideration that for finite times the overlap between a target State and a projectile 
State is non-vanishing. Due to the use of atomic basis states there is a purely potential 
coupling between the states. The potentials are time-dependent through the internuclear 
coordinate R which is described by a classical path with impact parameter b. The System 
(2.2) has to be solved subject to the initial condition that the electron is in the bound target 
State cpf at time t —» - oo: 

a„(-oo) = 0, n - \ . . . N 
(2.3) 

M - ° ° ) = 0, m * i; *, .(-«>) = 1 . 

The probability Pß of the electron ending up in the projectile State cpf , is then obtained 
from 

P ß ( b ) = M+oo)|2 . (2.4) 

Often, the expansion (2.1) is just restricted to the two states (pj and <p^68-70. However, 
this approximation breaks down as soon as the coupling to other states becomes 
important. In particular, this restricted basis does not allow for an equivalent to the 
second-order Born approximation, i .e. it gives incorrect results at high collision 
velocities. 

In the unitarised distorted-wave approximation ( U D W A ) 7 1 , 7 2 , other projectile states are 
included in the basis besides initial and final states. However, an approximation to the 
scattering matrix is chosen which conserves unitarity, but neglects the time-ordering 
Operator which occurs in the expansion of the scattering matrix in terms of a 
time-dependent interaction. L i k e in the case of a two-state expansion, the region of 
validity o f the U D W A is restricted to velocities around the maximum of the capture cross 
sect ion 7 3 (v ~ v e ) . 
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Recent ca l cu la t ions 7 4 , 7 5 which include up to 34 basis states exactly, show even at lower 

collision energies a satisfactory agreement with experiment. 

2.2. Molecular Basis 

A t low impact velocities the electronic transitions take place mostly at rather small 

internuclear distances, such that it is of advantage to expand the wave function ij/ in terms 

of molecular Orbitals 6 9 ( M O ) 

N 

<Kr, 0 = 2 *«(')«P„(r, R, r) (2.5) 
n = 1 

with <p„(r, R, 0 = <p„(r, R) exp(—/ / dt e„(R)) where en(R) is the molecular energy. 

The states <p„(r, R) are stationary eigenstates of the fül l Hamiltonian H e . One possibility 

is to work in the (space-fixed) center of mass System. Then, <pn is the Solution to 

[Te + VP(r - aR) + VT(r + j3R)]<p„(r, R) = en(R)<p„(r, R) (2.6) 

with a = M T / ( M P + M T ) and ß = 1 - a. These basis states depend parametrically on 

the internuclear coordinate R(0 and hence implicitly on time. Upon inserting (2.5) into 

the Schrödinger equation and considering the orthogonality of the basis states, one obtains 

iäm(t) = am(t)em - i 2 an{t)(<pm(r, R, t)\dt\<pn(r, R, t ) ) , m = 1 . . . N (2.7) 
n 

For molecular basis states, the coupling is based on the time change of the two-center 

potential. A s for R —» co, the molecular funetions reduce to projectile or target states, 

(2.7) has to be solved with the initial conditions 

öm(-°°) = 0, m * i; at-™) = 1 (2.8) 

where i denotes that MO-state which asymptotically is identical to the initial target State. 

Instead of working in the space-fixed frame, it is, however, often of advantage to use a 

rotating reference frame in which the quantization axis points into the direction o f R(/). 

A s R is the natural quantization axis of the stationary molecular Orbitals, the M O ' s then 

only depend on the absolute value R. The funetions in the space-fixed frame (e^(r, t)) and 

in the rotating frame (^'(r'\ t)) are connected by a rotation 4 ' 5 

<A'(r\ 0 = e-i@t>ilj(r, t) . (2.9) 

Here, L y is the angular momentum Operator with respect to the y-axis (perpendicular to the 

scattering plane), and R is parametrized as R = (R sin @ , 0, R cos 0) with the z-axis 

pointing to the opposite direction of v. The Schrödinger equation can likewise be 

transformed into the rotating frame 

e~i9i>iidt - H > / e V ( r ; , 0 = (« i " & L y - H'e)V{r\ 0 = 0 (2.10) 
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where use has been made of the time-independence of L y . If the function iA'(r\ 0 is 

expanded in terms of rotating basis funetions <p (̂r', R, t) which are Solutions to H ' e , one 

arrives at the System of coupled equations for the expansion coefficients a'n 

iä'm(t) = a ' m ( t ) e m + £ a ' n ( t ) ( < p ' m ( r \ R , t ) \ & L y - i R d / d R \ R y *)>, 

m = 1 . . . N . (2.11) 

Equations (2.11) are seen to have the same form as the equations of the space-fixed frame 
i f one makes the following identification of the coupling Operator 

ö ' - « S +
 6fe ( 2 I 2 ) 

with 0 = bv/R2, as L y = — /d/d0. For t —> — oo the angle © is zero, which means that 
the rotating and the space-fixed funetions are identical. Hence, the initial conditions are 
the same as given in (2.8). 

It should be noted that some authors define 0 as the angle between the direction of v 
and the direction of R , which are chosen as quantization axes in the space-fixed and 
rotating frame, respectively. This implies that 0 = 0 at t —> +oo and that the derivative 
0 is negative. Hence, for this definition the space-fixed and the rotating funetions 
coincide at r—» + oo. 

If the energies e n ( R ) are calculated as a function of R for the different states cp'„, one 
obtains a so-called correlation diagram. From such a diagram it is easy to determine which 
states w i l l be important for the transfer into a given final State, as long as the coll is ion 
velocity is not too high: There exist avoided crossings of the energy levels of adjacent 
molecular states, where the transition from one State to the next is very likely to occu r 7 6 . 
Correlation diagrams offer thus the possibility of following the " p a t h " of the electron as a 
function of impact parameter and time. 

The inclusion of only two M O basis states in the expansion of i/>'(r', t) may already be 
sufficient. This is, for example, the case for the capture of an electron from the K-shel l of 
the lighter coll ision partner into the L-shell of the heavier partner, where one can restrict 
oneself to the 2 p a and the 2 p i r states 7 7 . (However, a relativistic description of the same 
process requires six MO-s ta tes 7 8 ) . 

A n expansion of the type (2.5) with a low number N holds, however, only in cases 
where all electronic transitions are restricted to small internuclear distances. If the relevant 
avoided crossings are situated at an R which is of the order of the electronic shell radius 
( n / Z ) or even larger, the results are rather poor. The reason lies in the fact that the M O 
states have the wrong asymptotic behavior at R —» oo because they do not contain any 
translational f ac to r s 5 ' 6 , 6 9 . In order to cope with this deficiency, Schneiderman and 
Russek 7 9 have suggested the following ansatz in place of (2.5) 

N 

Wx, 0 = 2 * n ( t ) < p n { v , R, 0 e ' / ( r - R > ' 
n = 1 

(2.13) 



796 D . H . Jakubaßa-Amundsen 

where the switching function f ( r , R ) has to be chosen in such a way that for/? —» <», the 
correct translational factors are obtained, while for R —> 0 it shall describe an electron at 
rest in the center of mass frame. Thus, according to (2.1), / ( r , R ) is subject to the 
conditions 

«o> rP « rT, R 

-ß0, r T « r P y R 

0, R - ^ 0 

00 

00 (2.14) 

A n exact determination of / ( r , R ) from a fundamental theory is not possible. 
Corresponding, there is a large body of publications on various forms of the switching 
function. Some of the switching funetions, as used in the literature, are compiled in the 
work of Crothers and T o d d 8 0 . The simplest i dea 8 1 would be to split R into an interior 
region R < R 0 and an exterior region R > R 0 with the choice of / = 0 for R < R 0 . 
However, this method does not provide reliable transition probabil i t ies 8 2 due to their 
dependence on the parameter R 0 . It is , for example, more reasonable to correlate the 
translational factor with a reference frame which slides on the iine connecting the 
projectile and target nucleus, subject to the /?-dependent attractive forces which the two 
nuclei exert on the electron 5 . A variational calculation is wel l suited for the determination 
of such a translational factor; the accuraey depends, however, strongly on the choice of 
the variational subspace (see also See. 3). 

The inclusion of the phase factor in the expansion (2.13) of ij/(r, t ) results in a 
modification of the System of coupled equations. In place of (2.7) one now has 5 

iäm{t) = a m ( t ) e m - i 2 a n ( t ) ( q > m \ d t + /vV r |<p„> 
n 

- i 2 a«<<Pm | (vr)(V r/)V r + ( v r ) ^ V ? / j + v ( V r / ) 

+ i ^ - ( . /v r ) + ^ ( V r ^ r ) ) 2 | < p „ > (2.15) 

A s / is a slowly varying function at low velocity v, mainly the terms of the first line in 
(2.15) are important, and it is just the Operator fvVr which causes a modification of (2.7). 
This Operator is seen to cause a translation of the electronic reference frame from the 
center of mass System to a System moving with an effective velocity fv. 

In the expansion (2.13) it is assumed that the translational factor is common to all 
Orbitals. One may relax this condition and define a separate function f„ for every orbital n . 
This idea has been put forth to aecount for the fact that the effective translational velocity 
depends not only on the motion of the nuclei, but also on the interaction with other 
electronic states via non-adiabatic coupl ings 8 3 . f n w i l l in general be a complicated 
function, especially i f it is determined from a variational ca lcu la t ion 8 0 . Moreover, the 
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orthogonality between the basis states is lost, as is the interpretation that the translational 
factor is a property of the electron configuration space only. 

2.3. Combined basis 
In order to cover an extended ränge of collision velocities with as few basis states as 

possible, different sets of basis funetions have been introduced besides the purely atomic 
and the purely molecular ones. A s long as the electronic initial and final State is 
asymptotically included in the basis, the transfer probability is obtained in a similar way 
as described above. 

A n attempt has been made 8 4 to attach molecular switching funetions to the atomic 
basis states. Calculations based on a two-center expansion show, however, no 
improvement over the results with purely atomic states (having constant translational 
factors) at low collision energies, while at high energies the molecular switching funetions 
even fail to give the correct fall-off of the transfer probability with energy. 

In order to avoid the problems which arise from an M O basis without translational 
factors, the so-called A O - M O matching procedure has been invented 8 5 . In this 
approximation, an atomic basis is used in the outer region (R > R 0 ) and a molecular basis 
for R < R 0 . The results depend only weakly on the choice of R 0 where the two 
expansions are matched, and l ie , in the case of a 5-state bas i s 8 5 , wel l within the spread of 
transition probabilities which are calculated within a pure M O basis with different choices 
of the translational factors. 

A two-center expansion with the use of atomic and united-atom ( U A ) wave funetions at 
each center (the so-called A O + basis) has been considered by Fritsch and L i n 8 6 . The U A 
wave funetions are funetions of atomic strueture to the combined Charge Z P + Z T , i .e. 
they are the R —> 0 limit of the molecular orbitals. Every State of the A O + basis contains 
a constant (asymptotic) translational factor. A n inclusion of up to 24 basis states yields 
very good agreement with experiment in the low and intermediate velocity region. 

A l s o a three-center expansion has been applied success fu l ly 8 7 , 8 8 . In this model, 
united-atom orbitals without translational factors centered at the center of mass are added 
to the projectile- and target-centered atomic orbitals. The three-center expansion is 
applicable in a very large velocity region because the U A orbitals give not only a good 
description of the low-energy regime, but they also simulate the intermediate states which 
are important for the transfer at the higher energies. 

3. Variational Methods 

In general, not only the atomic three-body models, but also coupled-channel 
calculations within the bases discussed above are only meaningful in a restricted velocity 
region because otherwise the numerical effort w i l l increase drastically. Variational 
methods may be considered as a way out of this dilemma, since in principle, they can 
cover the whole energy region within a small basis space. 

A necessary condition for a variational method to be applicable is the fact that the exact 
transition amplitude emerges from the Variation of an appropriate functional. A pair of 
functionals which obey this condition, are the so-called post and prior bilinear forms of 
the Schwinger functional for the transition ampli tude 1 7 2 1 
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ayKpost) = - / dt { ^ { V f U + G f t W i - V f ) ] \ i P i ) + ( < P f \ V f \ ^ + ) ) 

ty(prior) = - i dt { ( < p f \ [ l + (Vf- V f . ) G J o + ) ] V , | ^ + ) > + < ^ > _ > | V i | ^ > 

(3.1) 

where the Splitting of H e from (1.1) and the short-hand notation (1.56) has been used. The 

funetions G / 0 , <pi and Gf0, <p/relate to H i Q amd H f 0 , respectively. The two functionals 

(3.1) prove to be stationary with respect to a Variation of the trial funetions and </^ - ) 

about their correct values (exact scattering states to H e ) . They reduce to the post and prior 

form of the transition amplitude, Eqs. (1.8) and (1.11), respectively, i f the exact 

scattering funetions are inserted. Moreover, the use of specific trial funetions allows one 

to reproduce the starting formulas of the various atomic perturbative m o d e l s 8 9 ' 9 0 . 

Whi l e the Schwinger functional is suited to derive the formal theories, other functionals 

are more appropriate for the practical purpose of construeting variational wave funetions. 

Cheshi re 9 1 considers the functional 

/ = (3.2) 

which also satisfies the conditions mentioned above. This can be proved by expanding the 

test function ij/ within a complete set of basis funetions if/(t) = 2 „ an(t)cp„(t), and by 

varying / with respect to the expansion coefficient a*: 

0 = 
81 

Sa*(t) 
= 2 \ ß n ( M < p m { t ) \ H e - i d t \ < p n ( t ) ) ~ H < P m ( t ) \ < P n ( t ) ) d,an(t)] . (3.3) 

This is the identical System of equations as obtained by inserting the expansion of (/> 

directly into the Schrödinger equation (see See. 2), and its Solution is therefore exact as 

long as n extends to infinity. 

Variational methods can be used to reduce the number of necessary basis states in the 

expansion of the exact scattering function. To this aim one introduces, for example, a 

parameter Z n ( t ) into the basis funetions, which may be interpreted as an effective nuclear 

Charge: 

<Kr, 0 = 2 a n ( t ) < p n ( Z n ( t ) , r, 0 . 
n = \ 

(3.4) 

The parameters Z n ( t ) are determined by requiring that after inserting (3.4) into / , this 

functional be stationary for variations with respect to a*(0 and Z n ( t ) . A s shown above, 
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the Variation with respect to a * ( t ) leads to the System (3.3) of coupled equations with 
dimension N , but with matrix elements depending on the parameters Z n ( t ) . If / is varied 
wi th respect to Z „ , the Euler-Lagrange equations emerge 

öZ r t Ol oZ„ 

Since d,i/f depends explicit ly on Z r t , the second term of (3.5) may be rewritten and one 
obtains 

^ r ) = 0, n = l , 2 . . . t f . (3.6) 
d Z n 

These equations have to be solved simultaneously with the N equations (3.3), subject to 
the boundary conditions Z n ( t —> oo) = z w > 0 0 . The numbers Z n o o are the charges entering 
into those atomic basis funetions to which <pn reduce in the limit t—» oo. 

The method described above can easily be extended to wave funetions containing 
several parameters Z X n ( t ) , Z 2 n ( t ) , . . . . However, even for a single parameter and a small 
number of basis states, the simultaneous Solution of (3.3) and (3.6) requires a 
considerable numerical effort. There is, however, a simple way to find an approximate 
Solution for Z n ( t ) . T o this a im, let us restrict ourseives to a Single term (N = 1) in the 
expansion (3.4). Then the System (3.3) reduces to one equation only, 

i((p\(p)ä = ( < p \ H e - i d t \ < p ) a . (3.7) 

The State cp shall describe a bound State, such that it can be normalized, i.e. 
I f l | 2 ( ^ l ^ ) = 1- Wi th the use of (3.7), the equation for Z reads 

d ( < p \ H e - idt\cp) ^ . d (<p\d<p/dZ) 

d Z (<p\<p) 1 dt (<p\<p) 

For every basis State < p n , one can obtain Z n from the Solution of (3.8) and subsequently use 
these values in the coupled equations (3.3). A still simpler procedure is, of course, to 
determine Z n only for the lowest State from (3.8), while inserting the constant asymptotic 
charges into the remaining basis states. Even then, the numerical results for Charge 
transfer in the intermediate velocity region are considerably improved as compared to the 
use of a molecular or an atomic basis of equal d imens ion 9 1 . This method has been 
successfully applied by several au tho r s 9 2 , 9 3 for Systems with Z P = Z T up to 10, where a 
coupling of only two states is often sufficient. 

Instead of (3.8), even a static prescription may be used for the determination of an 
effective Charge Z(/?), the time-dependence of which is implicit ly contained in R ( t ) . Wi th 
d/d, = 0 in (3.8) one finds 

d E , , 
— = 0; E = ( c p ( Z ) \ H e \ < p ( Z ) ) (3.9) 
dZ 
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where <p is assumed to be normalized to unity. The Solution of (3.9) is very easy to obtain 
and can subsequently be used in the coupled equations 9 4 . Both prescriptions, (3.9) as w e l l 
as (3.8), lead to an effective Charge which is Symmetrie in time. This is a necessary 
condition for its use in a basis expansion. Other prescriptions for Z ( t ) which depend 
explicitly on the time-derivative Z ( t ) are in general complex and include inelastic co l l i s ion 
effects through the coupling to other states 9 5. Such a Z { t ) should not be used for the 
construetion of a basis. 

A n alternative functional which takes special aecount of the initial and the final State 
has been suggested by D e m k o v 2 0 . It is given by the expression (1.4) for the transition 
amplitude and has already been used as a starting point for the atomic three-body models. 
It is stationary upon Variation with respect to the wave funetions or . Therefore, 
variational parameters contained in the wave funetions can be determined frorn 
extremizing the transition amplitude or, alternatively, the transition probability or the 
=cross section. 

The Demkov functional is especially suited i f variational parameters are introduced into 
the Hamilton Operator itself. In order to bridge the transition region between the adiabatic 
regime where molecular wave funetions are appropriate, and the high-energy regime 
where atomic wave funetions can be used, the following Splitting of the Hamiltonian into 
an unperturbed part / / , and a perturbation V, has been suggested 9 6 

H e = / / , ( A , X i ) + Vi(A, X i ) 9 H i = T e + VT(r - x,) + A V P ( r - R - x,) 
(3.10) 

% = (1 - \ ) V P ( r - R - X,) . 

This so-called sliding center model contains two variational parameters: A , with 
0 < A < 1, is a measure of the degree of atomic or molecular character of the 
eigenfunetions <p, to tf,(A, *,) . Correspondingly, the coupling in (1.4) is predominantly 
given by the potential or by the time derivative B/dt. The other parameter x t (with x, 
antiparallel to R ) characterizes the origin of the electronic reference frame (cf. F i g . 1). 
For a nonlinear motion R( f ) , an additional recoil field has to be included in (3.10). 

Wi th in the spirit of a variational approach, also the eigenfunetions to H , are determined 
variationally. They are approximated by atomic funetions with an effective nuclear Charge 
Z i ( R ) as parameter. Both JC, and Z t follow from the minimization of the total electronic 
energy 

d E d E / 

— = 0, — = 0; E = ( < P i ( Z i , \ 9 X i ) \ H i ( \ , X i ) \ < p i ( Z i , \ , X i ) ) . (3.11) 

Asymptotical ly, one has Z t { R = oo) = z r , x t ( R = °°) = 0, as we l l as 
Z,(0) = A Z P + Z T and ;t,(0) = X Z P / ( \ Z P + Z T ) . 

In the case of direct reactions it is advantageous to adopt for the final State the same 
values of Z/ and JC, as calculated for the initial State, in order to preserve orthogonaJity. The 
parameter A is finally obtained from minimizing the coupling strength 
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(3.12) 

and describes correctly the transition from molecular to atomic funetions with increasing 
velocity. 

For transfer reactions, a different Splitting of H e has to be used for the final Channel 9 7 

H e = ff/A, x f ) + V / A , x f ) 9 H f = T e + V P ( r ' - X / ) + AV r(r' + R - x f ) 
(3.13) 

V f = (1 - A ) V T ( r ' + R - X /) 

and the eigenfunetions (p/(Zf9 A, x f ) to / / /have to be construeted in a similar way as for 
H j . A s je, and Jt/can be calculated for any given R ( t ) , the switching function is known as 
w e l l , fol lowing immediately from the strueture of the transformation Operator U, 
E q . (1.2). 

The variationally determined projectile-correlated and target-correlated wave funetions 
can eventually be used as basis states for a coupled-channel calculation of low dimension; 
however, no calculations have been performed yet. 

A s the parameter A is time-independent, it can only describe the global non-adiabaticity 
of the collision process. In order to get more detailed Information, one has to introduce a 
time-dependent parameter. One may, for example, think of replacing the internuclear 
distance R ( t ) by a variational parameter £(t). The scattering State is expanded in terms of 
molecular eigenstates to H% = H e ( R = £)98: 

<Kr, 0 = 2 *n(t)q>„(r9 f(0)«-'"* ( / ) ; H€<p„{r9 f ) = £„(£)<p„(r, 0 . (3.14) 

The energy phase <f>n is included in (3.14) in order to eliminate the diagonal coupling 
matrix elements. The parameter £ in this model is also obtained from minimizing the 
coupling strength. For a specific expansion coefficient a m the condition for £ reads 

«f(0 -
dt 2 + \ { < p m \ H e - H s \ < p n ) \ 2 = 0 . (3.15) 

This equation has been solved for small deviations | £ — R \ / R « 1 within the monopole 
approximation o f the two-center potential. A s a result, the measure | £ - R \ for the 
non-adiabaticity increases with decreasing R at fixed collision velocity, and is the larger, 
the higher the State m is exc i t ed 9 8 . 

4. Numerical Solutions of the Schrödinger Equation 

If one wants to obtain very accurate results especially in the intermediate velocity 
region, the only possibility is to solve the Schrödinger equation without further 
approximations. This requires usually an extremely large numerical effort; however, the 
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results can often serve as a Substitute for experimental Information which in its turn is 
indispensable for testing the approximative methods. 

There are basically three different approaches for obtaining the Solution of the 
Schrödinger equation, which shall be discussed in this section. One way is to use, as has 
been outlined in See. 2, an expansion of the scattering function in terms of easily tractable 
basis states; however, a very large dimension of the basis w i l l now be required. The 
second method consists in a direct integration of the Schrödinger equation without 
resorting to equivalent representations. Final ly , there are the Statistical methods. They 
imply an integration of the equations of motion resulting from the classical Hamilton 
function or alternatively, of hydrodynamic equations which are an approximation to the 
Schrödinger equation, subject to statistically distributed initial conditions. 
4.1. Representation i n a very l a r g e basis 

In contrast to the special basis funetions discussed in See. 2, which often have to be 
selected anew for every coll ision System or even for every initial and final State in order to 
minimize the dimension of the resulting System of coupled equations, in the case of large 
bases one rather resorts to funetions which are universal and easy to handle 
mathematically. Usual ly , these funetions are neither eigenfunetions to the stationary 
Hamiltonian, nor to the target or projectile nucleus. Preferentially, a rotating reference 
frame is chosen. If the Solution i/>'(r', /) of (2.10) is expanded in terms of the rotating 
basis funetions cp'n 

i l s ' ( r ' , t ) = ^ c n ( t ) < p ' n ( r \ R ( t ) y * ) , (4.1) 
n 

the following generalized System of differential equations is obtained 

' 2 Cn((p'm(t)\<p'n(t)) = 2 c n ( < p ' m ( t ) \ H ' e + Q L y - i d f \ < p ' n ( t ) ) . (4.2) 
n n 

The advantage of choosing nearly complete bases of pseudostates consists in the 
possibility that exclusively, normalized (i.e. bound) funetions can be used. Nevertheless, 
the intermediate continuum states which are important for capture at high velocities can be 
represented with sufficient accuraey. There is no need for translational factors because 
both initial and final State can be described well enough within the very large bases, and 
hence the problem of finding appropriate switching funetions does not arise. However, as 
none of the basis states yields asymptotically the correct initial State, the bound target State 
has first to be transformed into the rotating reference frame and then expanded in terms of 
the basis funetions (p'n 

< p T \ r ' 9 t0) = e " i S ^ q > J ( r + j S o R o ) ^ " ^ ^ " ^ ^ 2 " ' ' ^ 0 

= 2 ^ o ) ^ ( r , , R 0 , r 0 ) , (4.3) 

with ß0 defined below E q . (2.1). The rotation is necessary because numerically, one has 
to work with finite initial times t0 and distances R 0 = R ( t o ) - The System (4.2) has to be 
solved subject to the initial values cni(t0) which are obtained from (4.3). 
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The transition probability can be determined from the Solution of (4.2) in two different 
ways . One may either insert the scattering function (4.1) with the calculated cn{t) into the 
post form (1.8) of the exact transition ampl i tude" 

Up = - i I ' dt {<pp

f{t) | VT\e/eV(r', 0> (4.4) 

where q>f is the bound projectile State with its translational factor, and the time tx is chosen 
to be sufficiently large so as to obtain a good convergence of the transition amplitude. 

The other possibility consists in calculating the transition amplitude from the projection 
o f the scattering function </>'(r', tx) onto the final State. For this aim one has to expand the 
Solution of (4.2) in terms of rotated asymptotic projectile and target states 1 0 0 

«A'(r\ *i) = 2 c n ( t i ) < P n ( r \ R(f,), h ) 

= « - ' e ( " ^ ( 2 «„(f,)<p£(i>, h ) + 2 M ' i t e i Ö Y , t , ) ) (4-5) 
\ n m j 

with <p„ and (pT

m from (2.1). The transfer probability into a projectile State with quantum 
numbers {«} then follows from 

P n ( b ) = k ( r , ) | 2 , r, -> oo . (4.6) 

This method has the advantage of providing simultaneously the capture into arbitrary final 
states. 

A s concerns the choice o f the basis funetions, it has proven convenient to work with 
twö-cen te r orbitals of the Hylleraas t y p e 1 0 1 which allow for an analytical evaluation of the 
matrix elements which occur in the coupled equations. Such funetions are reasonable for 
col l is ion Systems with arbitrary nuclear charges. A n inclusion of 6 4 - 1 4 4 funetions is 
sufficient to avoid spurious dynamical couplings which would occur in bases of small 
dimension without consideration of translational factors, and to guarantee the existence of 
an asymptotic l imit of the transition ampl i tude 1 0 2 . 

In case of asymmetric ( Z P « Z T ) medium- to high-energy collisions where a Single 
intermediate continuum State plays the dominant role, it is of advantage to construet 
pseudostates from a modification of the completeness relation for target eigenstates". 
Such pseudostates have the property that with growing dimension of the basis, the 
pseudofunetions which correspond to bound states develop eventually into the exact 
eigenfunetions. A l s o the exact continuum states can be more and more accurately 
approximated as long as the electronic coordinate is not too large. However, in many 
practical cases a comparably small basis is used, such that in the high-energy region, for 
example, the agreement with experiment is much improved as compared to the restricted 
bases discussed in See. 2, but not as good as with the best atomic m o d e l s 1 0 3 (cf. F i g . 3). 
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Aiternatively, the Sturmian funetions are employed as basis states. They are Solutions 
of the Schrödinger equation to a fixed negative energy. The strength of the potential is 
used as a free parameter which takes over the role of an eigenvalue. In this way a complete 
set of states can be ob ta ined 1 0 4 . Even with a restricted basis of Sturmian funetions the 
experimental transfer cross sections can in most cases be satisfactorily reproduced 1 0 5 . 

The drawback of the bases consisting of pseudostates is the loss o f the physical 
Information about the specific intermediate states which are important during the reaction. 
Nevertheless, the collective dynamics of the transfer process, like density oscillations 
between the centers of C h a r g e 1 0 0 , can be inferred from the time-dependence of the 
electronic density |i/<r, t ) \ 2 . 
4.2. N u m e r i c a l i n t e g r a t i o n o f the time-dependent Schrödinger equation 

If one wants to obtain the scattering function directly from the Schrödinger equation 
without its further transformation, one has to solve a partial differential equation in 
three-dimensional coordinate space. The numerical Solution of this equation requires a 
discretization of the space and time coordinates. 

For the discretization of the time coordinate it is convenient to work in the rotating 
reference frame and to split the corresponding Hamiltonian (2.10) into four parts 
aecording t o 1 0 6 

4 
H ' e + @ L y = 2 H k 

d2 1 d2 1 
H * = T ' + J ? + 2 W i H > = - ^ + 2 W ( 4 ' 7 ) 

H 3 = ~^©£+; H 4 = -1-®L-

where W = VP + VT, and the representation o f L y in terms of ascending (L+) and 
descending Operators ( L _ ) has been used. z is the coordinate in the direction of the 
quantization axis R . For small time intervals At, the time-development of the wave 
function is approximated by the following relation 

(4.8) 

which agrees up to the order of ( A t ) 2 with the relation obtained from the exact 
time-development Operator at infinitesimal At, e x p ( — i A t 2* H k ( t + A r / 2 ) ) . Notice that 
formula (4.8) implies a separate inversion of each term 1 + i A t H k / 2 , which is easier to 
achieve than an inversion of the total Hamiltonian. 

For the evaluation of the spatial derivatives contained in the kinetic energy Te, the 
coordinate space is discretized in a similar way. The derivatives are approximated by 
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high-order difference formulas which connect the wave function at neighboring space 
points. These lattice points have to be chosen in such a way that the Coulomb singularities 
are avoided. With the help of this space-time discretization, the Schrödinger equation can 
be cast into a matrix equation. 

If the coll ision System is cylindrically Symmetrie, which is the case for zero impact 
parameter in the space-fixed reference f r ame 1 0 7 , or when the Coriol is coupling is 
neglected in the rotating f r ame 1 0 8 , the problem reduces to a two-dimensional one. For the 
higher col l is ion velocities such an approximation is, however, no longer a good one. In 
order to avoid a three-dimensional spatial discretization one may use an expansion in 
terms of basis funetions in the <p-coordinate 

<A(p, z, <p, t) = 2 F m ( p , z, t)eim* (4.9) 
m 

which , in general, can be truncated after a few t e rms 1 0 6 (m ;S 3). Wi th (4.9), the problem 
of discretization is again confined to two spatial dimensions. The initial values F m in 
t = t0 are found by expanding the initial target eigenstate in terms of e x p ( i m < p ) . 

The transfer probability is eventually obtained from a projection of the calculated wave 
function at large t{ onto the final State in question. However, it is numerically more 
convenient to determine the transfer probability by means of integrating over that part of 
the electron density distribution which after the collision is localized in the vicinity of the 
p r o j e c t i l e 1 0 6 " 1 0 8 . In this way a rather good agreement with experimental capture 
probabilities and cross sections is obtained. 
4.3. Classical approach and Statistical theories 

Stimulated by the fact that in the case of a Coulomb potential the classical theory leads 
to the same scattering cross sections as the quantum mechanical theory, classical 
trajectory Monte Carlo methods have been applied to the calculation of transfer 
probabilities. In general, a classical description is less involved and numerically faster 
than the accurate Solution of the Schrödinger equation and gives, especially in the 
intermediate energy region, results which are close to the quantum mechanical o n e s 1 0 9 . 
The description of the coll ision dynamics is achieved by means of classical equations of 
motion or with a transport equation. Wi th the help of large statistics one can try to 
simulate the uncertainty which is inherent in any quantum mechanical description. The 
Standard approach is based on the Hamilton equations of motion for the coordinates q-t and 
the conjugate momenta p { of all particles involved 

dH d H 
^/ = — ; / > / = - — , / = 1 , 2 . . . 9 . (4.10) 

dpi dqt 

H is the füll Hamilton function of the three-body problem. After the Separation of the 
center-of-mass motion one is left with six degrees of freedom in the coordinate and 
momentum space, respectively. 

For the Solution of (4.10), initial conditions have to be specified. They are easily 
determined for the motion of the projectile nucleus relative to the target center of mass: In 
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coordinate space, one has to specify the internuclear distance R ( t = r 0 ) and the impact 
parameter b, while the initial momentum follows from energy conservation. Such a 
classical nuclear trajectory is also used in all semiclassical theories. 

The difficulty of the classical methods lies, however, in the choice of the initial 
conditions for the electronic motion. The only Information can be extracted from the 
quantum mechanical momentum and spatial distribution of the bound target State, which 
means that some sort of statistics has to be used for the initial conditions. The various 
versions of the Standard approach differ just in the prescription for these initial conditions 
in terms of a distribution function p(r , p) which should give an optimal representation of 
the quantum mechanical spatial and momentum distribution. The simplest way consists in 
the choice of the microcanonical d i s t r ibu t ion 1 1 0 

p M ( r , p) = N M 8 ( E - H 0 ) , H 0 = p 2 / 2 + V ( r ) (4.11) 

where N M is a normalization constant. For a Coulomb potential V = — Z / r , an integration 
of p M over r reproduces the exact quantum mechanical momentum distribution summed 
over the quantum numbers / and m , p m ( p ) = ^ i t m \ < P n i m ( V > ) \ 2 > i f E l s chosen to be the 
energy of the nth shell, E = — Z 2 / 2 n 2 . Although the spatial distribution calculated from 
(4.11) does not agree wei l with the quantum mechanical distribution, one expects good 
results for transfer reactions because it is basically the momentum transfer which is 
d e c i s i v e 1 1 1 . The energy conservation implemented in (4.11) reduces the free parameters 
of p/tf(r, p) to five, which can be used to describe the shape and orientation of the Kepler 
orbit for the bound target e lec t ron 1 2 . These parameters are taken to be equally distributed 
within their available parameter space 1 1 0 . 

Apart from the microcanonical distribution, the Wigner distribution has obtained 
special consideration because it can reproduce the quantum mechanical distributions in 
both momentum and coordinate space exactly. However, in contrast to p M , the Wigner 
distribution is not positive definite and thus cannot be interpreted as a probability density. 
There exists, though, the possibility of working with a modified Wigner d is t r ibut ion 1 1 2 

which is cut off for energies smaller than £ m i n and larger than Z s m a x 

Pw(r , p) = 3̂ j dx e i p x r ( r - <l*(r + ®(EmaK - / / 0 ) @ ( / / 0 - E m i n ) 

where ifß is the exact quantum mechanical eigenstate to H 0 , and N w a normalization 
constant. © in the Heaviside Step function. This distribution obeys p w ^ 0. The parameter 
E m i n is determined such that the expectation value of H 0 coincides with the quantum 
mechanical energy, while £ m a x is a free parameter which can be adjusted to give a good 
description of the experimental results. 

The initial conditions for r and p in this model are distributed statistically according to 
the distribution (4.12). This method yields a somewhat better agreement with experirrent 
than the use of the parameters from the microcanonical d i s t r ibu t ion 1 1 2 . 

The Solution of the equations of motion (4.10) is repeated Af times with random 
numbers selected as initial conditions with the help of the Monte Carlo method, subject to 
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the abovementioned restrictions. N is chosen sufficiently large to allow for good statistics. 
Let us denote with N t the number of cases where at large times tx, the electron can be 
found in the vicinity of the projectile. The transfer probability is then determined by this 
fraction of the total number of runs 

P ( b ) = N ] / n . (4.13) 

A different approach which is quantum Statistical in nature is not based on the classical 
Hamil ton equations, but on the classical limit of the quantum mechanical L iouv i l l e 
equation, the so-called Vlasov equa t ion 1 1 3 

j t p(r, p, 0 + ( V p / / e ) V r P ( r , p, 0 - ( V r / / , ) V p p ( r , p, t ) = 0 . (4.14) 

The distribution function p(r, p, 0 is the Wigner-Weyl representation of the single-
particle density Operator, and H e is the Hamilton function for the electron. The Solution of 
the Vlasov equation proceeds in a similar way as outlined for the Hamilton equations: 
Specifying a classical path for the nuclear trajectory R(0» E q . (4.14) is solved for N 
"super-particles", each super-particle representing a fraction of the quantum fluid. The 
initial conditions are chosen randomly according to the initial distribution p(r, p, t0) 
which is taken as a reasonable representation of the electron in its bound target State. The 
capture probability is given by (4.13) where N] is now the number of super-particles 
which are attached to the projectile after the coll is ion. 

Another category of Statistical methods aims at a partial consideration of quantum 
mechanics by means of a hydrodynamical equation for the motion of the e l ec t ron 1 1 4 

m ? = -Vweff; Wcff = W - -V AVp (4.15) 
dt 2 V P 

which can formally be derived by inserting the ansatz i/r = A exp(/5) into the Schrödinger 
equation for the electron, such that one identifies p = A 2 and v = VS /m. For the 
numerical integration of (4.15) "probabili ty particles' ' are introduced by dividing the 
three-dimensional space into N small volumes A V ; . For each volume, a coordinate r, is 
introduced accordingly 

r i ( t ) = N rp(r, t ) dr , (4.16) 
J A V . 

and instead of (4.15), the resulting discretized problem is solved 

d 2 r < 
m - ^ = -Vr.Wefför/, 0, i = 1, . . . W , (4.17) 

with the help o f a predetermined classical internuclear trajectory. The initial conditions for 
the integration of (4.17) are obtained by means of distributing the N probability particles 
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in space according to the quantum mechanical probability |cp/|2 and taking an init ial 
velocity of zero. The difficulties of this method arise from the dependence of the effective 
potential Weff on the density p(r, t) which is a functional of the coordinates r, of the 
particles that are at time t in the vicinity o f r. Due to the coarse-grained structure for finite 
N the Statistical density fluctuations tend to be enhanced in the potential, and one has to 
introduce smoothing procedures to avoid this effect. 

The probability-particle method differs from the Standard approach as it requires the 
Solution of a coupled System of 6 N differential equations of first order, while the methods 
which are based on the Hamilton equations imply the Solution of only six coupled 
equations, though N times. Correspondingly, it is very time-consumfng to improve the 
statistics, such that the agreement with the experimental capture d a t a 1 1 4 is not so good. 

5. Many-Electron Models 

The cases where the coll ision System consists of only three particles are very rare and 
are either confined to collisions of fully stripped projectiles with hydrogen atoms, or to 
merged-beam experiments with hydrogen-like target ions. In all other cases one has to 
deal with the presence of several electrons. In this section, the füll multi-electron problem 
is addressed. 

The starting point for describing the transfer of one or more electrons in a coll is ion 
where N electrons are present, is the N-particle Schrödinger equation 

where r i , . . . , are the coordinates of the N electrons, while in the semiclassical 
picture, the internuclear motion is described by the trajectory R ( t ) . rkP and rkT is the 
distance of the kth electron from the projectile and target nucleus, respectively. The 
coupling between the electrons is induced by the last term in H e , the electron-electron 
repulsion. 

A s discussed below, it is in some cases possible to stick to one-electron models with 
modified wave funetions and potentials, especially i f the electron-electron interaction can 
be neglected. Even i f it cannot be neglected, the construetion of effective one-particle 
states is still feasible with the help of the Hartree-Fock method. However, as soon as the 
electron-electron correlations play a significant role in the coll ision dynamics, one has to 
cope with the füll multi-electron problem. Some approaches to the füll problem are 
discussed at the end of this chapter. 
5.1. Reduction to a M o d i f i e d Three-Body Problem 

There are situations where the electron-electron coupling plays only a minor role and 
can be neglected. A n example is the Charge exchange between the innermost Shells of 
projectile and target which are separated sufficiently wel l from higher Shells so that they 
can be considered as isolated, as long as the collisions are very slow or very fast. A s the 

id,<«ri, R(/), t) = //„«AOn, . , r N , R ( t ) , 0 . 
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separatio! between the energy levels increases strongly with projectile Charge, this 
approxirmtion is especially suited for inner-shell excitation of superheavy Systems 1 1 5 . 
The quas-one-electron Systems are also candidates for the Omission of the electron-
electron hteraction. These are Systems with a Single electron occupying the outermost 
shel l , wrile the core electrons can be considered as passive spectators. 

In a l l these cases one assumes that the electrons are independent of each other 
(independent electron model) and that their dynamics are described by one-particle 
potentials VP and VT which are modified in order to account for the presence of the passive 
electrons 1 1 6 In the simplest case, they are Coulomb fields to an effective Charge. 

After tke potentials are determined, any suitable one-electron model from Sees. 1-4 
can be chosen to calculate the transfer probability P ( of an electron which is initially in a 
given staie <pf. Since the electrons are considered as independent, the probability of 
transferriEg m electrons from the subshell / (in which n electrons shall be present) is 
obtained from the f o r m u l a 1 1 7 1 1 8 

The factoj (1 — p / . ) n - m aecounts for the fact that n — m electrons shall remain in the 
subshell i ; i t i s , however, negligible when P , is very small . If the number of available final 
states is smsller than the occupation number n in the initial subshell, the electronic spin 
has to be considered explicitly in the derivation of the transfer probability. This w i l l 
modify (5.2s, resulting in a non-binomial distribution of Wm. In order to describe the 
simultaneoui transfer of electrons which originate from different subshells of the target, 
one has to calculate the probabilities separately for each subshell and multiply them 
afterwards. One then also has to sum over the possible initial distributions of the 
transferred dec t rons 1 1 7 . 

The many-body classical trajectory Monte Carlo s cheme 1 1 9 provides a method to go 
beyond the independent electron model by describing the simultaneous motion of all 
target electons with the help of classical trajectories, while the electron-electron 
interaction i* stil l approximated by means of an effective Coulomb potential. In this way, 
the angular distributions and energies of all particles involved, the projectile ion, the 
target (recoi) ion and the ejected electrons can be determined. 

5.2. l n c l u i o n o f the staue electron-electron coupling 
Whi le in he modified three-body problems the electron-electron interaction enters at 

most implict ly through the choice of an effective potential, and antisymmetrization is 
completely leglected, the next Step is to include the two effects in a static description 
while keepirg the advantage of treating the collision dynamics in the framework of a 
one-electron model. To this aim the Hamiltonian is approximated by means of a sum of 
one-particle Operators 

(5.2) 

N 

H< « 2 êfftr*, R ( 0 ) , Acfffr*, R) = — j A r 4 + V e f f(r*,R). (5.3) 
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Veff(r, R) is an effective potential in which every Single electron is moving. In the 
adiabatic approximation this potential is constructed anew for every fixed internuclear 
distance R ( t ) . 

The most advanced Solution to the stationary many-body problem is the Hartree-Fock 
m e t h o d 1 2 0 . The N-particle wave function is written in the form of a Slater determinant 
composed of one-particle wave funetions, in order to include antisymmetrization. The 
one-particle funetions are the self-consistent Solutions to the Hartree-Fock equations and 
thus aecount for the electron-electron coupling. In case of very heavy coll is ion partners, 
the Schrödinger Operator (5.3) has to be replaced by the Dirac Operator. This implies 
Solution of the Dirac-Hartree-Fock-Slater ( D H F S ) e q u a t i o n s 1 2 1 - 1 2 3 instead of the 
Hartree-Fock equations. The equations are either solved by numerical in tegrat ion 1 2 2 or by 
expanding the wave funetions in terms of a linear combination of projectile- or 
target-centered orbitals ( L C A O ) , and determining the expansion coefficients upon 
insertion into the Har t ree-Fock 1 2 4 or D H F S equat ions 1 2 1 . In this way, the one-particle 
energies as a function of R , i .e. the correlation diagrams, can be calculated very 
a c c u r a t e l y 1 2 4 ' 1 2 5 . 

Instead of using the rather numerically involved Hartree-Fock method for the 
construetion of an effective one-particle potential, one may alternatively apply the density 
functional approach 1 2 6 . This approach consists in representing the total energy of the 
many-electron System in terms of a one-particle density with the help of a gradient 
expansion, the density being determined from a variational equation. B y construeting the 
effective potential from lowest-order terms in the gradient expansion one avoids the 
intricacies of a self-consistent Solution of the one-particle equations inherent in the 
Hartree-Fock method. 

The simplest way to obtain the density is provided by the Thomas-Fermi method which 
neglects any gradient terms in the energy functional. The Thomas-Fermi potential is set up 
for each of the coll iding atoms separately, which are then added to yield the two-center 
effective p o t e n t i a l 1 2 7 , 1 2 8 . In contrast to the Hartree-Fock method, the Thomas-Fermi 
prescription is easily extended to ionized quasi-molecular Systems. In order to aecount for 
the dependence of the Screening on the internuclear distance, the "variable Screening 
m o d e l " has been constructed. In this model, the effective Charge which enters into each of 
the potentials, is interpolated between the limiting cases of separated and united atoms, 
respect ive ly 1 2 9 . 

The Thomas-Fermi method can be improved by including a gradient term in the kinetic 
energy functional and by considering the exchange term to zeroth order (Thomas-Fermi-
Dirac-Weizsäcker m o d e l ) 1 3 0 . For the lowest orbitals in the correlation diagram, the 
agreement with Hartree-Fock calculations is very g o o d 1 3 1 . A further improvement can, in 
principle, be achieved by retaining higher terms in the gradient expansion, or even by 
including the correlation energy. A l s o , an extension to relativistic coll is ion Systems is 
feasible through the consideration of inhomogeneity correct ions 1 2 6 . 

The construetion o f an /?-dependent effective potential reduces the Solution o f (5.1) to 
the Solution of N time-dependent one-particle equations 

i d M r , R, t) = /*eff(r, R)<A*(r, R, 0 , k = l, 2 . . . N (5.4) 
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For small N , a numerical integration of the time-dependent Hartree-Fock equations (5.4) 
is feasible with the technique of finite differences 1 3 2 , however, in most cases an 
expansion of ijjk into basis states is preferred. For the basis, one may use atomic states 1 3 3 

which are especially suited for asymmetric collision Systems 1 3 4 . If the Hartree-Fock 
method has been applied for the construetion of the effective two-center potential, it is 
advantageous to expand the wave function in terms of Hartree-Fock orbitals < p n ( r , R) 
which are the stationary Solutions to /ieff(r, R), 

<fe(r, R, 0 = S c n k ( t ) c p n ( r , R)eif»*r (5.5) 
n 

where / „ is an appropriate translational fac tor 1 3 5 . Correspondingly, for near-symmetric 
very heavy ion collisions, the wave function is preferably expanded in terms of the D H F S 
o rb i t a l s 1 2 3 . 

Hence, the Solution of the N-particle Schrödinger equation is reduced to the Solution of 
N independent Systems of differential equations for the expansion coefficients cnk, in 
complete analogy to the case of a Single electron. The initial State is represented by a 
Slater determinant which consists of the N occupied atomic states which are Solutions to 
/i e f f(r, R —> oo) in the limit of infinite internuclear Separation. A s electron-electron 
correlations are neglected, the wave function at arbitrary time t is also a Slater determinant 
of the Solutions of (5.4). 

In order to speeify the transition probability, the final State is again represented as a 
Slater determinant of the stationary Solutions to /ieff(r, R —» °°) . The transition amplitude 
is obtained from the projection of the determinant built of the Solutions of (5.4) at large 
times onto this final State. In general, the states of only a few of the electrons of the 
collision System are experimentally resolved; hence, the Square of the transition amplitude 
has to be integrated over all possible final states of the remaining e l e c t r o n s 1 3 6 , 1 3 7 . 
5.3. Approaches to the dynamical N-body problem 

The time-dependent N-particle Schrödinger equation can in principle also be solved 
without the explicit construetion of time-dependent Single particle states. To this aim one 
first calculates the Solutions <f>n of the stationary N-particle problem aecording to See. 5.2. 
The exact wave function $ is then expanded in terms of these Slater determinants <f>„, 

<Mr,, . . . , r N y R, t) = X ^ n ( t ) ( f > n ( r l , . . . , r„ , R)* * (5.6) 
n 

where the phase factor represents a state-dependent translational fac tor 1 3 8 . B y inserting 
(5.6) into the Schrödinger equation (5.1) and projecting onto the function the 
following System of coupled equations is obtained 

iäm{t) = a m ( t ) e m - i £ a n ( t ) ( < f > m \ d, + £ {V^r*/ , , )}^) 
n k 

+ ^W2(//lr,)|</>/I) . (5.7) 

Only the dominating coupling terms which are at most linear in the velocity v have been 
retained in (5.7). Correspondingly, the terms proportional to än\ and en\ arising from the 
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non-orthogonality of the translated basis states, have also been dropped. The energy em is 
the sum of the energies of the Single particle states contained in <f>m plus the translational 
energy induced by / „ . In this way one obtains directly for t —» oo the occupation numbers 
of the states <f>m and thus the transition probabilities into the atomic states into which <f>m 

develops asymptotically. A s mentioned before, a summation over the final states of al l 
unobserved electrons is required in order to compare the transition probability with 
experiment. 

For heavy Systems the Solution of (5.1) with consideration of all existing electrons is 
very time-consuming. Therefore, a part of the electrons, for example the passive core 
electrons, is described by means of an effective atomic potential, and the complete 
time-dependent problem is only solved in the subspace of the remaining electrons. 
Numerical Solutions have been obtained, e.g. in the special case of two active 
e lec t rons 1 3 8 . 

Another possibility of approximating the time-dependent N-electron problem consists 
in omitting the electron-electron interaction when the stationary basis states </>n are 
constructed. This means that <f>n is composed of hydrogenic or molecular Coulomb states. 
Then the electron-electron coupling appears as an additional transition Operator in the 
dynamical equations; hence, a corresponding modification of the coupled equations (5.7) 
has to be solved. However, this is generally done within a rather limited space of basis 
states (/>„ in the expansion ( 5 . 6 ) 1 3 9 . 

A quite different approach to the dynamical many-body problem is concerned with the 
introduction of a collective variable for the electronic motion, which is treated classically 
like the internuclear motion. For the collective variable, the Charge asymmetry is u s e d 1 4 0 

where z, is the z-coordinate of the i t h electron in a rotating frame, the origin of which is at 
the midpoint between projectile and target nucleus, with the z-axis along R. The variable £ 
characterizes the partition of the electrons between projectile and target. Its aim is an 
intuitive description of the transitions between the various ionic states of the collision 
System as a function of the internuclear distance. L i k e in the previously mentioned 
methods, at first the stationary problem has to be solved for fixed values of R and £ by 
means of constrained Hartree-Fock equations 

where the Lagrange multiplier A is determined through the condition that £ has a given 
expectation value. From the Solution of (5.9) one obtains generalized correlation diagrams 
£*(/?, £) which reveal the possible ways of how the exchange of electrons can take place. 

The dynamics of the coll ision process can subsequently be obtained by expanding the 
exact N particle wave function in terms of the Solutions to (5.9) and inserting it into the 
Schrödinger equation. For this purpose, the time-dependence of £ has to be known. Itcan 

£ l R / 2 
+ Z P - Z T (5.8) 

(5.9) 
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be described with the help of Ehrenfest's theorem by a classical equation of motion, which 
is governed by a potential derived from the energy surface. A n alternative way to handle 
the time-dependent p r o b l e m 1 4 1 proceeds similar to the Monte Carlo calculations: The 
equation of motion for £ is solved repeatedly with initial conditions distributed around the 
equil ibrium value of £ at R —> oo, and the fraction of trajectories leading to Charge 
exchange determines the capture probability. However, due to the restriction to axial 
symmetry and the neglect of rotational coupling, the results are inferior to those of the 
other methods 1 4 1 . 

6. Extension to Relativistic Velocities 

A relativistic description of electron capture leads to a fundamentally different behavior 
as would be expected from an extrapolation of the nonrelativistic theories to the limit 
v oo. The reason lies in the fact that the transformation from the projectile frame to the 
target frame, which is of increasing importance as v increases, is no longer mediated by 
U+ from (1.2). Instead, a spinor transformation S has to be u s e d 1 4 2 , 

(6.1) 

a z = (°a y ^ l - v V c 2 ) - ' / 2 

where a z is the Pauli spin matrix. This transformation does not only lead to a different 
velocity dependence, but it induces also an additional magnetic field when applied to the 
projectile potential V'P 

7oV P (r, t ) = S y o V l p ( r ' ) S - 1 = y 0 y V p ( r f ) i [ \ - az^j (6.2) 

where y 0 is a Dirac m a t r i x 1 4 2 , and the coordinates in the target frame (r, t ) are related to 
the ones in the projectile frame (r\ t') by means of a Lorentz transformation. In the 
fol lowing, atomic three-body models are investigated in order to extract the energy 
dependence of the capture cross section. A relativistic formulation of a coupled-channel 
approach as well as the numerical integration of the Dirac equation is also discussed. 
6.1. A t o m i c theories 

Generalizing the results from See. 1.1 to the relativistic case, the exact transition 
amplitude can be written in the following w a y 1 4 3 

a ß = - i J d t ( t y - > ' ( r ' , O S - ' l S y o V ' i i r ' , t')S~l | <p,(r, /)) (6.3) 

with = ( l / + y o • In a similar manner, the post and prior distorted forms, (1.8) and (1.11), 
respectively, can be formulated relativistically and can serve as a starting point for a 
relativistic version of the high-energy atomic theories. 

<Kr,f) = S<A'(r',*') 



814 D . H. Jakubaßa-Amundsen 

The relativistic first-order Born a p p r o x i m a t i o n 1 4 4 " 1 4 6 which is obtained by replacing 
tf^~)f by (p} in (6.3) leads to an energy dependence of the capture cross section like E ~ ] 

where E = y M P c 2 . A n early attempt to calculate the double-collision term c l a s s i c a l l y 1 4 5 

resulted in an energy dependence l ike E ~ 3 , in contradiction to the non-relativistic 
dominance of the second-order term. However, a quantal analysis of the relativistic 
second Born approximation shows the fol lowing high-energy behav io r 1 4 3 

which Supports the dominance of the second Born term. A n approximat ion 1 4 7 to the 
second-order Born theory which considers only the leading terms in an expansion in 
powers of Z P / c and Z T / c does not reproduce (6.4), but leads to a decay of er like £ _ 1 . 
From an investigation of the third-order Born t heo ry 1 4 8 within the same approximation it 
can be conjectured that the correction terms beyond second order show a much faster 
decay with E and thus play no role in the ultrarelativistic l imit . This can also be seen from 
a relativistic formulation of the impulse approximat ion 1 4 9 where the same logarithmic 
energy dependence is found as given in (6.4). 

Recently, further theories have been extended to relativistic coll ision velocities. The 
eikonal theory, both in its a symmet r i c 1 5 0 and Symmetrie f o r m 1 5 1 leads, as expected, to the 
identical energy dependence as the Brinkman-Kramers theory. A l s o the Standard C D W 
t h e o r y 1 5 2 behaves l ike er ~ E ~ ] and not like the second Born as in the nonrelativistic 
case. A n inclusion of the second-order C D W term w i l l therefore be necessary to give the 
correct asymptotic behavior. 

Theories which contain intermediate off-shell states, l ike the S P B and the D W B , have 
not been investigated for relativistic velocities. For this purpose, an explicit representation 
of a relativistic off-shell function would be required, which has not yet been obtained. 
6.2. C o u p l e d Channel c a l c u l a t i o n s 

For collisions with very heavy targets such as uranium, atomic theories are no longer 
able to reproduce experiments with sufficient accuraey for the heavier projectiles, because 
even for velocities approaching c, the ratio between v and the electronic velocity ve is not 
considerably larger than o n e 1 5 3 . Since the ratio Z P / Z T is not very small either, there does 
not exist a natural expansion parameter and one has to resort to non-perturbative 
approaches. 

A possibility of treating Charge transfer in very heavy ion collisions consists in the use 
of basis states which are Dirac eigenfunetions to the projectile (<p£'(r\ t ' ) ) and to the 
target (<p/„(r, t ) ) , respectively. The exact wave function for the active electron is 
expanded aecording t o 1 5 4 

= c o n s t ( i n E ) 2 / E , E oo (6.4) 

(6.5) 

Insertion into the two-center Dirac equation 
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leads, like in the nonrelativistic case, to a System of coupled differential equations for the 
occupation numbers a n and bm. The main difference to the nonrelativistic description, the 
occurrence of long-range monopole and dipole couplings which originate from the 
induced magnetic interaction, only affects excitation, but not capture. Pilot calculations 
for 1 G e V U + U collisions with twenty basis states show a considerable deviation of the 
K - s h e l l capture cross section from results within the relativistic boundary-corrected 
first-order theory 1 5 4 . 
6.3. N u m e r i c a l integration o f the D i r a c equation 

For the sake of completeness we want to address a different approach to the relativistic 
one-electron problem which until now has only been applied to direct processes, but 
which may readily be extended to electron capture. It consists of a direct numerical 
integration of the two-center Dirac equation by means of discretization, either with the 
help o f finite e lements 1 5 5 or with the finite difference m e t h o d 1 5 6 . The latter method has 
recently been used not only for relativistic (i.e. very heavy) projectiles, but also for 
relativistic collision ve loc i t i e s 1 5 7 . In the special case of zero impact parameter, the 
integration of (6.6) requires a discretization in the time coordinate and the two spatial 
coordinates p and z, which is done in a similar way to that described in See. II.4.2. The 
wave function obtained at large times is then projected onto the set of Dirac eigenstates of 
the target in order to obtain the probability for excitation or ionization. In the case studied, 
1 G e V U + U, it is found that a considerable fraction of electrons is emitted into the 
direction of the projectile, but only a small part w i l l be captured into bound states 1 5 7 . 

III. Applications 

In atomic collision physics there exists a strong interdependence between theory and 
experiment. This is necessary in order to get insight into the fundamental processes which 
govern the reactions. Charge exchange provides a tool to investigate a large variety of 
problems. Only partly, are these problems specific to Charge transfer; however, due to the 
fact that the rearrangement is basically a second-order process, there is in general a much 
stronger sensitivity to the properties of both the collision partners. A large field of 
application is the spectroscopy of quasi-molecular orbitals in slow col l i s ions 4 . A s the 
electronic transitions occur predominantly at avoided crossings of the energy levels, 
impact parameter measurements make it possible to locate these crossings i f the coll ision 
energy is chosen appropriately. Such experiments also help to decide which reaction path 
is favored i f there is more than one way to populate a given final State. Impact-parameter 
measurements are sensitive to interferences which reflect the possibility that capture can 
take place on the incoming or on the outgoing part of the internuclear trajectory. Such 
interferences can lead to an oscillatory strueture of the capture probability from which the 
mean energy distance of the partieipating levels may be i n f e r r e d 1 5 8 1 5 9 . In case of a 
resonant nuclear reaction one even gets Information about the lifetime of the 
corresponding Compound n u c l e u s 1 6 0 , 1 6 1 . The decrease of the capture probability with 
impact parameter is strongly related to the energy transfer to the active electron. A study 
of the impact-parameter dependence of the vacancy produetion probability therefore 
allows in principle a distinetion between electron capture and ionization. This is helpful 
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because ionization may contribute significantly even in the case of a small v or large 
Z P / Z T , where capture has some Chance to domina te 1 6 2 . 

If one compares electron transfer in different coll ision Systems, there are similarities 
which may tentatively be expressed by means of scaling r e l a t i o n s 3 0 , 7 7 1 6 3 . The validity o f 
such a scaling can, however, only be tested in comparison with exper iment 1 6 4 . 

The description of electron transfer through a sequence of binary collisions implies the 
occurrence of critical angles where the differential scattering cross section has distinct 
m a x i m a 1 0 , 1 1 , 3 2 , 1 6 5 . A n experimental verification of this classical picture has been 
accomplished in the case of the Thomas p e a k 1 6 6 , 1 6 7 and recently also for the 
double-scattering peak at 60 degrees 1 6 8 . 

The knowledge of capture cross sections is of great importance for the determination of 
the Charge State of the projectile inside a solid target. For sufficiently thick targets, the 
Charge State follows from the balance between electron capture and loss, while for 
arbitrary target thickness rate equations have to be s o l v e d 1 6 9 . The influence of the 
environment on the projectile Charge State is crucial to the behavior of particles in 
thermonuclear fusion plasmas, but it governs also the losses in storage rings. 

In the comparison between theoretical models and experimental capture data given 
below, we restrict ourseives to the presence of a Single active electron because in such a 
case, experimental conditions are most precisely defined, and the basic assumptions of the 
theoretical descriptions become most transparent. This means that the large field of 
simultaneous multi-electron transfer, but also the transfer-excitation is not considered 
here. B y selecting coll ision Systems with high impact velocity or with large asymmetry 
between the nuclear charges Z P and Z r , one hopes that the multi-electron processes 
contribute only a negligible fraction to the non-coincident capture cross sections. 
Examples of electron transfer in low-energy collisions can be found in the review articles 
mentioned at the beg inn ing 2 , 4 or in the references of Sees. II.2 to II.5. Specific cases of 
Coulomb capture and radiative capture into both bound and continuum projectile states 
w i l l be considered. A l s o , examples of capture during resonant nuclear scattering w i l l be 
given, in relation to other experiments which are sensitive to nuclear reactions. 

1. Charge Transfer in the Absence of Nuclear Reactions 

In this section, coll ision Systems are selected which allow for a classical description of 
the internuclear motion by means of a Rutherford trajectory (or some approximation to it). 
This implies that the projectile and target nuclei scatter elastically from each other and do 
not change their properties during the col l is ion. This is the case for the great majority o f 
capture reactions except the few where a Compound nucleus is formed, or where the 
electron is captured into the nucleus. 

Capture reactions can be mediated by two different transition Operators, the Coulomb 
interaction between electron and projectile/target, as wel l as the photon field. The former 
case, also termed Coulomb capture, has been discussed extensively in the previous 
sections. However, theories for the second kind of reactions, the radiative electron 
transfer, can easily be obtained from the models for Coulomb capture by replacing one of 
the Coulomb transition Operators by the radiation Operator. The visibil i ty o f radiative 
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electron capture into bound projectile states ( R E C ) in total capture cross sections or in the 
photon spectrum requires high projectile charges ( Z P > Z T ) as wel l as high impact 
energies. Therefore, the projectile correlated frame is usually taken as a reference frame 
for the electron, and the radiation Operator transformed into this frame by means of the 
transformation U from (1.2) reads 

H ' R = U H R U + = - e ' ( o t A i Vr> - ' U Z " T T * M 
(III . l) 

where the dipole approximation has been used. The unit vector uM denotes the polarization 
direction of the photon, and co its frequency. M — M P + M T is the sum of the projectile 
and target mass. Since the coupling to the photon field is weak, a first-order theory in H R 

is sufficient. In order to demonstrate how the R E C theory is obtained from the theory for 
Coulomb capture, the strong potential Born approximation is selected as a specific 
example. Restricting ourseives to the case Z P » Z T , the post form of the transition 
amplitude has to be used, and by analogy to (1.47) we find (primed quantities are defined 
in the projectile frame, taking x f = 0) 

- A V p u 

X fc(q + v ) e ' q R exp11^e f - e, + —)t 

E = ef + 
(HI.2) 

where the second term of H R from (III . l) has been neglected because it is smaller by a 
factor M T / M P . In contrast to the Coulomb capture, into (III.2) enters an off-shell State 
which is renormalized, This renormalization is necessary because in the limit of 
vanishing target Charge, the R E C cross section has to coincide with the cross section for 
radiative recombinat ion 1 7 0 , which means that in this l imit , ifäE is a physically observable 
State. For Coulomb capture on the other hand, a renormalization is not required because 
the corresponding matrix element vanishes identically for Z T = 0. The specific choice of 
the renormalization factor is still an open question; however, the simplest choice of using 
the ratio between a Coulomb wave and an off-shell State in the l imit Z T —» 0 reproduces 
the experiment very w e l l 1 7 1 . The results without renormal iza t ion 1 7 2 are in severe 
contradiction to the data. 

Besides the strong potential Born theory in its nonrelat ivist ic 1 7 1 1 7 2 and re la t iv i s t ic 1 7 3 

version, other current theories for radiative electron capture are the impulse 
approximat ion 1 7 4 , a two-state approximat ion 1 7 5 which essentially is a peaking approx
imation to the I A , as well as a theory developed from the correspondence of R E C to the 
inverse photoionizat ion 1 7 6 . The latter theory as well as the impulse approximation is also 
easily extended to radiative transfer into projectile continuum states (termed radiative 
i o n i z a t i o n ) , 7 7 ' 1 7 8 . 
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1.1. Capture into bound states 
The total cross section for the capture of a target electron from the subshell / with N f 

occupied states into the subshell / of the projectile is calculated from 

er = 2ttN1 

2 7 T N , 

b db \aß(b)\2 (Coulomb capture) 

/ 2 \ bdb\ du dO,y \ a $ ( b ) \ 2 ( R E C ) 

(III. 3) 

where ily is the solid angle into which the photon is emitted. 

Figure 3 shows the cross section for capture from the A r K-shel l as a function of the 

energy of the impinging proton. The experimental d a t a 1 7 9 1 8 0 include the capture into 

excited states which aecording to the n ~ 3 scaling contributes about 2 0 % of the capture 

into the K-she l l . Comparison is made with the following models: the S P B with the exact 

off-shell funct ion 5 5 , the transverse peaked S P B in the near-shell approximation ( 1 . 5 1 ) 1 8 1 , 

the exact impulse approximat ion 5 5 , the boundary corrected first-order Born theory 4 2 , a 

5 10 
Energy (MeV) 

Fig. 3. Capture cross section from the Ar K-shell by protons as a function of collision energy. Experiments: A 
(McDonald e t a t . 1 7 9 ) , f (Horsdal Pedersen et a/.1 8 0). Theory: - - - - - IA (Jakubaßa-Amundsen55), * unpeaked 
SPB (Jakubaßa-Amundsen55), — • • — transverse-peaked SPB (Jakubaßa-Amundsen and Amundsen181), 

true first Born (Dewangan and Eichler42), two-state approximation (Lin and Tunnell70), • 
coupled-channel (Ford et a/.1 8 2). 
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two-state approximation 7 0 and a coupled-channel ca lculat ion 1 8 2 . A l l calculations consider 

only the capture into the projectile ground State except the Born theory which includes a 

factor 1.2 to aecount for capture into excited states. It follows from F i g . 3 that in case of 

high impact energies, all theories are able to explain the experimental data, while for 

energies below the capture maximum, the S P B gives the best results. (The rather low 

values o f the unpeaked S P B slightly above the maximum are probably an artifact related 

to the handling of the divergence). Even at the lowest energies considered, a 

coupled-channel calculation is not yet required for such asymmetrie Systems. 

Figure 4 shows the energy dependence of the capture cross section for the Symmetrie 

Systems p + H , p + H 2 , as well as for p 4- He. A supplementary figure for the lower 

collision energies (E < 0.5 M e V ) can be found in Ref. 2. A comparison is made between 

the C D W theory 8 , the near-shell S P B which has been evaluated with the help of an 

asymptotic high-energy approximat ion 1 8 3 , the impulse approximat ion 1 8 4 , the eikonal 

a p p r o x i m a t i o n 6 6 , 1 8 5 as well as the boundary corrected first Born approximation 4 3 . Wi th 

the exception of the S P B results, the calculations include capture into higher projectile 

states. A l l theories under consideration give an agreement with the experimental 

d a t a 1 8 6 - 1 9 2 within a factor of two in the whole energy region (E > 0.5 M e V ) . If, 

however, energies down to 25 keV are included, the (Symmetrie) C D W theory is best in 

explaining the d a t a 1 9 3 . 

More detailed information about the capture process is provided by differential 

measurements. The comparison with the experimental impact-parameter dependence 

provides a much more sensitive test of the theories than is the case for total cross sections. 

For the same collision System as considered in F i g . 3 (p 4- A r ) , the impact-parameter 

dependence at an energy of 6 M e V is depicted in F i g . 2 (shown in See. II. 1.2). From this 

1 2 5 
Energy (MeV) 

Fig. 4. Capture cross sections from H, H 2 and He by protons as a function of collision energy. Experiments: • 
(Schwab et al.I86), o (Hvelplund and Anderson ,87), A (Schryber188), V (Welsh et al.,89), • (Williams , 9 0), O 
(Toburen et a l . 1 9 1 ) , x (Berkner et a l . 1 9 2 ) . Theory: CDW (Belkic et a/.8), SPB (McGuire et 
a l . l S 3 ) , true first Born (Belkic et a l . 4 3 ) , - - - - - eikonal approximation (Dewangan185; Eichler and 
Chan66), I A (Coleman and Trelease184). 
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figure it follows that atomic perturbation models like the transverse peaked S P B in 
near-shell approximation 3 1 or the impulse approximat ion 3 0 reproduce not only the 
experimental total cross sections, but also the impact-parameter distribution. The 
^-dependence is also wel l described by the simple Brinkman-Kramers app rox ima t ion 2 7 ' 2 9 

although it is (as discussed previously) not an adequate theory, and often overestimates 
total capture cross sections at the higher energies 1 6 4 . A n exception is the (first-order) 
C D W theory 2 9 which cannot reproduce the data in the whole impact parameter region, 
and the discrepancy is increased when the collision velocity becomes higher. Although the 
deviations between C D W and experiment diminish at fixed velocity i f the collision System 
gets more Symmetrie, the C D W 2 approximation 4 6 is required to get a satisfactory 
agreement with the data. 

A t very high coll ision velocities a double peak strueture becomes visible in the angular 
distribution. The additional peak corresponds to capture events where the projectile is 
deflected by the critical Thomas angle # = ( m / M P ) sin 60°. For its explanation, a 
classical double-collision model for Charge transfer can be used 1 1 . In this model it is 
assumed that in a first encounter the projectile scatters from the target electron in such a 
way that the electron is deflected by 60° with respect to v. This angle is required to 
accelerate an electron at rest to the velocity v. In a second encounter, this electron collides 
elastically with the target nucleus, and is again deflected by 60°. After the two coll isions, 
the electron moves in the same direction as the projectile and hence is easily captured. A s 
the projectile is unaffected in the second encounter, its deflection by the Thomas angle is 
an indication of an enhanced capture probability. 

The first experimental Observation of the double peak strueture in the differential 
capture cross section has been achieved only recen t ly 1 6 6 for the coll is ion System p + He . 
Figure 5 shows d a / d i l at a proton energy of 7.4 M e V (v » Z P , Z T ) . For a theoretical 
description of the Thomas peak, capture theories are required which comprise the 
second-order Born approximation. The Brinkman-Kramers theory would only show a 
monotonous decrease with scattering angle over the whole ^ - r e g i o n 1 9 4 . In the figure, 
calculations within the exact second-order Born theo ry 1 9 5 , the near-shell S P B in its 
asymptotic high-energy approximat ion 1 9 5 , as wel l as the D W B in two high-energy 
versions, an on-shell peaking-approximation 5 9 and an off-shell peaking approximation 6 0 , 
are presented. The first-order C D W theory is inconsistent with experiment because it 
exhibits a sharp minimum near d = 0.28 m r a d 1 9 6 . However, the C D W 2 (shown in 
F i g . 5) is, l ike the other models depicted in the figure, in good agreement with the 
experimental result. Note that all theories are folded with the experimental detector 
resolution which washes out the strueture to some extent. 

A second critical ang l e 1 0 is predicted at a deflection of the projectile by 60°. A n 
enhancement of the capture cross section at this angle is expected from a different 
classical double collision process: In a first encounter, the projectile scatters from the 
target electron, the latter being deflected by 60° (as in the Thomas scattering). In a second 
encounter, the projectile hits the target and is deflected by 60° . In this way, projectile and 
electron also emerge parallel to each other, which facilitates capture. 

A clear experimental identification of this 60° peak has not yet been aecomplished, 
however, there is some indication of a broad strueture near 60° in energetic collisions of 
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Fig. 5. Differential capture cross section in the collision of 7.4 MeV p + He as a function of scattering angle. 
Experiment: • (Horsdal Pedersen et a l . 1 6 6 ) . Theory: second Born (McGuire and Si l 1 9 5 ) , SPB 
(McGuire and Si l 1 9 5 ) , CDW2 (Rivarola, taken from Ref. 195), - off-shell DWB (Aiston60), 

on-shell DWB (Roberts59). 

protons with N e 1 6 8 , 1 9 7 . For a theoretical description, a straight-line internuclear trajectory 
as used for small-angle scattering or for total capture cross sections at high impact energy, 
is no longer appropriate. Instead, the Rutherford path may be approximated by its two 
asymptotes at time / = -oo and t = + °o for zero impact-parameter. Calculations within 
the peaked near-shell S P B (Ref. 51) as wel l as the peaked IA (Ref. 198) indeed show 
some strueture at 60°; however, the agreement with experiment is not too satisfactory. 

Another point o f interest is the dependence of the capture cross section on the specific 
parameters of the collision System. The dependence on the target Charge is depicted in 
F i g . 6 for relativistic Systems, where data for X e 5 4 + impinging on B e , M y l a r , A I , A g and 
A u are c o m p i l e d 1 9 9 . A comparison with theoretical calculations for Coulomb capture in 
the relativistic eikonal approximat ion 1 5 0 and for radiative capture using a relativistic 
theory for the inverse photoeffect 1 7 6 reveals that for the heavier targets, Coulomb capture 
dominates at al l energies. For light targets, however, the experimental data can be 
explained with R E C alone. 

The photon spectrum for the lightest of these coll ision Systems, 197 M e V / a m u 
X e + B e , is shown in F i g . 7 1 7 8 . The prominent peak around the energy 
v 2 / 2 — 125 k e V originates from R E C into the projectile K-shel l (with binding 
energy — e / ) . The ca lcula t ions 1 7 8 reveal that for such a heavy projectile, a second 
well-separated peak emerges which is due to capture into the X e L-shel l . The background 
of the peak on its low-energy side is mainly due to radiative i o n i z a t i o n 1 7 7 , calculated with 
a high-energy approximation to the impulse approximat ion 1 7 8 , while the photons beyond 
the peak arise from secondary electron bremsstrahlung. 

For more Symmetrie coll ision Systems, however, there remains an additional 
background, especially on the high-energy side of the R E C p e a k 2 0 0 . This is an indication 
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Fig. 6. Total capture cross section in the collision of X e 5 4 + with Be, Mylar, AI, Cu, Ag and Au as a function of 
projectile energy. Experiments: + (Meyerhof et a l . 1 9 9 ) . Theory: Coulomb capture (Eichler), 
REC (Anholt), sum of both theories (taken from Ref. 199). For Ag and Au, REC and be neglected. 

that an atomic theory like the impulse approximation or the inverse photoeffect fails for 
photon energies far off the peak where high momentum transfers to the active electron are 
required. Indeed, the influence of molecular effects which are calculated from the 
variational sliding center m o d e l 9 7 lead, even for high velocities, to an increase of the cross 
section in the tails of the R E C peak. 

1.2. C a p t u r e to the C o n t i n u u m 
W e now turn to the case where the target electron is in a continuum State after the 

coll is ion. It w i l l then not always be easy to determine whether the electron is at large times 
in a target continuum State, in a projectile continuum State, or in a free State. A classical 
consideration based on a comparison of the electron-target potential with the electron-
projectile potential after the collision may shed some light on the Si tuation 2 0 1 , and in the 
fol lowing, some examples are discussed in which Charge transfer plays a decisive role. 
Formally, the continuum Solution to the three-body Schrödinger equation is most 
conveniently expressed in terms of the Faddeev equations 1 8 
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Fig. 7. Doubly differential cross section for photon emission under 90° in the collision of 197 MeV/amu 
Xe + Be as a function of photon frequency. Experiment: Histogram (Anholt et al.I7H). Theory: REC, 
— secondary electron bremsstrahlung, sum of all theories (taken from Ref. 178). 

* T } ( o = <PM*) + <A ( r to + * 2 ~ t o 

ifr\-\t) = J d r G(

T-\t, r)VT(T)(cpf0(r) + ^ ( r ) ) (III.4) 

ifi-\t) = j </rG<T>(r, T ) V P ( T ) ( ^ O ( T ) + ^ f > ( T ) ) 

where <Pf0(t) is an electronic plane wave and we have restricted ourselves to recoil-free 

collisions. This representation of \fjif) takes into consideration that both electronic fields 

VP and Vy can influence the final State. If (III.4) is iterated, and in and only 

terms proportional to GT(t, r ) V T ( T ) ( p f 0 ( T ) are considered, the Born series for ionization 

into a target final State is obtained upon insertion into the transition amplitude (1.11). If 

the terms retained in the expansion of ^ | _ ) are Symmetrie with respect to VP and VT, the 

Faddeev a p p r o x i m a t i o n 2 0 2 ' 2 0 3 is recovered. This approximation includes a target final 

State as well as a projectile final State. If, on the other hand, only terms proportional to 

GP(t, r)Vp(r)(pf0(t) are collected in and the final State is represented in terms 

of a projectile eigenstate. It is this last case which provides a description of Coulomb 

capture to the continuum ( C T C ) or to radiative ionisation (RI). 
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The pioneer experiment 2 0 4 which led to the discovery of capture to the continuum, 

considered the angular and energy dependence of the doubly differential cross section for 

secondary electron production in collisions of protons with H 2 and He. A s demonstrated 

in F i g . 8 for the case of 300 k e V p + He , the experimental cross section rises at small 

emission angles @ / o f the electron when © / i s decreased, as long as the electron energy is 

close to v 2 / 2 . This is in contradiction to the first Born approximation for ionization. If, on 

the other hand, a projectile final State is included by mean of the first-order Faddeev 

approximat ion 2 0 2 or by means of a three-state ca lcu la t ion 2 0 5 , qualitative agreement with 

experiment is found. The second-order Born theory for Charge transfer, evaluated for the 

p + H Sys tem 2 0 6 , gives an even better explanation of the corresponding experimental 

data. 

The necessity to represent the final State by means of a projectile Coulomb wave arises 

from the fact that electrons which are emitted with a velocity close to the collision velocity 

v into the beam direction ( © / = 0) are strongly coupled to the projectile. A projectile 

Coulomb wave considers this coupling particularly in the normalization factor, which 

shows a square-root singularity when the electron momentum kf becomes equal to v. 

This cusp-like behavior near kf = v is readily observed in the spectra of secondary 

electrons at forward direction, independently of the projectile Charge. This is 

demonstrated in the experimental spectra 2 0 7 2 0 8 for N e 1 0 + 4- He and f o r p + Ne shown 

in F i g . 9. The finite peak height is solely due to the finite experimental resolution 

( A © / = 1.4° for N e 1 0 + + He and 0 .75° for p + Ne). 

Fig. 8. Doubly differential cross section for the emission of secondary electrons of 100 eV in the collision of 
300 keV p + He as a function of the electron emission angle 0y. Experiment: o (Rudd et a l . 2 0 4 ) . Theory: 

first Born (Band2 0 5), --3 State calculation with effective Charge Z e f f of the continuum State eqaal to 
the ground State, 3 State calculation with Z e f f = 1 (Band205) first-order Faddeev theory 
(Macek2 0 2). 
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Fig. 9. Angle- and energy-averaged doubly differential cross section for electron emission under zero degree in 
(a) the collision of 155 MeV N e l 0 + + He and (b) 4.2 MeV p + Ne as a function of electron momentum kf. 
The experimental energy resolution is (a) & E f / E f = 1.4%, (b) 0.5%. Experiment: (a) • (Berry et a l . 2 0 1 ) , 
(b) histogram (Schramm et a l . , taken from Ref. 214). Theory: (a) post IA (Jakubaßa-Amundsen212), 

RI (Jakubaßa-Amundsen213). (b) prior IA for capture from K-shell, capture from all 
Shells (Jakubaßa-Amundsen214). 
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While for the light projectile ( Z P « Z T ) , the forward peak is approximately Symmetrie, 
for the heavy projectile ( Z P » Z T ) , there is a strongly enhanced intensity of secondary 
electrons on the low-energy side of the cusp. This peak asymmetry can neither be 
reproduced with the Brinkman-Kramers theory, nor with the first-order Faddeev 
approximation. However, it is inherent in any second- or higher-order capture theory l ike 
the second-order Born approximat ion 2 0 9 , the C D W theo ry 2 1 0 , and the impulse 
approximat ion 2 0 1 , but it emerges also in a direct numerical integration of the Schröd inger 
equa t ion 2 1 1 . Mathematically, this peak asymmetry results from a discontinuity of the 
capture amplitude at kf = v in addition to the divergence, and proyides a stringent test of 
the various higher-order theories. In contrast to the Thomas peak, the asymmetry of the 
cusp is easily accessible experimentally because it is the more pronounced the lower the 
coll ision velocity where high intensities can be ach ieved 2 1 2 . 

In F i g . 9 the post impulse approximation in transverse peaking, both for Coulomb C T C 
(Ref. 212) and radiative i o n i z a t i o n 2 1 3 , is shown for N e 1 0 + + He . The coll ision velocity 
is far too low for RI to give an important contribution, but C T C reproduces the 
experimental cusp shape quite wel l (the cusp intensity is normalized to theory). For the 
System p + Ne , comparison is made with the full-peaked prior I A for Coulomb C T C . 
This theory even reproduces the absolute intensity within the experimental accuraey 2 1 4 . 

Electron capture to the continuum can also play a role in the secondary electron 
spectrum when the emission angle 0 / differs from zero, provided the projectile is 
sufficiently heavy ( Z P » Z T ) and its velocity sufficiently high. Electron spec t ra 2 1 5 from 
100 M e V N e 1 0 + + He at angles between 20° and 150° are plotted in F i g . 10. 
Comparison is made with the first-order Born approximation for ionization, the first-order 
Faddeev theory (taking hydrogen-like wave funetions with Z T = 1.7), the transverse 
peaked impulse approximat ion 2 0 2 , the continuum distorted wave t h e o r y 2 1 6 and a Monte 
Carlo ca lcu la t ion 2 1 5 . A t small emission angles and high electron energies where the 
relative velocity between electron and projectile is rather small , al l theories except the I A 
underestimate the experimental doubly differential cross section. O n the other hand, the 
I A overestimates the data drastically at the smaller energies where the electron occupies 
predominantly a target final State. In this region, the C D W theory gives rather good 
results. A t energies below 0.1 k e V , the Monte Carlo method provides too low cross 
sections at angles 0 / > 90° , while the first Born approximation falls below the data for 
© / < 90°; the Born theory can, however, be partially improved by the use of better wave 
funet ions 2 1 5 . In the 60° data, in contrast to the smaller angles, the binary encounter peak 
is clearly seen, and the Born theory as wel l as the I A reproduce it fairly we l l . The 
first-order Faddeev theory does not work at all except for very high energies and large 0 / , 
and an estimate of the second-order Faddeev approximat ion 2 0 3 within the füll peaking 
approximation shows no improvement either. In fact, the coherent superposition of terms 
relating to an electronic target final State and those relating to a projectile State, which is 
inherent in this theory, leads to strong oscillations in the cusp region as well as in the 
small-energy limit Ef —> 0 due to the different energy-dependent phase factors in the wave 
funetions. Thus, a Single theory for the description of the whole spectrum of secondary 
electrons does not seem to exist (at least not in the lowest Orders of a perturbative 
approach) and the spectrum has to be divided up into regions where the target field 
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Fig. 10. Doubly differential cross section for secondary electron emission under the angles 20°-150° in the 
collision of 100 MeV N e ' 0 + 4- He as a function of electron energy. Experiment: • , • (Schiwietz et a/.2 1 5). 
Theory: A Monte Carlo (Schiwietz215), - - - - - CDW (Fainstein et a/.2 1 6), first Born, transverse 
peaked IA, first-order Faddeev theory (Jakubaßa-Amundsen). 

dominates and into other regions where the projectile field is more important. The best 

description of the whole body of experimental data is achieved with the C D W 

approximation, although it is with local deviations up to one order of magnitude. 

The experimental identification of the radiative capture to continuum in electron spectra 

is very hard because RI dominates the Coulomb capture only at relativistic impact 

velocities. However, RI constitutes a contribution to the background in photon spect ra 2 1 7 , 

which terminates around a) = v 2 / 2 as this is the maximum energy which can be 

radiatively emitted from target electrons moving with an average velocity v with respect to 

the projectile (compare F i g . 7). 

From a theoretical point of v iew, radiative processes have the great advantage of 

providing simpler coupling matrix elements as compared to Coulomb capture. Therefore, 

they are wel l suited for a comparison between the theoretical models. In the Coulomb 

case, such a comparison is often falsified because in most cases additional approximations 
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have to be made. A s an example, a comparison between the impulse approximation arad 
the strong potential Born theory for R E C and RI r evea l s 2 1 3 that for frequencies close to the 
K - R E C peak, S P B and I A give nearly equal results for both bound-state capture and 
capture to the continuum up to an electron momentum around v (in the projectile frame). 
A strong increase of the deviations between I A and S P B at momenta beyond v can be 
related to the large momentum transfer which is necessary to speed up the electron such 
that it finally moves much faster than the projectile. A large momentum transfer is an 
indication that molecular effects w i l l become important; in fact, due to the stronger 
coupling to the target field inherent in the (post) S P B as compared to the I A , large 
deviations between both theories may serve as an indication of the break-down of an 
atomic perturbative description. 

2. Charge Transfer during Resonant Nucleus-Nucleus Scattering 

Fina l ly , we want to address a mutual interplay between atomic physics and nuclear 
physics. It concerns the influence of nuclear reactions on inelastic electronic processes. 
This influence reveals itself as a time-delay in the coll ision process, which may cause 
interferences in the atomic transition probability because the electronic transition can 
l ikewise occur before or after the nucleus-nucleus scattering. The interference effect has 
its maximum value i f the energy transfer to the electron matches the width of an 
intermediately formed nuclear Compound State. From a nuclear physics point o f view this 
behavior makes it possible to determine the lifetime of resonant nuclear states, and to 
study the correlations between overlapping resonances. For deep inelastic reactions, on 
the other hand, the interaction time becomes accessible because the electronic excitation 
probability is strongly influenced by the specific time-dependence of the perturbing 
potential. A s far as atomic physics is concerned, the interference phenomenon gives 
Information on the relative phases of the electronic transition amplitude in the incoming 
and outgoing Channel. In the case of a nuclear reaction where the Coulomb field is 
switched off in one Channel (i.e. (/?, y ) , but also a-decay) one is enabied to study the 
electronic transition on a half-trajectory in a head-on coll is ion. It is obvious that such 
interference effects are particularly sensitive to the different theoretical models and 
provide therefore a crucial test of the theories when compared with experimental data of 
sufficiently good statistics. 

The interrelation between nuclear physics and atomic physics has been studied 
extensively in the specific cases of i o n i z a t i o n 1 4 ' 2 1 8 , positron product ion 1 5 2 1 9 and 
b remss t r ah lung 2 2 0 ' 2 2 1 . In this section, we concentrate on electron transfer in energetic 
coll isions with light projectiles, where only elastic nuclear scattering w i l l be considered. 
W e also present a comparison with the time-delay effects from nuclear resonances or deep 
inelastic reactions, which appear in the probabilities for K-ho\e production, 6-electron 
emission and positron creation. 

2.1. C a p t u r e d u r i n g elastic scattering by l i g h t projectiles 
The theory for electron transfer has to be reformulated i f a nuclear reaction has to be 

accounted for. The occurrence of the nucleus-nucleus interaction VN between projectile 
and target, which now comprises a short-range potential plus the Coulomb force, makes a 
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quantum mechanical formulation necessary. For a three-body problem the Hamil tonian 
urader consideration is (in place of H e ) 

H = T N + V N + T e + V T + VP (III.5) 

where TN is the kinetic energy of the internuclear motion. The quantum mechanical 
foonulation o f electron capture within the distorted wave Born approximation can easily 
be generalized from the VN = 0 c a s e 2 1 ' 4 8 to nonzero internuclear potent ia ls 2 2 2 . F rom the 
D W B , successive approximations like the S P B (Refs. 13 and 223), the I A or the 
Brinkman-Kramers theory can likewise be derived. 

A s a specific example we consider the S P B theory. The inclusion of the internuclear 
potential leads to the fol lowing form of the capture amplitude (instead of 1.47)) 

d K d k ( * f a \ ^ / ^ ^ K - ) > { < ^ > - , ^ i r ) I vp\ M 

+ < ^ > " / f t K r r A " ) \ v * \ 4 > i » + (^vl^l^w - <fc> . (III.6) 

Here, an integration over the intermediate momentum of both electron (k) and nucleus ( K ) 
is required. The electronic off-shell energy is e = E - K2/!^ where E is the total 
energy and /*,,- the reduced mass. | k̂ k"*) is the product of an electronic plane wave and an 
eigenfunction, ( X K ^ * ° f + VN> a n d ße = r n / ( M T + m ) . Further, \fßiN and are 
eigenstates of TN + VN + Te + VT and TN + VN + Te + VP, respectively, and is 
eigenstate to TN + Te + VT. L i k e in the semiclassical theory, the transfer is mediated by 
the projectile field VP as wel l as by the recoil (the term proportional to V N \ < f > i ) ) . In 
addition, a first-order correction term emerges in the case VN 0 (the last term in 
(III.6)). 

A s compared to the semiclassical case, the evaluation of Aß is more involved because of 
the occurrence of the nuclear scattering funetions XK • However, use can be made o f the 
different length scales of nuclear and atomic processes to separate XK into an interior part 
where the electronic matrix elements are approximately constant, and into an outer part 
where an asymptotic expansion of can be u s e d 2 2 4 . Wi th this approximation, the 
transition amplitude can be expressed in terms of the nuclear scattering amplitude 

A J P B = a u f < + \ K f 9 # ) + a i f f < + \ K } 9 tf) + afff^\Ki9 #) + A s . (III.7) 

The occurrence of three terms proportional to the scattering amplitude is a consequence of 
the fact that capture is described within a higher-order theory, namely as a two-step 
process consisting of excitation into a continuum State with subsequent capture (cf. III.6). 
The third term in (III.7) describes the electronic excitation plus capture after the 
nucleus-nucleus scattering, such that the relative momentum of the scattering nuclei is 
equal to the initial momentum K , . The first term in (III.7) denotes excitation plus capture 
before the nucleus-nucleus scattering which takes place with a relative momentum K y , 
which, as compared to K , , is reduced by the momentum transfer to the electron. F ina l ly , 
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the second term relates to the case where excitation occurs before but capture after the 
nuclear col l is ion. In the general case one has a sum (over K } ) of such terms; however, in 
the füll peaking approximation only the term with K } ~ Kf survives. This last type of 
interaction terms is not present in a first-order theory. This is known from studies of 
ionization within the first Born approximat ion 2 2 4 ; however, a close-coupling theory for 
ionization also leads to additional terms containing intermediate s t a t e s 2 1 9 ' 2 2 5 . 

The remaining term A s accounts for the capture while the two nuclei stick together. 
This sticking term is proportional to the difference between two scattering amplitudes, and 
hence vanishes for non-resonant scattering. The transition probability as a function of 
scattering angle is obtained by means of 

If the short-range part of VN vanishes, i.e. i f the scattering amplitude is a slowly varying 
function with energy such that f ( + ) ( K j , #) « f ( + \ K f , (III.8) reduces to the 
semiclassical capture probability for large-angle scattering 5 1 . 

If, on the other hand, an isolated nuclear resonance occurs at an energy E 0 with width 
T, oscillations in P(#) can be observed under the condition that the width is 
approximately equal to the energy transfer A E to the electron 

with A £ from (II. 1). However, the scattering angle has to be taken sufficiently large such 
that the resonant part of the scattering amplitude is not too small as compared to the 
contribution from pure Coulomb scattering. 

P ( & ) = ty(27T)V?|Ayi|2 [/< + >(ATf., tf)]"2 . (III.8) 

r « A £ (III 9) 
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Fig. 11. Capture probability at # = 30° in the reaction 2 0Ne(p, p ' ) near the resonance at E 0 = 1955 keV as a 
function of projectile energy. Experiment: f (Horsdal et a l . 2 2 6 ) . Theory: full-peaked SPB 
(Jakubaßa-Amundsen and Amundsen). 
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The first experiment with sufficient stat is t ics 2 2 6 has been performed with the col l is ion 
System p + 2 0 N e in the vicinity of the / = 2 nuclear resonance at E 0 = 1955 k e V 
(r = 4 k e V ) . The resulting capture probability is shown in F i g . 11 as a function of the 
co l l i s ion energy A s all target electrons contribute to the capture, the strueture around 
Eg = E 0 is somewhat washed out, but as the criterion of (III.9) is violated by more than a 
factor o f 2, the excursion of P ( { r ) is expected to be not too large anyhow. Comparison is 
made with the S P B theory in füll peaking approximat ion 2 2 3 , and qualitative agreement is 
found. Theoretically, only capture into the projectile K-shel l is considered, and also no fit 
o f the parameters of f i + \ K , #) to the experimental elastic scattering cross section has 
been made, which might partly aecount for the deviations. It should also be noted that the 
first-order correction term in (III.6) has been neglected. For its evaluation, a better 
representation of the nuclear wave function in the outer region would be required in order 
to obtain the correct l imit zero of this term at d = 0. The füll peaking approximation 
should also be relaxed. Generally, the effect of that term w i l l be a lowering of the capture 
amplitude at the larger scattering ang les 2 2 2 . 

The sensitivity of the transition probability across a nuclear resonance to different 
theories is most readily demonstrated in the case of radiative capture where peaking 
approximations are not necessary. The quantum mechanical S P B expression for the R E C 
amplitude consists of one term only, which corresponds to the first term of ( I I I . 6 ) 2 2 7 

A j p p e = J dK dk <^v \ H ' R | K V ' ^ P X ^ W ^ p k x ^ I <A*v> ( H L 10) 

with a e = m / ( m + M P ) and the wave funetions defined below (III.6). In F i g . 12, the 
capture probability per photon frequency and angle is shown for the col l is ion System 
0 8 + 4- He in the vicinity of the / = 1 resonance at E 0 = 20.01 M e V (in the C M frame, 
the resonance energy is 4.002 M e V , and T = 2.5 k eV) . The selected frequency 
co — 1.6 k e V is slightly above the R E C maximum for capture into the K-she l l which is 
considered here. A s T matches the energy transfer, the excursion of d 2 P / d ( o d C l y is very 
pronounced at the larger angles. Comparison is made between the S P B , the impulse 
approximation i ^ J ' in (III. 10) replaced by a projectile Coulomb wave), and the 
Brinkman-Kramers theory ( i / ^ ' replaced by a plane wave). A s far as the position of the 
maxima and minima in d2P/dü>dQ,y is concerned the theories agree rather w e l l , which 
confirms the expectation that the gross features of the interference strueture is determined 
by the parameters of the resonance. However, there exist considerable deviations between 
the various models in the absolute values, and even the width is slightly model-dependent. 
Worthy of remark are the strong deviations between S P B and I A at the larger scattering 
angles where a large momentum transfer to the electron is required. This might point 
again to an insufficiency of an atomic perturbative approach in this angular region. A 
comparison with experiment would shed light on that problem, but no data are yet 
existing. 

2.2. C o m p a r i s o n w i t h other clocks f o r n u c l e a r r e a c t i o n times 
Fol lowing the predic t ions 2 2 8 2 2 9 that atomic transition probabilities should be 

influenced by nuclear reactions, interference effects caused by a nuclear resonance have at 
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Fig. 12. Differential probability for photon emission at 90° in the collision of He( , 6 0, l 6 0 ' ) near the resonance 
at E 0 = 20.01 MeV as a function of projectile energy. The photon frequency is 1.6 keV, and the scattering 
angles ränge from 30°-110°. Theory: SPB, IA (Jakubaßa-Amundsen227), BK 
(Jakubaßa-Amundsen). 

first been experimentally observed in bremsstrahlung spect ra 2 2 0 as wel l as in the energy 
dependence of K-vacancy produc t ion 2 3 0 . L i k e for electron capture, the condition for the 
visibil i ty of a distinct interference pattern in the ionization probability is the matching 
between the width of a nuclear resonance and the excitation energy of the electron, which 
now takes the f o r m 2 2 4 

r « E f - E i (III. 11) 

where the kinetic energy E f of the ejected electron is typically up to one tenth of the 
binding energy i f energy-integrated ionisation probabilities are considered. Corres
pondingly, nuclear lifetimes T with T ~ | e,-1~1 are accessible through such an experiment. 
Vary ing the target from, say, L i to U , these lifetimes are in the ränge of 1 0 ~ 1 7 s to 
6 X 1 0 ~ 2 1 s for light projectiles, but down to 6 x 1 0 ~ 2 2 s for heavy projectiles. A s an 
example where the condition (III. 11) is met, the K-shel l ionization probability for the 
System p + 1 3 8 B a across the 10.00 M e V isobaric analog f 7 / 2 resonance is shown in 
F i g . 13a (r/| S i \ = 1.8, T = T " 1 = 1.8 x 1 0 " 2 0 s). The experimental d a t a 2 3 1 are well 
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reproduced by a first-order ionization t h e o r y 2 3 2 including compound-elastic scattering 

which originates from the fine strueture of the isobaric analog resonance 2 3 3 . Taking into 

consideration the rather large discrepancy between the data and a theory where 

compound-elastic scattering is neglected, such an experiment can be used to determine 

compound-elastic cross sections. 

For comparison, F i g . 13b shows the capture probability in the collision p + 2 2 N e 

across the isolated s-wave resonance at 1.51 M e V where the criterion (III.9) is also met 

(T/AEK = 1.4, T/AEL = 2.9; T = 2.7 X 1 0 " 1 9 ) . The experimental d a t a 2 3 4 are com

pared with full-peaked S P B calculations for capture from all target Shells into the 

projectile ground State223. The size of the measured effect in P(d) amounts to a factor of 4 

despite the damping from target L-shell contributions, while it is a factor of 3 for 

ionization. The greater sensitivity of Charge transfer to a nuclear resonance is related to the 

fact that Charge transfer is a two-step process which is more sensitive to phase changes 

than a first-order process like ionization. The difference in the excursion of P(-&) w i l l be 

even more pronounced when electrons from different target Shells cannot be experimental-

ly separated. Then for ionization, the matching condition (III. 11) will be severely 

violated, while in the case of capture, the presence of v 2 / 2 in the energy transfer (II. 1) 

assures a similar energy transfer for all Shells. If v 2 / 2 is of the order of the K-shell binding 

Fig. 13. (a) K-shell ionisation in the reaction , 3 8Ba(/?, p ' ) near the resonance at EQ = 9.965 MeV as a function 
of projectile energy. Top: elastic scattering cross section at # = 172°; Experiment: • Spooner et a l . 2 3 1 ; Theory 

Fit of the nuclear parameters to the data, Upper limit to the compound-elastic scattering contribution 
(taken from Ref. 231). Bottom: K-shell ionisation probability at -& — 172°; Experiment: f Spooner et al.231; 
Theory: First Born approximation including the compound-elastic scattering contribution, 
excluding this contribution (Amundsen and Aashamar). 
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(b) 

do/dfl(15q°) 

1.51 
Ej (MeV) 

(b) Electron capture in the reaction 22Ne(/?, p ' ) near the resonance at E0 = 1.51 MeV as a function of 
projectile energy. Top: ratio of the elastic scattering cross section at d = 150° to the cross section at 30°; 
Experiment: o, x Baker et al.234 (normalized to füll curve) for a 75/25% mixture of 2 2 Ne/ 2 0 Ne in the target; 
Theory: Fit of the nuclear parameters to the data (taken from Ref. 234). Bottom: capture probability at 
d = 150° for a pure 2 2 Ne target; Experiment: + Baker et al 234; Theory: Full-peaked SPB approximation for 
target K and L Shells, respectively, and K + L Shells (Jakubaßa-Amundsen and Amundsen). 

energy, the r ä n g e o f accessible nuclear lifetimes will be shifted a factor of 2 downwards as 

compared to ionization. The large sensitivity of electron capture to nuclear reactions has 

been demonstrated by investigating a variety of resonances both experimental ly 1 6 1 and 

theore t i ca l ly 1 3 , 2 2 3 where a strueture in P(d) is seeji even if (III.9) is violated up to a factor 

of 10. 

It should be noted that the agreement between theory and experiment for 

i o n i z a t i o n 1 4 ' 2 3 2 and S-electron e m i s s i o n 2 3 5 across a nuclear resonance is generally much 

better than for electron capture. In particular, the large discrepancy in the width of the 

P(#)-structure between the data and the theory for p + N e (Figs. 11, 13b) is not 

understood. F rom a theoretical point of view, one would expect a width of approximately 

2T as in the case of ionization, irrespective of the applied theory. 

Time-delay effects have recently also been observed in deep-inelastic reactions. In such 

reactions, a considerable amount of the projectile energy is dissipated during nuclear 

c o n t a c t 2 1 8 ' 2 3 6 , which means that the collision time is increased by the so-called delay time 

td which plays a similar role as the lifetime T of a resonant State. From a first-order 

consideration one can show that the transition probability depends approximately on the 

energy A £ transferred to the electron l i k e 2 3 6 
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dP/d A E ~ *-<'e + '*> A E (III. 12) 

where tc ~ 2 d 0 / v (with d0 as the distance of closest approach in a Coulomb head-on 
collision) is the coll is ion time in a pure Coulomb field. Correspondingly, the delay time 
can be inferred from the slope of the spectra of electrons or positrons which are emitted 
during the c o l l i s i o n 2 3 6 - 2 3 7 . Aiternatively, the influence of the delay time has been found to 
show up in the dependence of the K-shel l ionization probability on the dissipated energy 
(the Q - v a l u e ) 1 4 ' 2 3 8 , since the delay time is monotonically related to the ß - v a l u e . 

Figure 14a shows 5-electron spectra which result from 8.6 M e V / a m u Pb + Pb 
collisions in a small impact-parameter r e g i o n 2 3 7 . For elastic nuclear scattering, the slope 
of the experimental spectra can be satisfactorily reproduced by a scaling model derived 
from the first Born approximation when a Rutherford trajectory is used for the internuclear 
motion. However, with increasing ß - v a l u e the deviation between this theory and the data 
becomes more and more apparent. In order to reproduce experiment, a nuclear trajectory 
has to be used which allows for friction. A s can be seen from the figure, the friction model 

Fig. 14. (a) Probability for 6-electron emission in 8.6 MeV/amu Pb + Pb collisions as a function of electron 
energy. Top: elastic scattering (Q - 0) in the angular region 66° < #i a b < 76°; Bottom: dissipative scattering 
(-450 MeV < Q < -250 MeV) corresponding to the angular region 34° < #,ab < 58°. Experiment: 
(Histogram) Krämer et a l . 2 3 1 ; Theory: scaling model of first Born approximation using for the internuclear 
mouon Coulomb trajectories, - - - - - reaction model of Schmidt et a l . 2 3 9 , fit of classical trajectories to 
the data (taken from Ref. 237). 
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E (̂MeV) 

(b) Probability for positron emission in 10 MeV/amu U + U collisions as a function of positron energy. Top: 
elastic scattering in the angular region 19° < #,ab < 27°; theory is multiplied by a factor of 0.85. Bottom: 
dissipative scattering with fission in the angular region #,ab > 27° (b < 10.5 fm); theory is multiplied by a 
factor of 0.95. Experiment: f Krieg etat.236; Theory: coupled Channel calculations of Müller etal.2[* using for 
the internuclear motion Coulomb trajectories, reaction model of Schmidt et a l . 2 3 9 (taken from 
Ref. 236). 

of Schmidt et al.239 is equally good in explaining the data, as a fit of the parametrized 

trajectory to experiment. A n interesting feature of the electron spectrum at large Q-values 

is the occurrence of two different slopes which may be interpreted as a remnant of an 

oscillation pattern showing up in a semi-classical calculation for a well-defined nuclear 

sticking t i m e 2 4 0 . Friction effects in S-electron spectra have also been observed for I + A u 

co l l i s i ons 1 4 and U + U c o l l i s i o n s 2 3 6 . 

In F i g . 14b positron spectra from 10 M e V / a m u U + U collisions are shown. Coupled 

Channel ca lcu la t ions 2 1 8 can well reproduce the experimental slope i f for the dissipative 

collisions (with subsequent fission of one or both uranium nuclei) the Rutherford 

trajectory is replaced by an appropriate friction trajectory. The corresponding interaction 

time amounts up to 2 x 1 0 ~ 2 1 s for the impact energy of 10 M e V / a m u , depending on the 

impact parameter. A s different reaction models lead to different slopes of the positron or 

ä-electron spectra, the experimental spectra provide a nice possibility of testing reaction 

models. 



Theoretical Models for Atomic . 837 

IV. Summary and Outlook 

In this article, a survey has been given of recent developments in the theoretical 

description of electron transfer in ion-atom collisions. In studying the theories in 

comparison with experimental data, we have concentrated on the transfer of a Single 

electron in collisions where either the impact velocity is large compared to atomic orbiting 

velocities, or where the ratio between the nuclear charges of projectile and target deviates 

strongly from unity. It has been demonstrated that for asymmetric coll ision Systems, an 

atomic perturbation theory of first order in the weak field (the S P B ) gives the best 

agreement with experimental data on electron capture into bound states over a large r ä n g e 

o f col l is ion energies. The investigation of high-energy peaking approximations has led to 

the conclusion that electron transfer can conveniently be explained as proceeding through 

a Single intermediate State which describes an unbound electron in the strong f ield, 

moving with the velocity of the projectile. In Symmetrie collision Systems it has turned out 

that both the second Born approximation as well as S P B , give satisfactory results only in 

the case of very high impact velocities. Even at the lower velocities, capture experiments 

on Symmetrie Systems are best described within the Symmetrie C D W theory which 

includes the projectile and the target field exactly at the expense of the kinetic energy. 

However , a second-order C D W theory is required to reproduce differential measure

ments. 

For the emission o f electrons into the continuum, a description in terms of capture is 

only appropriate for certain values of the electron momentum, because a strong 

correlation with the projectile is a necessary condition. This condition is fulfilled for 

electrons which are ejected into a small solid angle around the forward direction, and 

which have a velocity close to v. The higher the projectile Charge as compared to ZT, the 

more extended is this angular and velocity region where C T C is dominating. In fast 

collisions, electrons in the C T C region are best described within the I A ; however, it does 

not seem possible to find a perturbative approach which reproduces the complete spectrum 

of secondary electrons to sufficient accuraey. 

The transfer of a Single electron in a System with /V — 1 spectator electrons represents 

only a very small fraction of the multitude of inelastic reactions where transfer is 

involved. A reaction which requires at least two active electrons, the transfer 

exc i tat ion 2 4 1 , has reeeived much interest through a series of new exper iments 2 4 2 ' 2 4 3 . For 

sufficiently high collision velocities, the multiparticle interaction may be split approx

imately into two-body interactions between the "quasifree" target electrons and the 

projectile ion as a whole on one hand, and between the target nucleus and the projectile 

electrons on the other hand. This is a simple way to describe the resonant as well as the 

nonresonant part of the react ion 2 4 4 . 

Another interesting problem which occurs predominantly in astrophysics or plasma 

physics concerns the behavior of electron transfer in strong electric or magnetic fields. A 

strong laser f i e l d 2 4 5 ' 2 4 6 , for example, can provide a considerable enhancement of the 

capture cross section in low-energy Symmetrie collision Systems, because it supplies 

additional energy. In contrast, a magnetic field leads in most cases to a reduetion of the 

cross s e c t i o n 2 4 7 ' 2 4 8 . 
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Not only can electrons be transferred, it is even possible to capture whole atoms from a 
molecular complex into a bound or continuum molecular State of the p r o j e c t i l e 2 4 9 ' 2 5 0 . 
Such a reaction is particularly suited to investigate the critical angles, because the 
extremely low excitation energy of molecular vibrations provides a very large ratio o f 
coll ision velocity to internal velocity. In a recent scattering experiment of A r + on C H 4 , a 
Thomas-peak like maximum has been discovered in the proton spec t rum 2 5 1 . These 
protons originate from the molecule A r H + which is formed via hydrogen transfer to the 
continuum. 

A s far as the influence of nuclear reactions on electron transfer is concerned, the 
investigation of isolated resonances in elastic collisions is only the very first beginning in 
a large field. It would be interesting, for example, to study the influence of overlapping 
isobar analog resonances in the elastic Channel, or to extend the theory to inelastic 
reactions where several reaction Channels have to be taken into considerat ion 2 5 2 . B y 
means of comparing theory with the corresponding experiments, as has been attempted in 
the case of ionization or positron production in deep-inelastic reactions, one might gain 
precise Information on the dependence of the transfer amplitude along half the trajectory 
on System parameters like Charge, coll ision velocity or on the electronic initial and final 
State. O n the other hand, nuclear physics could also profit from such kind of research as 
concerns the understanding of still unknown resonance parameters or reaction cross 
sections. 
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