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Abstract. The capture of target electrons into the continuum of fast projectiles is calculated 
with the peaked impulse approximation. The electronic final state is taken as the low-energy 
scattering solution of the Schrodinger equation containing a short-range model potential. 
It is found that a forward peak indeed exists for neutral projectiles; it is, however, 
considerably broader than for charged projectiles. As an example, hydrogen and helium 
projectiles are considered, colliding with a neon target. 

1. Introduction 

Electrons captured by charged projectiles exhibit in their spectrum a cusp-like structure 
when the electron momentum kf matches the projectile velocity U. This forward 
divergence of the theoretical differential cross section arises from the long-range nature 
of the Coulomb field acting between the electron and the projectile, which causes a 
k-''2 behaviour of the normalisation constant of the electronic Coulomb wave for 
k+ 0, where k = Ikf- V I  is the electron momentum in the projectile reference frame 
(Macek 1970). Short-range potentials, on the other hand, which decrease asymptoti- 
cally faster than r-' with distance, and which d o  not support zero-energy resonance 
states, should lead to a finite normalisation constant of the electronic continuum 
eigenfunction. Thus, in general, no strong energy dependence of the differential capture 
cross section in the forward direction at k,-= U is expected for neutral projectiles. 

This contrasts with the results of recent coincidence experiments on the forward 
peak. Recording the momentum distribution of the ejected electrons simultaneously 
with the charge state of the outgoing projectile, a procedure that allows for separation 
between electron loss and capture-to-continuum ( CTC) processes, Sarkadi et a1 ( 1989) 
have found that for the collision systems H", He"+He, Ar a CTC forward peak not 
only exists, but is even narrower than in the case of charged projectiles. A similar 
behaviour is also known from electron loss experiments (Duncan and Menendez 1979) 
where the forward peaks resulting from the impact of negatively charged H- and 
neutral Ho projectiles on argon targets are compared, although these experiments are 
non-coincident so that double electron loss from H- cannot be excluded. 

The variance between theoretical expectation and experiment calls for a careful 
investigation of the forward peak region for neutral projectiles. So far, theoretical 
considerations have mostly been confined to general arguments for a finite peak height 
at k f =  U for fully screened projectiles (McGuire et a1 1987). An analytical analysis of 
the s-wave Jost function for a cut-off Coulomb potential and a Hulthtn potential 
supports this conjecture except for specific values of the potential range parameter 
where zero-energy resonances cause the continuum-state normalisation constant to 
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diverge (Garibotti and Barrachina 1983). Another investigation within a one- 
dimensional model where the short-range atomic potential is replaced by a 8 function 
(Burgdorfer and Wang 1988) also provides evidence for an enhanced, but finite, electron 
intensity near kf = U for high collision velocities. 

In the present work, electron emission into the projectile continuum is studied in 
the framework of the impulse approximation (Briggs 1977). In its prior form, this 
approximation is applicable to energetic collisions of asymmetric systems, i.e. Z,<< ZT 
and U 2 2, where Zp and ZT are the nuclear charge of the projectile and of the target, 
respectively (for electrons from higher shells n, ZT should be replaced by Z T / n ) .  An 
additional peaking approximation allows for the extraction of the final-state electronic 
wavefunction from the transition matrix element and thus for a decoupling of the 
electronic properties in the projectile field from the process of target ionisation. The 
analysis of the forward peak region can therefore basically be confined to an investiga- 
tion of low-energy electron scattering from the projectile. Section 2 reviews the theory 
for electron scattering from a short-range or (for the sake of comparison) ionic potential, 
where the presence of bound electrons is accounted for by means of an additional 
exchange interaction. The potentials and their particular forms for H and He are 
discussed in § 3. Details of the calculation and numerical results for the projectile 
scattering states are presented in 5 4. The CTC cross section for 1 MeV/ N Heo colliding 
with Ne is calculated in § 5 and compared with the results for singly (He') and doubly 
(He2+) charged projectiles, and the conclusions are drawn in 0 6. Atomic units ( h  = m = 
e = 1) are used unless otherwise indicated. 

2. The scattering problem 

The doubly differential cross section for the ejection of electrons into low-lying 
continuum states of the projectile may be approximated by 

d 2 a / d E f d R f =  ( 2 ~ ) ~ 1 $ f ' ( r  = 0)l' d2af /dEfdOf  (2.1) 
I 

where +;is the electronic final projectile state (taken to be &normalised in momentum 
space) and d2a l /dEfdRf  is the doubly differential cross section for the ejection of a 
target electron from the state $: into a target continuum state @Tf with momentum kf 
( E ,  and dof being energy and solid angle, respectively, of the emitted electron) given 
by 

d 2 d / d E P O f  = 2.rrN,(kf/v) dq S(&- E :  - Vp(q)(@~Je'4rI(LT)12. ( 2 . 2 )  

In this expression, Vp(q) is the Fourier-transformed projectile field, E: is the electron 
energy in the initial state i, and the sum i in (2.1) runs over all occupied target subshells 
with degeneracy N,. The factorisation (2.1) can be derived from the fully peaked 
impulse approximation (Briggs 1977, Jakubassa-Amundsen 1988), but also from a 
high-energy continuum distorted wave-type formulation (Salin 1969). It should be 
noted that in this formula, correlations between the target electrons as well as excitation 
of the spectator target electrons are neglected, and ( 2 . 1 )  also does not account for the 
additional asymmetry of the forward peak (for charged projectiles), which is related 
to higher-order perturbative effects. These deficiencies should, however, not change 
our basic conclusions. 
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For fully stripped projectiles, the (outgoing) projectile wavefunction at the origin 
is simply given by the Coulomb normalisation factor 

77 = Zp/k (2.3) (2x)3/2$f‘(r=0) =[2x,,,/(1 - e - 2 a v ) ] l / 2  , I d r g I ’ ( I + I v )  

with k the electron momentum relative to the projectile. For a projectile carrying 
electrons, the final-state wavefunction has to be calculated from a Schrodinger-type 
equation. For hydrogen- or helium-like systems this equation reads (Nakanishi and 
Schrader 1986; $k denotes an ingoing projectile scattering state) 

[ -+A+ vOCl(r) + vpoi(r)]$k(r) + {(POI (r’)le2/ ( I r  - r’l ) I  $k(r’)) 

- ( Ek - &Cl, ) ( % i  ( r ’ ) i  $k(r’))}(PO! ( r )  = Ek$k ( r ) *  (2.4) 

Here Ek = k2/2, pol and EOI  are the wavefunction and energy, respectively, of an 
occupied single-particle (Hartree-Fock) state, and J accounts for the fact that the total 
wavefunction of the N + 1 electrons (where N is the number of bound electrons) has 
to be antisymmetric (if N = 1, J = 0 for singlet and J = 1 for triplet states, while J = 1 
for N = 2). The exchange contribution, the term in curly braces in (2.4), consists of 
the potential exchange term plus an overlap term that assures orthogonality of the 
scattering state to the bound state. The potential VoO is the static potential, consisting 
of the nuclear field -Z,e2/r plus the averaged interaction between the free and the 
bound electrons (the average being taken over the bound states). Vp,, is the dynamic 
polarisation potential, which accounts for the global effect of atomic (or ionic) excita- 
tion and de-excitation during the scattering event. This interpretation is based on the 
fact that the scattering equation is formally obtained upon expanding the ( N +  
1)-electron wavefunction in terms of the N-electron functions of the projectile. After 
insertion into the full Schrodinger equation and projection onto the ground-state 
N-electron function, an equation of type (2.4) results if only the elastic channel is 
retained (Bransden and Coleman 1972, Furness and McCarthy 1973). 
Equation (2.4) is most conveniently solved by means of a partial-wave expansion 

$ k ( r )  = [ 4 ~ / ( 2 4 ~ / ~ 1  i ‘ [ ~ / ( k r ) / r l  YT,(~*) ylm(;) 
Im 

(2.5) 
l/~lr--prl) = 4 x  [1/(21+ l ) ] ( r ~ / r ~ ’ ) ~ / ~ ( ; ) ~ ~ ( ~ )  

/m 

where r< =min(r, r ‘ ) ,  r, = max(r, r’) and Yrm is a spherical harmonic. For the CTC 

cross section, equation (2.1), knowledge of the wavefunction $k at the origin is sufficient. 
As RI(kr)-r l+’  for r+O, which follows from the Coulombic behaviour at small 
distances, only the 1=0 partial wave contributes to (Clk(r=O). For a spherically 
symmetric state po l (  r )  the equation for R,( kr) reads 

[d2/dr2 - 2( V,, + V,,,) + k2] R,( kr) 

= ( -1)J87rrcp,,( r)[ (1/ r )  dr‘  r’cp,,( r‘)Ro( kr’) 6: 
+j,= dr‘ cpol(r‘)R,(kr’)+(&o, -k2/2)  lom dr’ r’cpol(r’)R,(kr’)] (2.6) 

which has to be solved self-consistently. For numerical purposes, i t  is convenient to 
transform (2.6) into two coupled first-order equations by means of introducing 
dR,/dr = p as a new variable. 
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The asymptotic behaviour of the properly normalised function R," is determined by 

R,"( kr) + (1/ k) eiSO sin{kr + So+ [(Z, - N ) /  k]  ln(2kr)) r + X  (2.7) 

where So is the phaseshift and the factor Zp- N in front of the logarithmic phase is 
the excess charge of the projectile. If (2.6) is solved with the initial condition Ro( kr) = r 
at r + 0, the normalisation constant is obtained from 

N o = ( 2 . i r ) " 2 ~ k ( r = 0 ) = ( 1 / R , , , k )  e i s ~ ~  

Ro( kr,) sin p1 - Ro( kr,) sin p2 
tan So = (2.8) 

Ro(kr1) cos P2- Ro(kr2) COS P I  

where R,,, is the maximum of Ro( kr) in the asymptotic region, and rl , r2 are two 
coordinates in this region. 

3. Choice of the potentials 

The static potential Voo for neutral atoms is usually represented by a fit to the 
Hartree-Fock potential, using for H and He the form 

2 
e-*I"+r bJ e-.;') 

r j = l  
(3.1) 

where A I ,  bJ and p, are fit parameters (Strand and Bonham 1964). For charged 
projectiles, the residual Coulomb field has to be added, and the simple form may be 
adopted (Nielsen and Dahler 1977) 

vo0(r) = - ( z p - ~ ) / r - ( ~ / r ) ( l + r / 2 d 1 )  e-r'dl (3.2) 

where d, is chosen to reproduce the correct ground-state binding energy. For He+, 
one has d, = 0.3045 (Jakubassa-Amundsen 1983). 

As concerns the polarisation potential V,,, , a tractable approximation is much 
more difficult to find, because the only well known property is its long-range behaviour, 
V,,,+ -a1/2r4,  where a l  is the dipole polarisability ( a ,  =4.5 for H, a1 =4.5/16 for 
He+ (Dalgarno and Lynn 1957), and a ,  = 1.38414 for Heo (Nesbet 1979)). For high- 
energy electron scattering, the following form is usually adopted (Jhanwar et al 1978) 

(3.3) 

The constant a2 is the quadrupole polarisability (a2= 15.0 for H, and a,=2.32 for 
He" (Jhanwar and Khare 1975)) and d represents the cut-off at small r. For scattering 
energies Ek exceeding 3A, where A is the mean excitation energy of the atom ( A  = 0.465 
for H, and A = 1.22 for He"), the parameter ko can be set equal to the electron momentum 
k (Jhanwar and Khare 1975). For low-energy scattering, d should be constant. We 
have used ko as a fit parameter and adjusted it to reproduce the exact phaseshift 7r/2 
at the lowest resonance. 
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An alternative way to approximate V,,, consists of the introduction of a cut-off 
function w ( x ) ,  which is specially adapted to low-energy scattering (Nakanishi and 
Schrader 1986) 

n 

w ( x )  = [ I  - e , ( x )  e-"12 e , ( x ) =  2 x ' / i ! .  
i = O  

The choice of n = 8 and A, = 10.6172 follows the suggestion of Nakanishi and Schrader 
(1986) .  The effective radius ro is determined from the requirement that the correct 
scattering length (for neutrals) or binding energy (for ions) is reproduced: it is ro = 1.926 
for H('S); twice this value, ro=3.852 for H(3S); ro= 2.373 for Heo; and ro= 1.795 for 
He*(3S). For energies Ek below the first ionisation threshold, the potential ( 3 . 4 )  leads 
to phaseshifts that are in general closer to the ones resulting from a b  initio calculations 
than the phaseshifts obtained with Vk),. 

4. Numerical solution of the scattering equation 

We have solved the two coupled equations for Ro( r )  and p (  r )  which derive from ( 2 . 6 )  
by means of the Runge-Kutta method, taking logarithmic steps for small r and linear 
steps for larger values of r. Self-consistency is achieved in the following way. In a 
first step, the exchange term (i.e. the RHS of ( 2 . 6 ) )  is put equal to zero, and the two 
integrals 

Jom dr '  r'"p0, ( r')Ro( kr')  

with n = 0, 1 are calculated in a zeroth approximation (the integral from r to c3 on the 
RHS of equation ( 2 . 6 )  is split into one from 0 to CO and one from 0 to r ) .  The 
wavefunction 'pol  is taken to be a Clementi-Roetti function for Heo (Clementi and 
Roetti 1974, Jakubassa-Amundsen 1983) while it is hydrogenic for H and Het. In the 
second step, the exchange term is fully included by doing the finite integrals 

(: dr' r ' f lpo i (r ' )Ro(kr ' )  

simultaneously with the differential equations, and by using the zeroth approximation 
for the two infinite integrals. With the improved Ro, the infinite integrals are calculated 
anew and the iteration is continued until convergence is obtained. 

For numerical reasons we have also investigated the importance of the overlap 
term (the last term in ( 2 . 6 ) ) .  We have found that for hydrogen singlet states the 
inclusion of this term is crucial for reproducing the strong k dependence of the 
phaseshift. In fact, orthogonalisation is particularly important for electrons in a 
spatially symmetric state that allows for small interelectronic distances, and only 
properly orthogonalised states do carry the signature of the bound singlet state in H- 
that is responsible for the rapid variation of the phaseshift with k (Wu and Ohmura 
1962). On the other hand, for helium or hydrogen triplet states, the overlap term is 
very small when calculated non-self-consistently (i.e. when calculated with an Ro where 
only the potential exchange term is retained), which means that, to a good approxima- 
tion, the scattering function is from the outset orthogonal to the bound state. We have 
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Table 1. Phaseshift So (modulo n )  and modulus iNnI of the normalisation constant for 
the I = 0 partial wave of an electron with momentum k scattering from neutral hydrogen 
(columns 2-7): s denotes spin singlet; t denotes triplet state; (a)  denotes use of potential 
V!?, (equation (3.3)); (b)  results from Vg! (equation (3.4)). The last column shows 
for a Coulomb wave to charge Z , =  1 (equation (2.3)). Atomic units are used. 

0.001 -0.0060 2.944 -0.0014 3.323 -0.0017 2.852 79.267 
0.01 -0.0601 2.939 -0.0144 3.320 -0.0177 2.851 25.066 
0.05 -0.3013 2.882 -0.0786 3.285 -0.0948 2.817 11.210 
0.1 -0.5891 2.737 -0.1690 3.223 -0.1994 2.774 1.927 
0.2 -1.0789 2.373 -0.3644 3.087 -0.4185 2.690 5.605 
0.3 -1.4535 2.071 -0.5653 2.949 -0.6352 2.608 4.517 
0.4 1.4002 1.875 -0.7640 2.811 -0.8416 2.532 3.963 
0.5 1.1754 1.766 -0.9559 2.677 -1.0321 2.455 3.545 
0.6 0.9991 1.718 -1.1389 2.549 -1.2053 2.383 3.236 
0.7 0.8642 1.711 -1.3114 2.428 -1.3609 2.312 2.996 
0.75 0.8096 1.719 -1.3944 2.370 -1.4321 2.278 2.895 
0.8 0.7630 1.732 -1.4743 2.316 -1.4991 2.245 2.803 
0.8369 0.7323 1.744 -1.5324 2.276 -1.5462 2.221 2.741 
0.862 -1.57 2.250 1.5649 2.205 2.701 

Table 2. Phaseshift 8, and modulus 1 No/ of the normalisation constant for the 1 = 0 partial 
wave of an electron with momentum k scattering from neutral He (columns 2-5) and triplet 
He+ (columns 6-7): (a )  denotes use of the potential V z ,  (equation (3.3)); (b)  results from 
v$\ (equation (3.4)). 

He' He'(3S) 

k sb"' lN"lfd) SAh) 1 NOl(b) sip' lNol'b' 

0.001 
0.01 
0.05 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 
1.1 
1.194 

-0.0013 
-0.0128 
-0.0660 
-0.1360 
-0.2815 
-0.4294 
-0.5762 
-0.7196 
-0.8583 
-0.9917 
-1.1192 
- 1.2409 
-1.3567 
- 1.4668 
-1.57 

3.564 
3.563 
3.549 
3.523 
3.456 
3.381 
3.299 
3.212 
3.123 
3.031 
2.939 
2.849 
2.760 
2.674 
2.596 

-0.0012 
-0.01 19 
-0.0617 
-0.1274 
-0.2641 
-0.4025 
-0.5387 
-0.6700 
-0.7952 
-0.9133 
- 1.0239 
-1.1268 
-1.2222 
-1.3 102 
-1.3873 

3.724 
3.723 
3.708 
3.681 
3.616 
3.544 
3.470 
3.391 
3.309 
3.221 
3.145 
3.063 
2.983 
2.906 
2.835 

0.3330 

0.4459 
0.8496 
1.0760 
1.1746 
1.2423 
1.2862 
1.3197 
1.3498 
1.3803 

-0.4481 
6.782 
5.541 
4.817 
4.329 
3.972 
3.701 
3.484 
3.306 
3.155 
3.026 
2.920 
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therefore omitted the overlap term in the case of J = 1, which speeds up convergence 
considerably. 

The modulus INo( of the normalisation constant as well as the phaseshifts for 
electron scattering on hydrogen and helium, respectively, are listed in tables 1 and 2 
as a function of the electron momentum k. In order to check the reliability of the 
calculated values of No,  we have performed the runs for H(3S) and Heo with both 
polarisation potentials Vfil and VE{.  The parameter ko in VE), is taken to be ko = 0.6684 
for H(3S) and ko= 1.107 for Heo in order to reproduce the phaseshift a 0 =  r / 2  at the 
resonance position k=0.862 and k =  1.194 for H(3S) and Heo, respectively. The 
difference in lNol for the two potentials Vk),  and V g {  is in most cases smaller than 
10%. Since the phaseshifts from VE\ are closer to the exact phaseshifts from ab initio 
calculations (Rudge 1975, Nesbet 1979), we have only used this potential for the other 
cases, H('S) and He'(3S). It should be noted, however, that even a model potential 
of the type (3.4) is unable to describe the hydrogen singlet resonance at k = 0.8369 
since electron-electron correlations are not taken into account (Michels and Harris 
1967). We have also studied the behaviour of No if the parameters ko and U, are fitted 
at each momentum k so as to reproduce the exact phaseshifts. In most cases, the 
deviations of lNol from the tabulated values are well below 2%, the only exception 
being for H(3S) when calculated with Vr,)l (~5%). We thus conclude that the values 
1 Nol(b) represent the 'best' values with an accuracy of about 10% (the numerical accuracy 
is well below  YO). 

For the charged projectile, He+, the phaseshift a0 is dominated for k+O by the 
strongly varying Coulomb phaseshift, and so is the normalisation constant. We have 
found, however, that the ratio between 1 Nol and the Coulomb normalisation 1 NoJcou' = 
( 2 ~ / k ) " ~ ,  given in the last column of table 1, approaches a constant, INoI/INoIco"'= 
1.21, for k s 0 . 2 .  One may thus use this relation for calculating /No/  at k ~ 0 . 1  rather 
than the scattering equation where the asymptotic region is not reached until very large 
Y ( r>4000au for kG0.1). 

5. Calculation of the capture cross section 

For comparison with experimental electron spectra, the doubly differential cross section 
(2.1) has to be averaged over the detector resolution. Since the energy resolution is 
in general rather good, the cross section for electron emission in the beam direction 
( af= 0") is predominantly affected by the average over the angular resolution eo 

The ionisation cross section d2uj/dEf d& (equation (2.2)) is a smooth function of 
in the region of interest, and the integration (5.1) will mainly operate on the prefactor 
in (2.1), the squared normalisation constant of the final projectile state. In order to 
demonstrate the effect of the angular average on the electron spectrum, we have shown 
in figure 1 the average of the squared normalisation constant alone, INo/&, for a neutral 
and a charged hydrogen projectile. In the case of H+, where without averaging No 
would be infinite for the electron momentum k f=  U ,  a narrow peak is seen, its width 
increasing proportional to Bo (Dettmann er a1 1974). For Ho, on the other hand, the 
increase of intensity towards kf = U is due to the long-range attractive polarisation 
potential and is thus much weaker than for the Coulomb field. However, exchange 
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-1.0 0 1.0 
t k , - v  

k f  iau) 

Figure 1. Angular-averaged squared normalisation constant of the projectile state as a 
function of electron momentum k ,  for protons and hydrogen in the spin singlet ('S) and 
triplet ( 3 S )  states, respectively. The collision velocity is U = 6.328 au, and the resolution is 
B,, = 0.5' (u0 ,  = 3.164; full curves) and 0, = 3.5' ( u f l ,  = 22.15; broken curves). 

symmetry also influences the energy distribution of the electrons by means of the 
additional non-local (though short-range) potential. While, for the triplet state, the 
peak is very broad and hence hardly dependent on the resolution B o ,  a rather pronoun- 
ced peak is present for the singlet state, although its width still exceeds that of the 
Coulomb peak. The second increase of the singlet intensity for 1 kf - U /  b 0.8 marks the 
onset of the resonance at k = 0.8369. 

The strong enhancement of the singlet intensity for k f+  ti, which is related to the 
rapid decrease of the phaseshift with momentum k for k << 1, results from the presence 
of a singlet bound state in H- lying close to threshold. On the other hand, no bound 
triplet H- state exists, and hence the phaseshift for the triplet state varies slowly with 
k as does the normalisation constant No. 

Although the curves in figure 1 are obtained for a collision velocity ti = 6.328 
(corresponding to 1 MeV/ N) at the two angular resolutions Bo = 0.5" and 3.5", they 
actually depend to a very good approximation only on the single parameter tiBo if 
plotted versus k f -  ti, due to the scaling properties of the averaging procedure. The 
scaling is easily seen by means of changing the integration variable in (5.1) from Of 
to k = ( k f  + U *  - 2 k f u  cos C+f)"2 and by recalling that k f  = U and cos Of= 1 - 7$/2. 

For the calculation of the ionisation cross section (2 .2 ) ,  which is required for the 
proper evaluation of (5 .1 ) ,  we have used hydrogenic target wavefunctions with Slater- 
screened effective charge and experimental binding energies, allowing us to perform 
the transition matrix elements analytically (Jakubassa-Amundsen 1988). For the projec- 
tile field entering into (2 .2 )  we have used the high-energy approximation to the potentials 
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108- 

10’- 

given in (2.4) by neglecting the exchange contribution and by representing the polarisa- 
tion potential by the version (3 .3 )  with k, = U .  For Heo, the Fourier transform of the 
projectile field Voo+ Vpol reads 

The high-energy approximation is justified because, in the projectile reference frame, 
the target electron in its initial state moves on average with the collision velocity U 

(which is large compared to the mean excitation energy of the projectile). Moreover, 
since CTC requires a large momentum transfer q, the contribution from the polarisation 
field is very small (we have neglected this contribution in the case of He+) and V,(q)  
acts very much like a pure Coulomb field of charge Zp. 

Figure 2 shows the angular-averaged differential cross section for capture to the 
continuum in 1 MeV/ N He + Ne collisions. The angular resolution is Bo = 1’ and the 
contribution of all target electrons is taken into account (the 2s and the 2p,m = 0 
electrons being the most important ones at U = 6.328). The asymmetry of the forward 
peak is exclusively due to the underlying ionisation cross section, while the prefactor 
(NOl2 is symmetric (cf figure l ) ,  as a result of the full peaking approximation inherent 

IO6 1 I 

5 6 I 
k, lau) 

Figure 2. Angular-averaged doubly differential cross section for electron capture to con- 
tinuum in 1 MeV,” H e + N e  collisions as a function of electron momentum k , .  The 
resolution is Bo= lo. Shown are the results for neutral and fully stripped He (full curves) 
as well as for singly charged He ic. ::.e ‘ S  state if the ionic projectile field is fully included 
in the normalisation No (chain curLe) and if No is calculated from a pure Coulomb field 
with Z = 1 (broken curve). 
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in the formula (2.1). All three charge states of the projectile are considered: Heo, 
He'(3S) and He2+. It is seen that the intensity of the CTC electrons increases monotoni- 
cally with increasing projectile field strength at all values of momentum kf  in the peak 
region, as expected from general considerations. In order to obtain this behaviour it 
is, however, crucial to calculate the normalisation No for an ionic projectile from the 
proper scattering equation. The simple insertion of the Coulomb factor (2.3) for the 
ionic charge underestimates the cross section considerably and even falls below the 
Heo result in the tails of the peak (cf figure 2). 

6. Conclusions 

We have calculated the spectrum of target electrons captured into the continuum of 
neutral ground-state projectiles and have compared with the results for charged projec- 
tiles. We have established the existence of a forward peak for neutral projectiles and 
have found that its shape depends strongly on the spatial symmetry of the total electronic 
wavefunction. For hydrogen projectiles, the singlet electronic state has a much narrower 
peak than the (spatial antisymmetric) triplet state. The dependence of the peak width 
on the detector angular resolution eo is, however, much weaker than in case of charged 
projectiles, and, in contrast to the latter, the width becomes independent of Bo in the 
limit eo+ 0. This behaviour is ascribed to the short range of the projectile field. 

In case of charged, but not fully stripped, projectiles, the spectrum of the CTC 

electrons is much like the one that would be obtained if the projectile field were 
replaced by a pure Coulomb field relating to the ionic charge. As anticipated from 
the existence of a peak for neutrals, the correct incorporation of the short-range ionic 
potential leads, however, to an additional increase of the CTC electron intensity (about 
30% in the case of He+). 

As concerns the experiment on 300 keV Heo+ He, Ar collisions (Sarkadi et a1 1989), 
our results do not support the presence of a forward peak with a width that is comparable 
to the width for a Het projectile. Although the collision velocity of U = 1.73 is far too 
low to rely on a quantitative estimate based on the impulse approximation, the 
qualitative prediction of a broad peak for neutral ground-state atoms should hold 
independently of U. 

There remains the idea from Barrachina (1989) that a projectile that is excited prior 
to electron capture may support a near-zero energy resonance, causing a sharp forward 
peak. However, we estimate the excitation probability to be too small to account for 
the large CTC fractions found in experiments with Ho and Heo projectiles. 
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