Solid State Ionics 38 (1990) 271-273 North-Holland

LITHIUM ION CONDUCTIVITY OF LiPN₂ and Li₇PN₄

Wolfgang SCHNICK 1 and Jan LUECKE

Institute for Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Str. 1, D-5300 Bonn 1, Federal Republic of Germany

Received 29 January 1990; accepted for publication 15 February 1990

Single phase lithium phosphorus nitrides Li_7PN_4 and $LiPN_2$ were prepared by reaction of the binary nitrides P_3N_5 and Li_3N at 620 and 800°C, respectively. The compounds were identified by X-ray powder diffraction techniques. The lithium ion conductivity of both compounds was investigated by complex impedance spectroscopy in the temperature range between 50 and 350°C. The specific conductivity was found to be $\sigma(400 \text{ K}) = 1.7 \times 10^{-5}$ and $6.9 \times 10^{-7} \Omega^{-1} \text{ cm}^{-1}$ for Li_7PN_4 and $LiPN_2$, respectively. The activation energy was 46.7 kJ/mol for Li_7PN_4 and 58.9 kJ/mol for $LiPN_2$.

1. Introduction

Lithium solid electrolytes are of considerable interest for the production of solid state lithium batteries. Among the class of binary and ternary lithium nitrides Li₃N has the highest lithium ion conductivity of about $10^{-3} \Omega^{-1}$ cm⁻¹ [1]. However, the decomposition voltage of Li₃N has rather a low value of 0.44 V at room temperature, and it decreases rapidly with increasing temperature [1]. Thus the possible application of binary lithium nitride as a solid state electrolyte at elevated temperatures is limited. In order to compensate for this disadvantage several ternary lithium nitrides have been investigated and their lithium ion conductivity has been measured [2-6]. Aiming at a practical use of the compounds, ternary lithium nitrides containing the main group elements boron, aluminum, and silicon have been of particular interest [2-4].

Recently we have developed a new synthetic route for binary P_3N_5 [7]. We have started to investigate systematically the quasi-binary system $Li_3N-P_3N_5$. As a result pure ternary lithium phosphorus nitrides have become accessible on a preparative scale. Single phase $LiPN_2$ and Li_7PN_4 have been prepared. Using the Rietveld method applied on X-ray powder diffraction data we were able to refine the crystal structure of both compounds [8,9]. The atomic arrangement in Li_7PN_4 resembles an anti-fluorite type of structure. In the solid the compound contains "isolated" PN_4 -tetrahedra framed by lithium cations [8]. In LiPN₂ a three-dimensional net of cornersharing PN_4 -tetrahedra is formed analogously to β cristobalite. However, compared to β -cristobalite all PN_4 -tetrahedra are rotated about their $\bar{4}$ axes. Lithium cations occupy the remaining holes resulting in a chalcopyrite analogous type of structure [9]. Structural features of both LiPN₂ and Li₇PN₄ suggest a considerable lithium ion conductivity of these ternary phosphorus nitrides.

The present paper deals with the preparation of $LiPN_2$ and Li_7PN_4 . The lithium ion conductivity of both compounds has been investigated by means of complex impedance spectroscopy, and the results have been compared to those of other ternary lithium nitrides.

2. Experimental

Pellets of polycrystalline lithium phosphorus nitrides were prepared by reaction of Li_3N and P_3N_5 of molar ratio 1:1 (LiPN₂) and 7:1 (Li₇PN₄). Each mixture was finely pulverized in an agate-ball mill and filled into the cylinder (material:graphite) of a hot press. During the reaction period of one hour the compounds were sintered to pellets of 10 mm in diameter and 2–4 mm in thickness under a pressure of

¹ To whom correspondence should be addressed.

^{0167-2738/90/\$ 03.50} $\ensuremath{\mathbb{C}}$ Elsevier Science Publishers B.V. (North-Holland)

 3×10^6 Pa at a reaction temperature of 900°C. The pellets were then cooled to room temperature. Graphite adhering to the surface of the pellets was abraded. Due to the sensitivity of Li₃N and Li₇PN₄ against moisture all operations had to be carried out under carefully controlled inert conditions (nitrogen atmosphere). In order to complete the reaction and to obtain single phase products the pellets were heated in a tungsten boat under pure nitrogen atmosphere at 800 and 620°C for LiPN₂ and Li₇PN₄ respectively (reaction time: 24 h). The final pellets exhibited a pale yellowish-brown color and were microcrystalline.

For the determination of the ac conductivity as a function of temperature and frequency a computercontrolled measuring system based on an HP 4192A impedance analyzer was used. The signal frequency ranged from 5 Hz to 10 MHz. The signal amplitude was 500 mV. Two springs were used to maintain permanent contact between the tungsten electrodes and the pellets. Thin silver films were evaporated onto the pellet surfaces. The cell was placed under inert atmosphere in a furnace. A Pt/Rh thermocouple was placed next to the sample to monitor the sample temperature. A detailed description of the measuring cell is given in [10].

3. Results and discussion

X-ray powder diffraction patterns of the materials obtained agreed well with the previous results and all diffraction peaks were indexed [8,9].

The complex impedance diagrams (190 measurements between 5 Hz and 10 MHz) of LiPN₂ and Li₇PN₄ each consist of a semicircle and a straight line. The real part of the minimum of the complex impedance at lower frequencies was taken as the total resistance of the sample. The complex impedance spectra were recorded in the temperature range between 50 and 350°C ($\Delta T=2°C$). The conductivity σ of LiPN₂ and Li₇PN₄ as a function of the absolute temperature T is shown in fig. 1. In accordance with an Arrhenius-type behaviour of the diffusion coefficient of the moving species a linear relation of log(σ T) versus 1/T was observed indicating an activation energy of 58.9 and 46.7 kJ/mol for LiPN₂ and Li₇PN₄, respectively. dc experiments with ionically

Fig. 1. Temperature dependences of ionic conductivity of $LiPN_2$ and Li_7PN_4 .

blocking, but electronically reversible, electrodes (tungsten) clearly indicated that the observed conductivity had to be attributed to a predominant transport of ionic species. In either case the electronic conductivity was less than 1% of the total conductivity.

 Li_7PN_4 exhibits a lower activation energy and a higher ionic conductivity than $LiPN_2$. This marked difference should be discussed in relation to the respective crystal structure, the configuration around the lithium ions, and the number of charge carriers available. In both compounds the lithium cations are nearly tetrahedrally coordinated by nitrogen atoms with Li-N-distances of a similar size (LiPN₂:Li-N 209 pm; Li₇PN₄:Li-N 196-224 pm). According to its stoichiometry Li₇PN₄ possesses a higher number of charge carriers available for ionic conduction than LiPN₂. Li₇PN₄ resembles an anti-fluorite type of structure which can be formulated as a defect CsCItype of structure. Thus a large number of interstitial sites can be occupied by the lithium cations. In con-

Table 1 Lithium ion conductivity and activation energy of some ternary lithium nitrides

	$\sigma_{400 \text{ K}} \over (\Omega^{-1} \text{ cm}^{-1})$	E_{a} (kJ mol ⁻¹)	Refs.
LiSi ₂ N ₃	1.9×10 ⁻⁷	64	[4]
β-Li₃BN₂	6.3×10^{-7}	64	[2]
LiPN ₂	6.9×10 ⁻⁷	59	this work
Li ₃ AlN ₂	7.9×10^{-6}	52	[3]
Li ₇ PN₄	1.7×10^{-5}	47	this work
Li ₈ SiN ₄	5.0×10^{-4}	46	[4]

trast, the closely packed atomic arrangement of $LiPN_2$ has no interstitial positions comparable to those in Li_7PN_4 . Therefore a higher ionic conductivity and a lower activation energy of Li_7PN_4 seem to be quite reasonable.

In theory doping of LiPN₂ with magnesium or oxygen according to the formulas $Li(_{1-2x})Mg_x(V_{Li})_xPN_2$ or $Li_{(1-x)}(V_{Li})_xPO_xN_{(2-x)}$ $(V_{Li}=vacancy in the cation lattice) should increase the conductivity of LiPN₂. At present appropriate experiments are being made.$

As summarized in table 1 the ionic conductivity of Li_7PN_4 is higher than that of $LiSi_2N_3$, and Li_3AlN_2 while Li_8SiN_4 has been reported to show the highest ionic conductivity of the ternary lithium nitrides mentioned above [4]. According to its stoichiometry Li_8SiN_4 has the highest number of charge carriers. However, structural features of this compound cannot be discussed because Li_8SiN_4 is only very poorly characterized. No structural data have been evaluated and so far only ambiguous diffraction patterns have been reported for this compound [4,11].

4. Summary

Ternary lithium phosphorus nitrides LiPN₂ and

Li₇PN₄ represent a new group of lithium ion conductors. The specific conductivity of LiPN₂ ($\sigma_{400 \text{ K}}$ = 6.9×10⁻⁷ Ω^{-1} cm⁻¹, E_a =58.9 kJ/mol) and Li₇PN₄ ($\sigma_{400 \text{ K}}$ =1.7×10⁻⁵ Ω^{-1} cm⁻¹, E_a =46.7 kJ/ mol) is comparable to that of other ternary lithium nitrides.

Acknowledgement

The authors would like to thank Prof. Dr. M. Jansen, University of Bonn, F.R.G., for his kind support as well as Prof. Dr. A. Rabenau and his staff at the Max-Planck-Institute for Solid State Research, Stuttgart, F.R.G., for technical assistance and also for the lithium nitride. This research was partly supported by the Fonds der Chemischen Industrie F.R.G. and by the Minister für Forschung und Wissenschaft – Nordrhein Westfalen (F.R.G.).

References

- [1] A. Rabenau, Solid State Ionics 6 (1982) 277.
- [2] H. Yamane, S. Kikkawa and M. Koizumi, J. Solid State Chem. 71 (1987) 1.
- [3] H. Yamane, S. Kikkawa and M. Koizumi, Solid State Ionics 15 (1985) 51.
- [4] H. Yamane, S. Kikkawa and M. Koizumi, Solid State Ionics 25 (1987) 183.
- [5] P. Hartwig, W. Weppner and W. Wichelhaus, Mat. Res. Bull. 14 (1979) 493.
- [6] W. Weppner, P. Hartwig and A. Rabenau, J. Power Sources 6 (1981) 251.
- [7] W. Schnick and J. Luecke, unpublished.
- [8] W. Schnick and J. Luecke, J. Solid State Chem., to be published.
- [9] W. Schnick and J. Luecke, Z. Anorg. Allg. Chem., to be published.
- [10] M. Jansen and B.U. Koehler, Thesis B.U. Koehler (University of Hannover, FRG, 1987).
- [11] J. Lang and J.P. Charlot, Rev. Chim. Minér. 7 (1970) 121.