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Abstract 

Encapsulation of oligonucleotides in antibody-targeted liposomes (immunoliposomes) which 
bind to target cells permits intracellular delivery of the oligonucleotides. This approach circum- 
vents problems of extracellular degradation by nucleases and poor membrane permeability which 
free phosphodiester oligonucleotides are subject to, but leaves unresolved the inefficiency of 
encapsulation of oligonucleotides in liposomes. We have coupled oligonucleotides to cholesterol 
via a reversible disulfide bond. This modification of oligonucleotides improved their association 
with immunoliposomes by a factor of about 10 in comparison to unmodified oligonucleotides. The 
presence of cholesteryl-modified oligonucleotides incorporated in the bilayer of liposomes did not 
interfere with the coupling of the targeting protein to the liposome surface. Free or cholesterol 
coupled oligonucleotides associated with liposomes and directed against the tat gene of HIV-1 
were tested for inhibition of HIV-1 proliferation in acutely infected cells. We demonstrate that the 
cholesteryl-modified as well as unmodified oligonucleotides acquire the target specificity of the 
antibody on the liposome. Their antiviral activity when delivered into cells is sequence-specific. 
The activity of these modified or unmodified oligonucleotides to inhibit the replication of HIV 
was the same on an equimolar basis (ECs0 around 0.1 /~M). Cholesterol coupled oligonucleotides 
thus offer increased liposome association without loss of antiviral activity. 
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I. Introduction 

Use of antisense oligonucleotides constitutes a promising therapeutic approach in 
viral, malignant and inflamatory diseases since they have been shown to be powerful 
inhibitors of gene expression (Crooke et al., 1993). However, native oligonucleotides are 
susceptible to nuclease degradation (Akhtar et al., 1991; Shaw et al., 1991) and their 
uptake by cells is inefficient (Loke et al., 1989; Yakubov et al., 1989). 

An approach to circumvent these problems has been to covalently bind native 
(phosphodiester) or modified (phosphorothioate) oligonucleotides to phospholipid (Shea 
et al., 1990) or other hydrophobic residues (Kabanov et al., 1990; Saison-Behmoaras et 
al., 1991), including cholesterol (Boutorine et al., 1989; Letsinger et al., 1989; Krieg et 
al., 1993). Cholesterol modification has been shown to increase both the cell association 
and activity of phosphodiester and phosphorothioate oligonucleotides (Boutorine et al., 
1989; Letsinger et al., 1989; Boutorine et al., 1993; Krieg et al., 1993). These 
compounds have been shown to be taken up, at least in part, by the LDL receptor (de 
Smidt et al., 1991; Krieg et al., 1993). The mechanism of action of cholesteryl-phos- 
phodiester oligonucleotides is unclear since sequence non-specific effects were found in 
an HIV model (Letsinger et al., 1989), in which the non-coupled oligonucleotide was 
reported to act in a sequence-specific manner (Zamecnik et al., 1986; Goodchild et al., 
1988). Lack of specificity is presumably caused by the increased hydrophobicity 
associated with coupling to cholesterol or other hydrophobic residues in several viral 
and cellular models (Shea et al., 1990; Boutorine et al., 1993). Other authors, however, 
have reported that cholesteryl-modified oligonucleotides act in a sequence specific 
manner (Krieg et al., 1993; Svinarchuk et al., 1993). 

Another means of bypassing problems of cellular membrane permeability, stability to 
nucleases and also to confer a cell target specificity on oligonucleotides is the use of 
antibody-targeted liposomes (immunoliposomes) as a transport system. Immunolipo- 
somes have been shown to enter into lymphoid cells by an endocytic pathway and 
release the encapsulated product intracellularly (Leserman et al., 1990; Machy et al., 
1990). The efficiency of this process depends on the physiology of the targeted surface 
molecule, the type of cell, and the liposome size (Machy et al., 1983; Matthay et al., 
1989; Suzuki et al., 1991). Phosphodiester oligonucleotides encapsulated in liposomes 
have been shown to be protected from extracellular degradation, to have enhanced 
delivery into cells and to specifically inhibit the expression of the targeted viral genes 
(Leonetti et al., 1990; Thierry et al., 1992; Zelphati et al., 1993). 

The liposome technology presents a major inconvenient feature, however, which is 
the poor efficiency of encapsulation of agents in liposomes sufficiently small to be taken 
up by target cells. We have consequently investigated the biological activity of oligonu- 
cleotides covalently coupled to cholesterol via a potentially bioreversible disulfide 
linkage which have improved incorporation into liposomes (Oberhauser and Wagner, 
1992). The advantage of this reagent is that it offers the potential both of increasing 
inclusion of the reagent in the lipid bilayer and permitting release of the associated 
oligonucleotide in the reducing environment of endocytic vesicles (Feener et al., 1990; 
Oberhauser and Wagner, 1992). 2'-O-methyl-oligoribonucleotide thiocholesterol conju- 
gates have been shown to be effectively incorporated into liposomes and to have 
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increased uptake by cells (Oberhauser and Wagner, 1992), but their capacity to exert 
antisense effects has not been reported. 

In the present study, we have synthesized oligodeoxyribonucleotide thiocholesterol 
conjugates complementary to the tat gene and evaluated their incorporation into 
antibody-targeted liposomes and their anti-HIV-1 activity. These experiments were done 
in comparison with unmodified oligonucleotides encapsulated in immunoliposomes. We 
demonstrate that the cholesteryl-modified oligonucleotides associate efficiently with 
liposomes, acquire the target specificity of the antibody on the liposome and are specific 
in their antiviral activity when delivered into cells. 

2. Materials and methods 

2.1. Synthesis and purification of unmodified and 3'-amino-modified oligodeoxynu- 
cleotides 

All syntheses were performed with an automated DNA synthesizer (Applied Biosys- 
tems, model 380-B). Unmodified oligonucleotides (n-anti-tat and n-scrambled-tat) and 
3'-amino-modified oligonucleotides were synthesized by Genset (Paris, France) by the 
standard phosphoramidite procedure (Uhlmann et al., 1990). All purifications were 
performed by reverse-phase high-performance liquid chromatography. The target region 
chosen in the HIV-1 genome was the translation initiation region of the tat gene. 
Antisense oligonucleotide (n-anti-tat) was a 16-mer with the following sequence: 
5'-CTAGGATCTACTGGCT-3'. To verify the sequence specificity of the antisense 
oligonucleotides we have used a scrambled sequence of the same base composition for 
unmodified normal oligonucleotide 16-mer n-scrambled-tat: 5'-TGCCGTCGAAG- 
TATFC-3'. 

2.2. Synthesis of thiocholesterol-modified oligodeoxynucleotides 

The synthesis was performed by a modification of the technique described in 
(Oberhauser and Wagner, 1992). Minor changes in the isolation procedure had to be 
made due to the reduced solubility of the thiocholesterol-modified 16-mers in water. 

A solution of 970 /zg 3'-amino-modified anti-tat oligodeoxynucleotide in 1 ml 50 
mM HEPES buffer (pH 7.9) was treated with a solution of 5.7 mg (100 equivalents) of 
N-succinimidyl-3-(2-pyridyldithio)propionate (SPDP, Pharmacia) in 400 /xl ethanol for 
4 h at room temperature. The mixture was then subjected to gel filtration (Sephadex G25 
PD10 column, Pharmacia) with water as eluent. The dithiopyridine-modified oligonu- 
cleotide (950/zg) was dissolved in 800/zl  of a solution containing 30 mg 3,3,6,9,9-pen- 
tamethyl-2,10-diazabicyclo [4.4.0] dec-l-ene (PMDBD "Heinzer base", Fluka) acetate 
salt (pH 6.5), in methanol/water (15:85). The solution was subjected to gel filtration on 
a Sephadex G25 PD10 column (15% aqueous methanol). The oligonucleotide-containing 
fractions (790 /~g) were concentrated in a Speedvac to remove methanol, lyophilized 
and then dissolved in 2 ml of an anhydrous methanolic 60 mM PMDBD acetate buffer 
(pH 8.5). To this solution was added 3 mg thiocholesterol (Sigma) in 3 ml 
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dichloromethane. The reaction mixture was kept under argon for 18 h at room 
temperature. The solution was concentrated to about 1 ml in the Speedvac and extracted 
10 times with 400 /zl of 80 mM triethylammonium acetate in methanol/water (20:80). 
The aqueous extracts were combined and fractionated in five portions by reverse-phase 
HPLC (Nucleosil RP-18 column; buffer A: 40 mM triethylammonium acetate (pH 7); 
buffer B; acetonitrile; flow; 0.9 ml/min; gradient: 0-100% B) yielding 237/~g of the 
thiocholesterol-modified oligodeoxynucleotide in 11 ml buffer, eluting at a concentration 
of 63-65% acetonitrile. A thiocholesterol-modified oligonucleotide with the scrambled 
tat sequence was prepared in the same manner. 

2.3. End-labelling of unmodified and modified oligodeoxynucleotides 

Unmodified oligonucleotides were trace-labeled with [ y-32 P]ATP (Amersham) at the 
5' end by T4 polynucleotide kinase (Gibco, BRL) according to the supplier's instruc- 
tions. The labeled oligonucleotide was then purified on a Elutip-D column (Schleicher 
and Schuell). Thiocholesterol-modified oligodeoxynucleotides were 5'-32p-labeled using 
an incubation buffer with a minimum amount of reducing agents. Five pmol of 
oligonucleotide was incubated in 55 /xl buffer (50 mM Tris-HCl (pH 7.5), 10 mM 
MgC12, 100 mM NaC1, 1 mM dithioerythritol) with 20 units T4 polynucleotide kinase 
and 10 pmoles of [y_32 P]ATP for 40 min at 37°C. The labeled modified-oligonucleotide 
was then purified by gel filtration on Sephadex G-25 (50 mM Hepes (pH 7.3)-20% 
Ethanol) (Pharmacia) after addition of 50 pmol unlabeled oligonucleotide to minimize 
unspecific absorption. 

2.4. Preparation of liposomes with unmodified oligodeoxynucleotides 

Liposomes composed of 80 /xmol total lipid (64 mol% dipalmitoylphosphatidyl- 
choline (Avanti Polar Lipids, Birmingham, AL, USA), 35 mol% cholesterol (Sigma), 
and 1 mol% dipalmitoylphosphatidylethanolamine (Sigma) modified with SPDP (Phar- 
macia) (Leserman et al., 1980), were prepared with the aqueous phase (total volume: 1 
ml) composed of a solution of oligonucleotides at 8 mg/ml  in 145 mM NaC1/]0 mM 
Hepes (pH 7.45), or with this buffer alone to produce "empty"  liposomes as control. 
The solution was alternately frozen in liquid nitrogen and thawed by heating to 55°C 
five times with intermittent vortex mixing. The liposomes thus produced were passed 
through an "Extruder" (Lipex Biomembranes, Vancouver, Canada), mounted with 0.1 
~m polycarbonate filters (Nucleopore, Pleasanton, CA, USA) at 55°C (Hope et al., 
1985). Size determinations performed for liposomes of similar composition show 
liposomes formed by this technique to be primarily unilamellar, and their diameter 
corresponds closely to the pore size of the Nucleopore filters used. Liposomes were 
covalently coupled to Staphylococcus aureus Protein A (Pharmacia), as described 
(Leserman et al., 1980). Uncoupled Protein A and unencapsulated products were 
separated from liposomes on a Sepharose 4B (Pharmacia) column. Liposomes were 
sterilized by filtration through 0.45 /xm Gelman filters. Liposomes always contained in 
their aqueous space oligonucleotides at their original concentrations. The final concen- 
tration of oligonucleotides in the preparation was determined by the use of 32p 
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end-labeled oligonucleotide. Liposomes containing buffer were diluted to equivalent 
phospholipid concentrations, as determined by the method of Stewart (1980). 

2.5. Incorporation of thiocholesterol-modified oligodeoxynucleotides into liposomes 

20/zmol total lipid (dissolved in chloroform/methanol) described above were mixed 
with the aqueous phase (water/methanol, total volume: 0.5 ml) composed of a solution 
of thiocholesterol-modified oligodeoxynucleotides at 0.4-0.6 mg/ml,  or with 
water/methanol alone to produce "empty"  liposomes as control. This preparation was 
evaporated under nitrogen gas and lyophilized overnight. The dry lipidic film was then 
mixed with the aqueous phase (145 mM NaCI/10 mM Hepes (pH 7.45), total volume: 
0.8 ml), to produce liposomes. The production of unilamellar vesicles and the covalent 
coupling to Protein A were the same as described above. The final concentration of 
oligonucleotides in the preparation was determined by the use of 32p end-labeled 
oligonucleotide. Liposomes containing buffer were diluted to equivalent phospholipid 
concentrations, as determined above. 

2.6. Treatment of liposomes by DNase I 

A part of each liposome preparation (10 000 cpm/0.2 ml) were incubated alone or 
with DNAse I (50 /.Lg/ml, 10 mM MgC12) 40 rain at 25°C. After the treatment, 
liposomes and released 32p were separated by gel filtration on Sepharose 4B columns 
(Pharmacia) and analyzed by Cerenkov counting. 

2. 7. Antibodies 

The target specificity of antibodies used in this study are: the human major histocom- 
patibility complex (MHC)-encoded HLA (Human Leukocyte Antigen)-B and C molecules 
for antibody B1.23.2 (Reba'i et al., 1983) and the mouse (MHC)-encoded H2-K molecule 
for antibody H100.5/28 (Lemke et al., 1979). This antibody does not bind to human 
cells and was used as a control. Both are mouse IgG2a, K monoclonal antibodies purified 
from supernatant fluids of cultured hybridoma cells on Protein A-Sepharose CL-4B 
(Pharmacia) affinity columns. The use of these protein A-binding monoclonal antibodies 
in conjunction with protein A-bearing liposomes has been reported (Machy et al., 1982). 

2.8. Cells and virus 

CCRF-CEM cells (CEM), a T lymphoblastoid cell line, were obtained from American 
Type Culture Collection, Rockville, MD, USA (Ref. CCL 119). HIV-1 (BRU) (Barr~- 
Sinoussi et al., 1983) provided by L. Montagnier (Institut Pasteur, Paris, France), was 
maintained and amplified on CEM cells. Uninfected and infected cells were cultivated in 
RPMI 1640 supplemented with 10% fetal calf serum, 2 mM glutamine, 5 × 10 -5 M 
2-mercaptoethanol, 2 mM sodium pyruvate, 2 mM non essential amino acids and 
antibiotics at 37°C in a 5% CO 2 atmosphere. 
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2.9. Antiviral assay in acutely infected CEM cells 

CEM cells, at a concentration of 2 X 106 cells/ml, were inoculated with 1000 
TCIDs0 (50% tissue culture infectious dose) of virus and incubated for 30 min at 4°C in 
Eppendorf tubes, in a total volume of 1 ml. Cells were washed, diluted to 2 x 105 
cells/ml and incubated at 37°C in the presence or absence of 20 /zg/ml of antibody and 
various concentrations of oligonucleotides encapsulated in liposomes, in a total volume 
of 500 /zl, in 24 well tissue culture plates. At day four, cells were split and incubated in 
fresh medium without readdition of oligonucleotides until day seven, which represents 
the peak of the reverse transcriptase (RT) activity. At this time samples were removed to 
determine RT activity as described previously (Rey et al., 1984) and p24 expression as 
described below. 

2.10. Determination of p24 expression 

The assay is a twin-site sandwich ELISA in which p24 antigen is captured from a 
detergent lysate of virions onto a polyclonal anti-p24 antibody (Ref. D7320, Aalto 
Bioreagents, Dublin, Eire) adsorbed on a solid phase support (MaxiSorp, Nunc, Roskilde, 
Denmark). Bound p24 was detected with an alkaline phosphatase-conjugated anti-p24 
monoclonal antibody (Ref. EH12E1, MRC Reagent Programme) and the AMPAK 
ELISA amplification system (DAKO, France). 

3. Results 

3.1. Encapsulation efficiency and conformational study of liposome-associated unmodi- 
fied and thiocholesterol-modified oligonucleotides. 

Phosphodiester and 3'-thiocholesteryl modified phosphodiester oligonucleotides syn- 
thesized as described in Section 2 were 5'-end labeled with 32p and encapsulated or 
incorporated into small unilamellar antibody-targeted liposomes (100 nm diameter). 
Their incorporation or encapsulation efficiency were determined by comparing the 
radioactivity added to the lipid film at the start of the liposome preparation and the 
radioactivity recovered after the antibody-targeted liposomes were formed and sterilized. 
For free phosphodiester oligonucleotides we typically obtained 2.5-3.5% encapsulation 
efficiency. Encapsulation varies with the quantity of lipid used, since this determine the 
number of liposomes formed. The number of molecules encapsulated per liposomes 
depends on their solubility in the aqueous phase. In this case, we obtained between 
85-160 oligonueleotide molecules per liposome based on an estimate of 7.2 X 1012 
liposomes of 0.1 /zm diameter per /zmol of phospholipid. On the other hand, 20-30% 
of cholesterol-coupled oligonucleotides were incorporated in the liposomes, representing 
an increase of efficiency by a factor of about 10. With these liposomes we obtained 
42-70 oligonucleotide molecules per liposome when 1% of the cholesterol used for the 
DPPC/cholesterol mixture from which the liposomes were formed consisted of choles- 
terol coupled to oligonucleotides. The number of liposome-associated molecules was 
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Fig. 1. Treatment of liposomes by DNase I. 32 P-labeled unmodified and cholesterol-modified oligonucleotides 
incorporated or encapsulated with immunoliposomes were treated or not with DNase and subjected to gel 
filtration as described in Section 2.32p associated with liposomes or liberated by treatment were analyzed by 
Cerenkov counting and results were expressed as % of cpm recovered after filtration. 

two times lower with modified oligonucleotides than for free oligonucleotides, but these 
were prepared at a 4-fold lower lipid concentration and using 15-22 fold fewer 
oligonucleotides. Thus, the number of cholesterol bound oligonucleotides per liposome 
may be augmented by increasing the cholesterol-oligonucleotide content of the prepara- 
tion. 

The disulfide bond binding the cholesterol and oligonucleotide did not interfere with 
the efficiency of coupling Protein A to the liposomes (which requires formation of a 
disulfide bond between SPDP-modified phosphatidylethanolamine in the liposomes and 
Protein A), since coupling efficiency was the same in the presence and absence of the 
thiocholesterol-modified oligonucleotides. 

Given that cholesteryl-modified oligonucleotides were expected to be incorporated in 
the bilayer of liposomes, if the liposomes are unilamellar about 50% of the oligonu- 
cleotides should be directed toward the inside and 50% toward the outside of the 
liposomes, whereas unmodified oligonucleotides should be 100% encapsulated in the 
aqueous phase of liposomes as previously suggested (Leonetti et al., 1990; Akhtar et al., 
1991; Oberhauser and Wagner, 1992). 

To verify this hypothesis, we incubated liposomes with DNase I and after separation 
by gel filtration measured the radioactivity that was still liposome-associated (excluded 
from Sepharose 4B) or liberated by treatment. Results presented in Fig. 1 show that after 
DNase I action, 58% of radioactivity remained associated with liposomes and 42% was 
free. In contrast, with lipo-(oligo) 94.5% of the radioactivity was recovered associated 
with liposomes. This confirms the result observed for alkaline phosphatase cleavage of 
2'-O-methyl-oligoribonucleotide thiocholesterol conjugates (Oberhauser and Wagner, 
1992). 

3.2. Antiviral effects of oligonucleotides encapsulated or incorporated in immunolipo- 
somes on acutely infected cells 

In previous studies, we and others have shown that phosphodiester oligonucleotides 
free in solution were unable to inhibit HIV replication (up to a concentration of 50 /zM) 
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because their degradation by extracellular nucleases is rapid and their uptake relatively 
poor (Matsukura et al., 1987; Kim et al., 1991; Kinchington et al., 1992; Zelphati et al., 
1993). To protect oligonucleotides from nuclease action and to concentrate them at the 
cell surface we encapsulated oligonucleotides or incorporated oligonucleotides coupled 
to cholesterol in liposomes and evaluated their antiviral activity. 

In these experiments, we used liposomes coupled to protein A which binds with high 
affinity to the Fc region of several antibody classes including the mouse IgG2 a 
antibodies used here. The targeted cell surface determinant selected was the HLA class I 
molecule since we have previously reported the fixation and internalization of fluores- 
cent, methotrexate- or oligonucleotide-containing liposomes by human T cells when 
liposomes were targeted to this determinant (Suzuki et al., 1991; Zelphati et al., 1993). 

~oo~ A 

9°1 
80 

70 5 

60- 

~, .so- ~, 

40-: 

O "  I I 

H2-K HLA-BC 

100- 

90: 

~, 80- 

70: 

605 

505 

40- 

,.., 30~ 

20~ 

10- 

B 

I 

H2-K 

/ ,  

Z 
/ j  

Z 
Z 
/ /  

Z 

Z 
/ t  
/ t  

Z 
I 

HLA-BC 

[ ]  (empty)-lipo 

• (n- scrambled-tat)-lipo 

• (n-anti-tat)-lipo 

[ ]  (n-scrambled-tat-chol)-lipo 

[ ]  (n-anti-tat-chol)-lipo 

Fig. 2. Antiviral effects ot unmodified and cholesterol-modified oligonucleotides encapsulated in immunolipo- 
somes on acutely HIV-l-infected cells. CEM ceils were inoculated with HIV-1. Oligonucleotides encapsulated 
in liposomes were subsequently added to some wells, at a final concentration of 0.25 gM,  in the presence (as 
specified), or not (-), of antibodies. The total incubation time post infection was 7 days. The RT activity and 
p24 expression was determined in the supernatants. The data are given as percent of inhibition of p24 
expression (A) and RT activity (B), compared with the infected controls. The means of three separate 
experiments are given. The S.D. did not exceed 20% of this mean. 
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Oligonucleotides encapsulated or incorporated in immunoliposomes targeted to HLA 
class I molecules by specific antibody strongly blocked (at an oligonucleotide concentra- 
tion of 0.25 /xM) the expression of the viral protein p24 and the activity of the RT (Fig. 
2). This inhibition was sequence specific since antisense tat oligonucleotides were 
active but both free and cholesterol-coupled scrambled sequence of the same base 
composition were without effect. Both preparations were very similar in their efficiency 
since (n-anti-tat)-lipo and (n-anti-tat-chol)-lipo targeted to acutely infected CEM cells 
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Fig. 3. Dose-response curve of antiviral effects of unmodified and cholesterol-modified oligonucleotides 
encapsulated in immunoliposomes on acutely infected cells. Acutely infected CEM cells were incubated alone 
or with anti-HLA antibody (B.1.23.2) and with various concentrations of oligonucleotides encapsulated in 
liposomes. At day seven, p24 expression and RT activity were determined in the supernatants. The data are 
given as percent of inhibition of p24 expression (A) and RT activity (B), compared with the infected controls. 
The means of two experiments are given. The S.D. did not exceed 10% of this mean. 
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by HLA specific antibodies inhibited HIV-1 p24 expression (75% and 87% inhibition, 
respectively) and RT activity (85% and 91% inhibition, respectively) (Fig. 2). 

We determined that all liposome preparations were devoid of cytotoxicity for 
uninfected CEM cells as measured by trypan blue exclusion and radiolabelled base 
incorporation (data not shown). The antiviral effects depended on specific cellular 
delivery of the liposome-containing antisense reagents, as none were seen for targeted 
empty liposomes or for (n-anti-tat)-lipo and (n-anti-tat-chol)-lipo in the absence of 
antibody, or targeted to H2-K molecules which are not expressed on CEM cells (Fig. 2). 

From the dose response curve (Fig. 3), the 50% antivirally effective concentration 
dose (ECs0) of (n-anti-tat)-lipo and (n-anti-tat-chol)-lipo targeted to HLA class I 
molecules were evaluated for acutely infected CEM cells. They were both about 0.125 
/xM in the cases of inhibition of p24 expression and around 0.1 /xM for inhibition of RT 
activity. Thus, no difference were seen between liposomes containing equimolar concen- 
trations of free or cholesterol-coupled oligonucleotides in their capacity to inhibit the 
replication of HIV in acutely infected CEM cells. 

4. Discussion 

An approach to bypass problems of extracellular nuclease degradation and poor cell 
permeability of oligonucleotides composed of unmodified (phosphodiester) nucleotides 
is to use a transport system such as immunoliposomes. These have been shown to 
protect oligonucleotides against nucleases and to increase their cellular delivery (Leonetti 
et al., 1990; Thierry et al., 1992; Zelphati et al., 1993). However, the efficiency of 
encapsulation of oligonucleotides in small immunoliposomes at the lipid concentration 
used was very low (2-3%) and constitutes the major inconvenient feature of this 
transport system. Increasing the size of the liposomes reduces the ability of target cells 
to take up the liposomes by receptor-mediated endocytosis and also reduces their ability 
to remain in the circulation (Machy et al., 1983; Senior, 1987). 

In the present study we have evaluated the efficiency of liposome association and 
biological activity of oligonucleotides coupled to cholesterol. The synthesis of such 
compounds with a reversible disulfide linkage was previously described (Boutorine et 
al., 1990; Oberhauser and Wagner, 1992). The method of Oberhauser and Wagner for 
the coupling of 2'-O-methyl-oligoribonucleotides was modified for coupling to 
oligodeoxyribonucleotides. This conjugate had increased association with liposomes by 
a factor of about 10 for the cholesterol concentration used here and did not influence the 
efficiency of subsequent coupling of Protein A to the liposome surface. Cholesterol-cou- 
pled oligonucleotides have been shown to be incorporated into the bilayer of liposomes 
with about half of the oligonucleotides directed toward the interior and half toward the 
exterior surface of the liposomes. The phosphodiester oligonucleotides facing the 
medium were sensitive to degradation by DNase I at high concentrations (Fig. 1), but as 
they are coupled to cholesterol at their 3' extremity they should be protected to some 
extent against nucleases present in serum (Boutorine et al., 1992; Gamper et al., 1993) 
which are principally Y-exonucleases (Shaw et al., 1991). 



O. Zelphati et al. /Antiviral Research 25 (1994) 13-25 23 

Liposomes containing these oligonucleotides were shown to strongly inhibit the 
replication of HIV. This activity depended on the association of targeting antibodies 
with the liposomes which demonstrated that the cholesteryl-coupled oligonucleotides 
were not released from the liposomes in the medium, but rather entered into the cells in 
their liposome-associated form. An antiviral effect was seen for the antisense but not the 
scrambled ant i - tat  sequence. This indicates that the antiviral effect was due to an 
interaction with viral RNA, rather than with RT a n d / o r  on the HIV entry process 
(binding gp120-CD4, or fusion, or entry of the viral genome into cell) as reported for 
phosphorotioate oligonucleotides coupled or not to cholesterol (Stein et al., 1991). The 
interaction could be with genomic RNA, prior to reverse transcription and integration, or 
with mRNA newly produced by the integrated virus, or both. Experiments to evaluate 
the mechanism of action of liposome-associated oligonucleotides and their extension to 
other target sequences are in progress. 
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