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Abstract

For the last eight years, microarray-based class prediction has been a

major topic in statistics, bioinformatics and biomedicine research. Tradi-

tional methods often yield unsatisfactory results or may even be inappli-

cable in the p � n setting where the number of predictors by far exceeds

the number of observations, hence the term “ill-posed-problem”. Careful

model selection and evaluation satisfying accepted good-practice standards

is a very complex task for inexperienced users with limited statistical back-

ground or for statisticians without experience in this area. The multiplicity

of available methods for class prediction based on high-dimensional data

is an additional practical challenge for inexperienced researchers.

In this article, we introduce a new Bioconductor package called CMA

(standing for “Classification for MicroArrays”) for automatically perform-

ing variable selection, parameter tuning, classifier construction, and un-

biased evaluation of the constructed classifiers using a large number of

usual methods. Without much time and effort, users are provided with an

overview of the unbiased accuracy of most top-performing classifiers. Fur-

thermore, the standardized evaluation framework underlying CMA can also
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be beneficial in statistical research for comparison purposes, for instance if

a new classifier has to be compared to existing approaches.

CMA is a user-friendly comprehensive package for classifier construc-

tion and evaluation implementing most usual approaches. It is freely

available from the Bioconductor website at http://bioconductor.org/

packages/2.3/bioc/html/CMA.html.

1 Background

For the last eight years, microarray-based class prediction has been a major topic

in statistics, bioinformatics and biomedicine research. Traditional methods often

yield unsatisfactory results or may even be inapplicable in the p � n setting

where the number of predictors by far exceeds the number of observations, hence

the term “ill-posed-problem”. Microarray studies have thus stimulated the devel-

opment of new approaches and motivated the adaptation of known traditional

methods to the high-dimensional setting. Most of them are implemented in the

R language (1) and are freely available at cran.r-project.org or from the

bioinformatics platform www.bioconductor.org. Meanwhile, the latter has es-

tablished itself as a standard tool for analyzing various types of high-throughput

genomic data including microarray data (2). Throughout this article, the focus is

on microarray data, but the presented package can be applied to any supervised

classification problem involving a large number of continuous predictors such as,

e.g. proteomic or metabolomic data.

Model selection and evaluation of prediction rules turn out to be highly diffi-

cult in the p � n setting for several reasons: i) the hazard of overfitting, which

is common to all prediction problems, is considerably increased by high dimen-

sionality, ii) the usual evaluation scheme based on the splitting into learning and

test data sets often applies only partially in the case of small samples, iii) mod-

ern classification techniques rely on the proper choice of hyperparameters whose

optimization is highly computer-intensive, especially with high-dimensional data.

The multiplicity of available methods for class prediction based on high-

dimensional data is an additional practical challenge for inexperienced statis-

ticians. Whereas logistic regression is well-established as the standard method to
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be used when analyzing classical data sets with much more observations than

variables (n > p), it is still unclear which one of the many available approaches

for high-dimensional should be used as a reference standard method in the n � p

case. Moreover, the programs implementing well-known popular methods such as

penalized logistic regression, nearest shrunken centroids (3), random forests (4),

or partial least squares (5) are characterized by a high heterogeneity as far as in-

put format, output format, and tuning procedures are concerned. Inexperienced

users have thus to spend much effort understanding each of the programs and

modifying the data formats, while potentially introducing severe errors which

may considerably affect the final results. Furthermore, the users may overlook

important tuning parameters or detail settings that sometimes noticeably con-

tribute to the success of the classifier. Note that circumventing the problem of

the multiplicity of methods by always using a single “favorite method” (usually

the method in the user’s expertise area or a method which has been identified as

top-performing method in a seminal comparison study) potentially leads to poor

results, especially when the considered method involves strong assumptions on

the data structure.

From the difficulties outlined above, we conclude that careful model selection

and evaluation satisfying accepted good-practice standards (6) is a very complex

task for inexperienced users with limited statistical background. In this article, we

introduce a new Bioconductor package called CMA (standing for “Classification

for MicroArrays”) for automatically performing variable selection, parameter

tuning, classifier construction, and unbiased evaluation of the constructed classi-

fiers. The primary goal of CMA is to enable statisticians with limited experience

on high-dimensional class prediction or biologists and bioinformaticians with sta-

tistical background to achieve such a demanding task on their own. Without much

time and effort, users are provided with an overview of the unbiased accuracy of

most top-performing classifiers. Furthermore, the standardized evaluation frame-

work underlying CMA involving variable selection and hyperparameter tuning

can also be beneficial for comparison purposes, for instance if a new classifier has

to be compared to existing approaches.

In a nutshell, CMA offers an interface to a total of more than twenty dif-

ferent classifiers, seven univariate and multivariate variable selection methods,
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different evaluation schemes (such as, e.g. cross-validation or bootstrap), and dif-

ferent measures of classification accuracy. A particular attention is devoted to

preliminary variable selection and hyperparameter tuning, issues that are often

neglected in current literature and software. More specifically, variable selection is

always performed using the training data only, i.e. for each iteration successively

in the case of cross-validation, following well-established good-practice guidelines

(7; 8; 9; 6). Hyperparameter tuning is performed through an inner cross-validation

loop, as usually recommended (10). This feature is intended to prevent users from

trying several hyperparameter values on their own and selecting the best results

a posteriori, a strategy which would obviously lead to severe bias (11).

The CMA package is freely available from the Bioconductor website at http:

//bioconductor.org/packages/2.3/bioc/html/CMA.html

Overview of existing packages

The idea of an R interface for the integration of microarray-based classification

methods is not new. The CMA package shows similarities to the Bioconductor

package ’MLInterfaces’ standing for “An interface to various machine learning

methods” (12), see also the Bioconductor textbook (13) for a presentation of an

older version. The MLInterfaces package includes numerous facilities such as the

unified MLearn interface, the flexible learnerSchema design enabling the intro-

duction of new procedures on the fly, and the xvalSpec interface that allows

arbitrary types of resampling and cross-validation to be employed. MLearn also

returns the native R object from the learner for further interrogation. The pack-

age architecture of MLInterfaces is similar the CMA structure in the sense that

wrapper functions are used to call classification methods from other packages.

However, CMA includes additional predefined features as far as variable selec-

tion, hyperparameter tuning, classifier evaluation and comparison are concerned.

While the method xval is flexible for experienced users, it provides only cross-

validation (including leave-one-out) as predefined option. As the CMA pack-

age also addresses inexperienced users, it includes the most common validation

schemes in a standardized manner. In the current version of MLInterfaces, vari-

able selection can also be carried out separately for each different learning set,
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but it does not seem to be a standard procedure. In the examples presented

in the book mentioned above, variable selection is only performed once using

the complete sample. In contrast, CMA performs variable selection separately

for each learning set by default. Further, CMA includes additional features for

hyperparameter tuning, thus allowing an objective comparison of different class

prediction methods. If tuning is ignored, simpler methods without (or with few)

tuning parameters tend to perform seemingly better than more complex algo-

rithms. CMA also implements additional measures of prediction accuracy and

user-friendly visualization tools.

The package ’MCRestimate’ (14) emphasizes very similar aspects as CMA, fo-

cussing on the estimation of misclassification rates and cross-validation for model

selection and evaluation. It is (to our knowledge) the only Biconductor pack-

age supporting hyperparameter tuning, but obviously referring to the function

e1071:::tune. The CMA package includes additional variable selection features

and is implemented in the S4 class structure.

Overview of class prediction with high-dimensional data

and notations

Settings and Notation

The classification problem can be briefly outlined as follows:

� we have a predictor space X , here X ⊆ Rp (for instance, the predictors

may be gene expresssion levels, but the scope of CMA is not limited to this

case),

� we have a finite set of class labels Y = {0, . . . , K−1}, with K denoting the

total number of classes,

� P (x, y) denotes the joint probability distribution on X × Y ,

� we are given a finite sample S = {(x1, y1), . . . , (xn, yn)} of n predictor-class

pairs.
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The considered task is to construct a decision function

f̂ : X → Y
x 7→ f̂(x)

such that the generalization error

R[f ] = EP [L(f̂(x), y)] =

∫
X×Y

L(y, f̂(x)) dP (x, y) (1)

is minimized, where L(·, ·) is a suitable loss function, usually taken to be the

indicator loss (L(u, v) = 1 if u 6= v, L(u, v) = 0 otherwise). Other loss functions

and performances measures are discussed extensively in section 3.1.4. The symbol̂ indicates that the function is estimated from the given sample S.

Estimation of the generalization error

As we are only equipped with a finite sample S and the underlying distribution is

unknown, approximations to Eq. (1) have to be found. The empirical counterpart

to R[f ]

Remp[f ] = n−1

n∑
i=1

L(yi, f̂(xi)) (2)

has a (usually large) negative bias, i.e. prediction error is underestimated. More-

over, model selection based on Eq. (2) leads to overfitting the sample S. More

details can be found in recent overview articles (15; 16; 17). A better strategy

consists of splitting S into distinct subsets L (learning sample) and T (test sam-

ple) with the intention to separate model selection and model evaluation. The

classifier f̂(·) is constructed using L only and evaluated using T only, as depicted

in Figure 1.

In microarray data, the sample size n is usually very small, leading to serious

problems for both the construction of the classifier and the estimation of its

prediction accuracy. Increasing the size of the learning set (nL → n) typically

improves the constructed prediction rule f̂(·), but decreases the reliability of its

evaluation. Conversely, inccreasing the size of the test set (nT → n) improves

the accuracy estimation but leads to poor classifiers, since these are based on

fewer observations. While a compromise can be found for a reasonable sample

size, alternative designs are needed for the case of small sizes. The CMA package

implements several approaches which are all based on the following scheme.
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1. Generate B learning sets Lb (b = 1, . . . , B) from S and define the corre-

sponding test set as Tb = S \ Lb.

2. Obtain f̂b(·) from Lb, for b = 1, . . . , B.

3. The quantity

ε̂ =
1

B

B∑
b=1

1

|Tb|
∑
i∈Tb

L(yi, f̂b(xi)) (3)

is then used as an estimator of the error rate, where |.| stands for the

cardinality of the considered set.

The underlying idea is to reduce the variance of the error estimator by averaging,

in the spirit of the bagging principle introduced by Breiman (18). The function

GenerateLearningsets from the package CMA implements several methods for

generating Lb and Tb in step 1, which are described below.

LOOCV Leaving-one-out cross-validation

For the b-th iteration, Tb consists of the b-th observation only. This is re-

peated for each observation in S, so that B = n.

CV k-fold cross-validation (method = "CV", fold, niter)

S is split into fold non-overlapping subsets of approximately equal size. For

each iteration b, the b-th subset is used as Tb and the union of the remaining

subsets as Lb, such that B =fold. Setting fold = n is equivalent to method

= "LOOCV". For fold < n, the splitting is not uniquely determined. It is

thus recommended to repeat the whole procedure niter times (15) (for

instance niter=5 or niter=10) to partly average out random variations.

MCCV Monte-Carlo-cross-validation (method = "MCCV", fold, ntrain,

niter)

Each of the B=niter learning sets of cardinality ntrain is drawn randomly

from S without replacement.

boot Bootstrap (method = "bootstrap", ntrain, niter)

B=niter bootstrap samples (drawn with replacement) (19) of cardinality

ntrain are used as learning sets. In practice, ntrain is usually set to the

total sample size n.
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See Figure 2 for a schematic representation of CV, MCCV and bootstrap sam-

pling. stratified sampling is possible by setting strat = TRUE. This implies that,

in each learning set Lb, the proportion of the classes {0, . . . , K − 1} is approx-

imately the same as in S. This option is very useful (and sometimes even nec-

essary) in order to guarantee that each class is sufficiently represented in each

Lb, in particular if there are classes of small size. A schematic display of above

splitting rules is given below. For more details on the evaluation of classifiers,

readers may refer to recent overview articles discussing the respective drawbacks

and advantages of these methods in (15; 16).

In CMA, cross-validation is also used for hyperparameter tuning. The optimal

value(s) of the method parameter(s) is(are) determined within an inner cross-

validation, as commonly recommended (10; 11). If cross-validation is used for both

tuning parameters and evaluating a classifiers, the whole procedure is denoted as

nested cross-validation. See Figure 3 for a schematic representation.

2 Implementation

The Bioconductor package CMA is user-friendly in the sense that

� the methods automatically adapt to the data format provided by the user,

� convenience functions take over frequent tasks such as automatic visualiza-

tion of results,

� reasonable default settings for hyperparameter tuning and other parameters

requiring expert knowledge of particular classifiers are provided,

� it works with uniform data structures.

To do so, CMA exploits the rich possibilities of object-oriented programming as

realized by S4 classes of the methods package (20) which make it easy to incor-

porate new features into an existing framework. For instance, with some basic

knowledge of the S4 class system (which is standard for bioconductor packages),

users can easily embed new classification methods in addition to the 21 currently

available in CMA. Moreover, the process of classifier building described in more

8



detail in section 3.1.2 can either be partitioned into several transparent small

steps (variable selection, hyperparameter tuning, etc) or executed by only one

compact function call. The last feature is beneficial for users who are not very

familiar with R commands.

3 Results

3.1 CMA features

3.1.1 Overview

In a nutshell, the package has the following features.

� It offers a uniform, user-friendly interface to a total of more than twenty

classification methods (see Table 1) comprising classical approaches as well

as more sophisticated methods. User-friendliness means that the input for-

mats are uniform among different methods, that the user may choose be-

tween three different input formats and that the output is self-explicable

and informative.

� It automatically generates learning samples as explained in section 1, in-

cluding the generation of stratified samples. Different schemes for generating

learning sets and test sets are displayed schematically in Figure 2.

� The method GeneSelection provides optional variable selection preceding

classification for each iteration b = 1, . . . , B separately, based on various

ranking procedures.

� The method tune carries out hyperparameter tuning for a fixed (sub-)set of

variables. It can be performed in a fully automatic manner using pre-defined

grids, see Figure 3 for a schematic representation. Alternatively, it can be

completely customized by the experienced user. The principle of the tuning

procedure based on nested cross-validation is schematically represented in

Figure 3.

� The method classification enables the user to combine gene selection,

hyperparameter tuning and class prediction into one single step.
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� Performance can be assessed using the method evaluation for several per-

formance measures commonly used in practice.

� Comparison of the performance of several classifiers can be quickly tabu-

lated and visualized using the method comparison.

� Estimations of conditional class probabilities for predicted observations are

provided by most of the classifiers, with only a few exceptions. This is

more informative than only returning class labels and allows a more precise

comparison of different classifiers.

� Most results can conveniently be summarized and visualized using pre-

defined convenience methods as demonstrated in section 3.2, for example:

– plot,cloutput-method produces probability plots, also known as

“voting plot”,

– plot,genesel-method visualizes variable importance derived from

one of the ranking procedures via a barplot,

– roc,cloutput-method draws empirical ROC curves,

– toplist,genesel-method lists the most relevant variables,

– summary,evaloutput-method makes a summary out of iteration- or

observationwise performance measures.

� The implementation is fully organized in S4 classes, thus making the exten-

sion of CMA very easy. In particular, own classification methods can easily

be integrated if they return a proper object of class cloutput.

� In addition to the packages listed in Table 1, CMA only requires the pack-

age ’limma’ for full functionality. For all other features, no code of foreign

packages is used.

� Like most R packages, CMA is more flexible than, e.g., web-based tools.

Experienced used can easily modify the programs or add new methods.
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3.1.2 Classification methods

This subsection gives a brief summarizing overview of the classifiers implemented

in CMA. We have tried to compose a balanced mixture of methods from sev-

eral fields although we do not claim our selection to be representative, taking

into account the large amount of literature on that subject. For more detailed

information on the single methods, readers are referred to the references given

in Table 1 and the references therein. All classifiers can be constructed using the

CMA method classification, where the argument classifier specifies the

classification method to be used.

Discriminant Analysis

Discriminant analysis is the (Bayes-)optimal classifier if the conditional dis-

tributions of the predictors given the classes are Gaussian. Diagonal, linear

and quadratic discriminant analysis differ only by their assumptions for the

(conditional) covariance matrices Σk = Cov(x|y = k), k = 0, . . . , K − 1.

(a) Diagonal discriminant analysis (classifier="dldaCMA") assumes

that the within-class covariance matrices Σk are diagonal and equal

for all classes, i.e. Σk = Σ = diag(σ2
1, . . . , σ

2
p), k = 1, . . . , K − 1, thus

requiring the estimation of p covariance parameters.

(b) Linear discriminant analysis (classifier="ldaCMA") assumes Σk =

Σ, k = 1, . . . , K−1 without further restrictions for Σ so that p(p+1)/2

parameters have to be estimated.

(c) Quadratic discriminant analysis (classifier="qdaCMA") does not im-

pose any restriction on Σk, k = 1, . . . , K − 1.

While (a) turns out to be still practicable for microarray data, linear and

quadratic discriminant analysis are not competitive in this setting, at least

not without dimension reduction or excessive variable selection (see below).

The so-called PAM method (standing for “Prediction Analysis for Microar-

rays”), which is also commonly denoted as“shrunken centroids discriminant

analysis” can be viewed as a modification of diagonal discriminant analysis

(also referred to as “naive Bayes” classifier) using univariate soft threshold-
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ing (21) to perform variable selection and yield stabilized estimates of the

variance parameters (classifier="scdaCMA").

Fisher’s discriminant analysis (FDA) (classifier="fdaCMA") has a differ-

ent motivation, but can be shown to be equivalent to linear discriminant

analysis under certain assumptions. It looks for projections aTx such that

the ratio of between-class and within-class variance is maximized, leading

to a linear decision function in a lower dimensional space. Flexible discrim-

inant analysis (classifier="flexdaCMA") can be interpreted as FDA in a

higher-dimensional space generated by basis functions, also allowing non-

linear decision functions (22). In CMA, the basis functions are given by

penalized splines as implemented in the R package ’mgcv’ (23).

Shrinkage discriminant analysis (24; 25) (classifier="shrinkldaCMA")

tries to stabilize covariance estimation by shrinking the unrestricted covari-

ance matrix from linear discriminant analysis to a more simply structured

target covariance matrix, e.g. a diagonal matrix.

Partial Least Squares

Partial Least Squares is a dimension reduction method that looks for di-

rections {wr}R
r=1 maximizing |Cov(y,wT

r x)| (r = 1, . . . , R) subject to the

constraints wT
r wr = 1 and wT

r ws = 0 for r 6= s, where R � p. Instead of

working with the original predictors, one then plugs the projections living in

a lower dimensional space into other classification methods, for example lin-

ear discriminant analysis (classifier="pls_ldaCMA"), logistic regression

(classifier="pls_lrCMA") or random forest (classifier="pls_rfCMA").

See Boulesteix and Strimmer (9) for an overview of partial least squares ap-

plications to genomic data analysis.

Regularization and shrinkage methods

In both penalized logistic regression and support vector machines, f̂(·) is

constructed such that it minimizes an expression of the form
n∑

i=1

L(yi, f(xi)) + λJ [f ], (4)

where L(·, ·) is a loss function as outlined above and J [f ] is a regularizer

preventing overfitting. The trade-off between the two terms is known as
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bias-variance trade-off and governed via the tuning parameter λ. For `2 pe-

nalized logistic regression (classifier="plrCMA"), f(x) = xTβ is linear

and depends only on the vector β of regression coefficients, J [f ] is the `2

norm J [f ] = βTβ and L(·, ·) is the negative log-likelihood of a binomial

distribution. Setting J [f ] = |β| =
∑p

j=1 |βj| yields the Lasso (26) (classi-

fier="LassoCMA"), while combining both regularizers into J [f ] = βTβ+|β|
yields the elastic net (27) (classifier="ElasticNetCMA"). CMA also im-

plements a multi-class version of `2 penalized logistic regression, replacing

the binomial negative likelihood by its multinomial counterpart.

For Support Vector Machines (classifier="svmCMA"), we have

f(x) =
∑
i∈V

αik(x,xi),

where V ⊂ {1, . . . , n} is the set of the so-called “support vectors”, αi are

coefficients and k(·, ·) is a positive definite kernel. Frequently used kernels

are the linear kernel 〈·, ·〉, the polynomial kernel 〈·, ·〉d or the Gaussian

kernel k(xi,xj) = exp((xi−xj)
T(xi−xj)/σ

2). The function J [f ] is given as

J [f ] =
∑

i∈V
∑

j∈V αiαjk(xi,xj) and L(·, ·) is the so-called hinge loss (28).

Random Forests

The random forest method (4) aggregates an ensemble of binary decision-

tree classifiers (29) constructed based on bootstrap samples drawn from the

learning set (classifier="rfCMA"). The“bootstrap aggregating” strategy

(abbreviated as “bagging”) turns out to be particularly successful in combi-

nation with unstable classifiers such as decision trees. In order to make the

obtained trees even more different and thus increase their stability and to

reduce the computation time, random forests have an additional feature. At

each split, a subset of candidate predictors is selected out of the available

predictors. Random forest also performs implicit variable selection and can

be used to assess variable importance (see section 3.1.3).

Boosting

Similarly to random forests, boosting is based on a weighted ensemble

of “weak learners” for classification, i.e. f(·) =
∑

αmfweak(·), where
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αm > 0 (m = 1, . . . ,M) are adequately chosen coefficients. The term

weak learner which stems from the machine learning community (30), de-

notes a method with poor performance (but still significantly better per-

formance than random guessing) and low complexity. Famous examples

for weak learners are binary decision trees with few (one or two) splits

or linear functions in one predictor which is termed componentwise boost-

ing. Friedman (31) reformulates boosting as a functional gradient descent

combined with appropriate loss functions. The CMA package implements

decision tree-based (classifier="gbmCMA") and componentwise (classi-

fier="compBoostCMA") boosting with exponential, binomial and squared

loss in the two-class case, and multinomial loss in the multi-class case.

Feed-Forward Neural Networks

CMA implements one-hidden-layer feed-forward neural networks (classi-

fier="nnetCMA"). Starting with a vector of covariates x, one forms pro-

jections aT
r x, r = 1, . . . , R, that are then transformed using an activation

function h(·), usually sigmoidal, in order to obtain a hidden layer consisting

of units {zr = h(aT
r x)}R

r=1 that are subsequently used for prediction. Train-

ing of neural networks tends to be rather complicated and unstable. For

large p, CMA works in the space of “eigengenes”, following the suggestion

of (32) by applying the singular value decomposition (33) to the predictor

matrix.

Probabilistic Neural Networks

Although termed “Neural Networks”, probabilistic neural networks (clas-

sifier="pnnCMA") are actually a Parzen-Windows type classifier (34) re-

lated to the nearest neighbors approach. For x ∈ T from the test set and

each class k = 0, . . . , K − 1, one computes

wk = n−1
k

∑
xi∈L

I(yi = k) · exp((xi − x)T(xi − x)/σ2), k = 0, . . . , K − 1

where nk denotes the number of observations from class k in the learning

set and σ2 > 0 is a method parameter. The quotient {wk/
∑K−1

k=0 wk}K−1
k=0 is

then considered as an estimate of the class probability, for k = 0, . . . , K−1.
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Nearest Neighbors and Probabilistic Nearest Neighbors

CMA implements one of the variants of the ordinary nearest neigh-

bors approach using the euclidean distance as distance measure (clas-

sifier="knnCMA") and another variant called “probabilistic” that addi-

tionally provides estimates for class probabilities by using distances as

weights, however without a genuine underlying probability model (classi-

fier="pknnCMA"). Given a learning set L and test set T , respectively, the

probabilistic nearest neighbors method determines for each element in L
the k > 1 nearest neighbors N ⊂ L and then estimates class probabilities

as

P (y = k|x) =
exp

(
β

∑
xi∈N −d(x,xi)I(yi = k)

)
exp

(
1 + β

∑
xi∈N −d(x,xi)I(yi = k)

) , k = 0, . . . , K−1, x ∈ T

where β > 0 is a method parameter and d(·, ·) a distance measure.

3.1.3 Variable selection methods

This section addresses the variable ranking- and selection procedures available in

CMA. We distinguish three types of methods: pure filter methods (f) based on

parametric or nonparametric statistical tests not directly related to the prediction

task, methods which rank variables according to their discriminatory power (r),

and classification methods selecting sparse sets of variables that can be used for

other classification methods in a hybrid way (s). The multi-class case is fully

supported by all the methods. Methods that are defined for binary responses

only are applied within a “one-vs-all” or “pairwise” scheme. The former means

that for each class k = 0, . . . , K − 1, one recodes the class label y into K − 1

pseudo class labels ỹk = I(y = k) for k = 1, . . . , K − 1, while the latter considers

all
(

K
2

)
possible pairs of classes successively. The variable selection procedure is

run K − 1 times or
(

K
2

)
times, respectively, and the same number of genes are

selected for each run. The final subset of selected genes consists of the union of

the subsets obtained in the different runs.

In the CMA package, variable selection can be performed (for each learning

set separately) using the method geneselection, with the argument method

specifying the procedure and the argument scheme indicating which scheme (one-
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vs-all or pairwise) should be used in the K > 2 case. The implemented methods

are:

(f) ordinary two-sample t.test (method = "t.test")

(f) Welch modification of the t.test (method = "welch.test")

(f) Wilcoxon rank sum test (method = "wilcox.test")

(f) F test (method = "f.test")

(f) Kruskal-Wallis test (method = "kruskal.test")

(f) “moderated” t and F test, respectively, using the package ’limma’ (35)

(method = "limma")

(r) one-step Recursive Feature Elimination (RFE) in combination with the lin-

ear SVM (36) (method = "rfe")

(r) random forest variable importance measure (4) (method = "rf")

(s) Lasso (26) (method = "lasso")

(s) elastic net (27) (method = "elasticnet")

(s) componentwise boosting (method = "boosting") (37)

(f) ad-hoc “Golub” criterion (38)

Each method can be interpreted as a function I(·) on the set of predictor indices:

I : {1, . . . , p} → R+ where I(·) increases with discriminating power. I(·) is

the absolute value of the test statistic for the (f) methods and the absolute value

of the corresponding regression coefficient for the (s)-methods, while the (r)-

methods are already variable importance measures per definition. Predictor j is

said to be more important than predictor l if I(l) < I(j). It should be noted that

the variable ordering is not necessarily determined uniquely, especially for the

(s)-methods where variable importances are different from zero for few predictors

only and for the (f) methods based on ranks. Variable selection is then completed

by choosing a suitable number of variables (as defined by the user) that should

16



be used by the classifier. For the multi-class case with one-vs-all or pairwise, one

obtains K and
(

K
2

)
separate rankings, respectively, and the union of them forms

the set of predictor variables. We again emphasize that the variable importance

assignment is based on learning data only, which means that the procedure is

repeated for each learning/test set splitting successively.

3.1.4 Performance measures

Once the classification step has been performed for all B iterations using the

method classification, the method evaluation offers a variety of possibilities

for evaluation of the results. As accuracy measures, the user may choose among

the following criteria.

� Misclassification rate

This is the simplest and most commonly used performance measure,

corresponding to the indicator loss function in Eq. (1). From B iterations,

one obtains a total of
∑

b |Tb| predictions. It implies that, with most

procedures, the class label of each predictor-class pair in the sample S is

predicted several times. The method evaluation can be applied in two

directions: one can compute the misclassification rate either iterationwise,

i.e. for each iteration separately (scheme="iterationwise"), yielding

ε̂iter = (ε̂b)
B
b=1 or observationwise, i.e. for each observation separately

(scheme="observationwise"), yielding ε̂obs = (ε̂i)
n
i=1. The latter can be

aggregated by classes which is useful in the frequent case where some classes

can be discriminated better than the other. Furthermore, observationwise

evaluation can help identifying outliers which are often characterized by

high misclassification error rates. Although ε̂iter or ε̂obs can be further

averaged, the whole vectors are preferred to their less informative average,

in order to reflect uncertainty more appropriately. A second advantage is

that graphical summaries in the form of boxplots can be obtained.

� Cost-based evaluation

Cost-based evaluation is a generalization of the misclassifica-

tion error rate. The loss function is defined on the discrete set
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{0, . . . , K − 1} × {0, . . . , K − 1}, associating a specific cost to each

possible combination of predicted and true classes. It can be represented

as a matrix L = (lrs), r, s = 1, . . . , (K − 1) where lrs is the cost or loss

caused by assigning an observation of class r to class s. A usual convention

is lrr = 0 and lrs > 0 for r 6= s. As for the misclassification rate, both

iteration- and observationwise evaluation are possible.

� Sensitivity, specificity and area under the curve (AUC)

These three performance measures are standard measures in medical diag-

nosis, see (17) for an overview. They are computed for binary classification

only.

� Brier Score and average probability of correct classification

In classification settings, the Brier Score is defined as

n−1

n∑
i=1

K−1∑
k=0

(I(yi = k)− P̂ (yi = k|xi))
2,

where P̂ (y = k|x) stands for the estimated probability for class k, condi-

tional on x. Zero is the optimal value of the Brier Score.

A similar measure is the average probability of correct classification which

is defined as

n−1

n∑
i=1

K−1∑
k=0

I(yi = k)P̂ (yi = k|x),

and equals 1 in the optimal case. Both measures have the advantage that

they are based on the continuous scale of probabilities, thus yielding more

precise results. As a drawback, however, they cannot be applied to all clas-

sifiers but only to those associated with a probabilistic background (e.g.

penalized regression). For other methods, they can either not be computed

at all (e.g. nearest neighbors) or their application is questionable (e.g. sup-

port vector machines).

� 0.632 and 0.632+ estimators

The ordinary misclassification error rate estimates resulting from working
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with learning sets of size < n tend to overestimate the true prediction error.

A simple correction proposed for learning sets generated from bootstrapping

(argument method="bootstrap" in the function GenerateLearningsets)

uses a convex combination of the resubstitution error -which has a bias

in the other direction (weight: 0.368) and the bootstrap error estimation

(weight: 0.632). A further refinement of this idea is the 0.632+ estimator

(39) which is approximately unbiased and seems to be particularly appro-

priate in the case of overfitting classifiers.

The method compare can be used as a shortcut if several measures have to

be computed for several classifiers. The function obsinfo can be used for outlier

detection: given a vector of observationwise performance measures, it filters out

observations for which the classifier fits poorly on average (i.e. high misclassifica-

tion rate or low Brier Score, for example).

3.2 A real-life data example

This section gives a demonstration of the CMA package through an application to

real world microarray data. It illustrates the typical workflow comprising learning

set generation, variable selection, hyperparameter tuning, classifier training, and

evaluation. The small blue round cell tumor data set was first analyzed by Khan

et al (40) and is available from the R package ’pamr’ (41). It comprises n = 65

samples from four tumor classes and expression levels from p = 2309 genes. In

general, good classification results can be obtained with this data set, even with

relatively simple methods (42). The main difficulty arises from the two classes

with small size (8 and 12 observations, respectively).

CMA implements a complete bundle of discriminant analysis methods and

related approaches. In this demonstrating example, we compare the performance

of five of them: diagonal-, linear- and quadratic discrimininant analysis, shrunken

centroids discriminant analysis and Partial Least Squares followed by linear dis-

criminant analysis. From a theoretical point of view, linear- and quadratic analysis

are a priori inferior due to the fact that they do not work in the p � n setting

without variable selection. Shrunken centroids discriminant analysis is assumed

to work better than simple diagonal discriminant analysis because it is able to
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“shrink-out” noise variables. Partial Least Squares is also expected to work well.

For a fair comparison, all (global) settings that may influence the results

should be fixed in advance to common values for all methods. In particular, the

type of learning sets and the number of variables to be used (though this could

also be interpreted as tuning parameter in a future version of the package) have to

be fixed. We choose to work with stratified five-fold cross-validation, repeated ten

times in order to achieve more stable results (15). For linear discriminant analysis

we decide to work with ten and for quadratic discriminant analysis only with two

variables. The numbers are chosen arbitrarily without any deeper motivation,

which we consider legitimate for the purpose of illustration. In practice, this

choice should be given more attention. For the remaining three classifiers, no

variable selection is performed. We start by preparing the data and generating

learning sets:

> data(khan)

> khanY <- khan[, 1]

> khanX <- as.matrix(khan[, -1])

> set.seed(27611)

> fiveCV10iter <- GenerateLearningsets(y = khanY, method = "CV",

+ fold = 5, niter = 10, strat = TRUE)

khanY is an n-vector of class labels coded as 1,2,3,4, and khanX an n×p-matrix,

where p = 2309 stands for the number of transcripts. fiveCV10iter is an object of

class learningsets. For each of the niter= 10 iterations, fiveCV10iter stores

which observations belong to the learning sets that are generated by the method

specified through the arguments method, fold and strat. For reproducibility

purposes, it is crucial to set the random seed. As a second step, we perform

variable selection for those methods requiring it:

> genesel_da <- GeneSelection(X = khanX, y = khanY, learningsets = fiveCV10iter,

+ method = "f.test")

Here, the choice of the method is motivated by the multi-class setting. For

visualization one can now use the toplist method on the object genesel_da to
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display the genes with highest F ratio in a listwise manner or create a barplot of

the F ratios using plot().

We now turn to hyperparameter tuning, which is performed via nested cross-

validation. For Partial Least Squares, we optimize the number of latent compo-

nents R over the grid {1, . . . , 5}. For the nearest shrunken centroids approach,

the shrinkage intensity is optimized over the grid {0.1, 0.25, 0.5, 1, 2, 5} (which

is the predefined setting in CMA). We point out that the second grid is rather

coarse and could be finer in pratice.

> tune_pls <- tune(X = khanX, y = khanY, learningsets = fiveCV10iter,

+ classifier = pls_ldaCMA, grids = list(comp = 1:5))

> tune_scda <- tune(X = khanX, y = khanY, learningsets = fiveCV10iter,

+ classifier = scdaCMA, grids = list())

In the second function call to tune, the argument grids() is an empty list:

the default settings are used. The objects created in the steps described above are

now passed to the function classification. The object genesel_da is passed

for the classifiers ldaCMA,qdaCMA. The argument nbgene indicates that only the

best nbgene genes are used, where best is understood in terms of the F ratio.

> class_dlda <- classification(X = khanX, y = khanY, learningsets = fiveCV10iter,

+ classifier = dldaCMA)

> class_lda <- classification(X = khanX, y = khanY, learningsets = fiveCV10iter,

+ classifier = ldaCMA, genesel = genesel_da, nbgene = 10)

> class_qda <- classification(X = khanX, y = khanY, learningsets = fiveCV10iter,

+ classifier = qdaCMA, genesel = genesel_da, nbgene = 2)

> class_plsda <- classification(X = khanX, y = khanY, learningsets = fiveCV10iter,

+ classifier = pls_ldaCMA, tuneres = tune_pls)

> class_scda <- classification(X = khanX, y = khanY, learningsets = fiveCV10iter,

+ classifier = scdaCMA, tuneres = tune_scda)

Note that the function classification can also be used directly, i.e. with-

out calling tuning and GeneSelection separately, and perform hyperparameter

tuning and/or variable selection automatically.
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The classification results can now be visualized using the function compari-

son, which takes a list of classifier outputs as input. For instance, the results may

be tabulated and visualized in the form of boxplots. The following commands

yield the boxplots included in Figure 4.

> dalike <- list(class_dlda, class_lda, class_qda, class_scda,

+ class_plsda)

> par(mfrow = c(3, 1))

> comparison <- compare(dalike, plot = TRUE, measure = c("misclassification",

+ "brier score", "average probability"))

> print(comparison)

misclassification brier.score average.probability

DLDA 0.06807692 0.13420913 0.9310332

LDA 0.04269231 0.07254283 0.9556106

QDA 0.24000000 0.34247861 0.7362778

scDA 0.01769231 0.02523875 0.9781925

pls_lda 0.01435897 0.02127534 0.9856975

4 Conclusions

CMA is a new user-friendly Bioconductor package for constructing and evaluating

classifiers based on a high number of predictors in a unified framework. It was

originally motivated by microarray-based classification, but can also be used for

prediction based on other types of high-dimensional data such as, e.g. proteomic,

metabolomic data, or signal data. CMA combines user-friendliness (simple and

intuitive syntax, visualization tools) and methodological strength (especially in

respect to variable selection and tuning procedures). We plan to further develop

CMA and include additional features. Some potential extensions are outlined

below.

� In the hyperparameter tuning procedure, fixing the set of selected variables

for the inner cross-validation step might induce bias. At the inner level,

each learning set (on which variable selection is based) is again split into
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learning- and test set. Hence, within the inner cross-validation loop, variable

selection is performed based on both learning and test data. The set of

selected variables may thus tend to overfit the test set, which potentially

leads to the selection of different hyperparameter values. To address this

problem, one could perform variable selection for each inner-loop iteration

separately. In our opinion, this issue needs further investigations.

� In the context of clinical bioinformatics, researchers often focus their atten-

tion on the additional predictive value of high-dimensional molecular data

given that good clinical predictors are already available. In this context,

combined classifiers using both clinical and high-dimensional molecular data

have been recently developed (43; 17). Such methods could be integrated

into the CMA framework by defining an additional argument corresponding

to (mandatory) clinical variables.

� Another potential extension is the development of procedures for measuring

the stability of classifiers, following the scheme of our Bioconductor package

’GeneSelector’ (44) which implements resampling methods in the context

of univariate ranking for the detection of differential expression. In our

opinion, it is important to check the stability of predictive rules with respect

to perturbations of the original data. This last aspect refers to the issue of

’noise discovery’ and ’random findings’ from microarray data (45; 46).

� In future research, one could also work on the inclusion of additional infor-

mation about predictor variables in the form of gene ontologies or pathway

maps as available from KEGG (47) or cMAP (http://pid.nci.nih.gov/)

with the intention to stabilize variable selection and to simultaneously se-

lect groups of predictors, in the vein of the so-called “gene set enrichment

analysis” (48).

� CMA deals only with classification. The framework could be extended to

other forms of high-dimensional regression, for instance high-dimensional

survival analysis (49; 50; 51; 52).

In conclusion, we would like to outline in which situations CMA may help and

warn against potential wrong use. CMA provides a unified interface to a large
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number of classifiers and allows a fair evaluation and comparison of the considered

methods. Hence, CMA is a step towards reproducibility and standardization of

research in the field of microarray-based outcome prediction. In particular, CMA

users do not favor a given method or overestimate prediction accuracy due to

wrong variable selection/tuning schemes. However, they should be cautious while

interpreting and presenting their results. Trying all available classifiers succes-

sively and reporting only the best results would be a wrong approach (6) poten-

tially leading to severe “optimistic bias”. In this spirit, Ioannidis (45) points out

that most results obtained with microarray data are nothing but“noise discovery”

and Daumer et al (53) recommend to try to validate findings in an independent

data set, whenever possible and feasible. In summary, instead of fishing for low

prediction errors using all available methods, one should rather report all the

obtained results or validate the best classifier using independent fresh validation

data. Note that both procedures can be performed using CMA.

Acknowledgements

This work was partially supported by the Porticus Foundation in the context of

the International School for Technical Medicine and Clinical Bioinformatics.

References

[1] R. Ihaka, R. Gentleman, R: A language for data analysis and graphics, Jour-

nal of Computational and Graphical Statistics 5 (1996) 299–314.

[2] R. Gentleman, J. Carey, D. Bates, et al., Bioconductor: Open software de-

velopment for computational biology and bioinformatics, Genome Biology 5

(2004) R80.

[3] R. Tibshirani, T. Hastie, B. Narasimhan, G. Chu, Diagnosis of multiple can-

cer types by shrunken centroids of gene expression, Proceedings of the Na-

tional Academy of Sciences 99 (2002) 6567–6572.

[4] L. Breiman, Random forests, Machine Learning 45 (2001) 5–32.

24



[5] A. L. Boulesteix, K. Strimmer, Partial least squares: A versatile tool for

the analysis of high-dimensional genomic data, Briefings in Bioinformatics 8

(2007) 32–44.

[6] A. Dupuy, R. Simon, Critical review of published microarray studies for

cancer outcome and guidelines on statistical analysis and reporting, Journal

of the National Cancer Institute 99 (2007) 147–157.

[7] C. Ambroise, G. J. McLachlan, Selection bias in gene extraction in tumour

classification on basis of microarray gene expression data, Proceedings of the

National Academy of Science 99 (2002) 6562–6566.

[8] D. Berrar, I. Bradbury, W. Dubitzky, Avoiding model selection bias in small-

sample genomic datasets, BMC Bioinformatics 22 (2006) 2245–2250.

[9] A.-L. Boulesteix, Wilcoxcv: An r package for fast variable selection in cross-

validation, Bioinformatics 23 (2007) 1702–1704.

[10] A. Statnikov, C. F. Aliferis, I. Tsamardinos, D. Hardin, S. Levy, A com-

prehensive evaluation of multicategory classification methods for microarray

gene expression cancer diagnosis, Bioinformatics 21 (2005) 631–643.

[11] S. Varma, R. Simon, Bias in error estimation when using cross-validation for

model selection, BMC Bioinformatics 7 (2006) 91.

[12] J. Mar, R. Gentleman, V. Carey, MLInterfaces: Uniform interfaces to R

machine learning procedures for data in Bioconductor containers, r package

version 1.10.2 (2007).

[13] R. Gentleman, V. Carey, W. Huber, R. Irizarry, S. Dudoit, Bioinformatics

and Computational Biology Solutions Using R and Bioconductor, Springer,

New York, 2005.

[14] M. Ruschhaupt, U. Mansmann, P. Warnat, W. Huber, A. Benner, MCRes-

timate: Misclassification error estimation with cross-validation, r package

version 1.10.2 (2007).

25



[15] U. Braga-Neto, E. R. Dougherty, Is cross-validation valid for small-sample

microarray classification?, Bioinformatics 20 (2004) 374–380.

[16] A. Molinaro, R. Simon, R. M. Pfeiffer, Prediction error estimation: a com-

parison of resampling methods, Bioinformatics 21 (2005) 3301–3307.

[17] A. Boulesteix, C. Porzelius, M. Daumer, Microarray-based classification and

clinical predictors: On combined classifiers and additional predictive value,

In revision.

[18] L. Breiman, Bagging predictors, Machine Learning 24 (1996) 123–140.

[19] B. Efron, R. Tibshirani, An introduction to the bootstrap, Chapman and

Hall, 1993.

[20] J. Chambers, Programming with Data, Springer, N.Y., 1998.

[21] D. Donoho, I. Johnstone, Ideal spatial adaption by wavelet shrinkage,

Biometrika 81 (1994) 425–455.

[22] B. Ripley, Pattern Recognition and Neural Networks, Cambridge University

Press, 1996.

[23] S. Wood, Generalized Additive Models: An Introduction with R, Chapman

and Hall/CRC, 2006.

[24] J. Friedman, Regularized discriminant analysis, Journal of the American

Statistical Association 84 (405) (1989) 165–175.

[25] Y. Guo, T. Hastie, R. Tibshirani, Regularized discriminant analysis and its

application in microarrays, Biostatistics 8 (2007) 86–100.

[26] R. Tibshirani, Regression shrinkage and selection via the LASSO, Journal of

the Royal Statistical Society B 58 (1996) 267–288.

[27] H. Zhou, T. Hastie, Regularization and variable selection via the elastic net.,

Journal of the Royal Statistical Society B 67 (2004) 301–320.

[28] T. Hastie, R. Tibshirani, J. H. Friedman, The elements of statistical learning,

Springer-Verlag, New York, 2001.

26



[29] L. Breiman, J. H. Friedman, R. A. Olshen, J. C. Stone, Classification and

Regression Trees, Wadsworth, Monterey, CA, 1984.

[30] Y. Freund, R. E. Schapire, A decision-theoretic generalization of on-line

learning and an application to boosting, Journal of Computer and System

Sciences 55 (1997) 119–139.

[31] J. Friedman, Greedy function approximation: A gradient boosting machine.,

Annals of Statistics 29 (2001) 1189–1232.

[32] T. Hastie, R. Tibshirani, Efficient quadratic regularization for expression

arrays, Biostatistics 5 (2004) 329–340.

[33] G. Golub, C. V. Loan, Matrix Computations, Johns Hopkins University

Press, 1983.

[34] E. Parzen, On estimation of a probability density function and mode., Annals

of Mathematical Statistics 33 (1962) 1065–1076.

[35] G. Smyth, Limma: linear models for microarray data, Springer, New York,

2005, pp. 397–420.

[36] I. Guyon, J. Weston, S. Barnhill, V. Vapnik, Gene selection for cancer classifi-

cation using support vector machines., Journal of Machine Learning Research

46 (2002) 389–422.
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Figure 1: Splitting into learning and test data sets. The whole sample S

is split into a learning set L and a test set T . The classifier f(.) is constructed

using the learning set L and subsequently applied to the test set T .
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Figure 2: Evaluation schemes. Schematic display of k-fold cross-validation

(left), Monte-Carlo cross-validation with n = 5 and ntrain=3 (middle), and

bootstrap sampling (with replacement) with n = 5 and ntrain=3 (right).
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Figure 3: Hyperparameter tuning: Schematic display of nested cross-

validation. In the procedure displayed below, k-fold cross-validation is used for

evaluation purposes, whereas tuning is performed within each iteration using in-

ner (l-fold) cross-validation.
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Figure 4: Boxplots representing the misclassification rate (top), the Brier score

(middle), and the average probability of correct classification (bottom) for Khan’s

SRBCT data, using five classifiers: diagonal linear discriminant analysis, linear

discriminant analysis, quadratic discriminant analysis, shrunken centroids dis-

criminant analysis (PAM), and PLS followed by linear discriminant analysis.
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Tables

Method name CMA function name Package Reference

Componentwise boosting compBoostCMA CMA (37)

Diagonal discriminant analysis dldaCMA CMA (54)

Elastic net ElasticNetCMA ’glmpath’ (27)

Fisher’s discriminant analysis fdaCMA CMA (22)

Flexible discriminant analysis flexdaCMA ’mgcv’ (22)

Tree-based boosting gbmCMA ’gbm’ (31)

k-nearest neighbors knnCMA ’class’ (22)

Linear discriminant analysis ∗ ldaCMA ’MASS’ (54)

Lasso LassoCMA ’glmpath’ (55)

Feed-forward neural networks nnetCMA ’nnet’ (22)

Probalistic nearest neighbors pknnCMA CMA −
Penalized logistic regression plrCMA CMA (56)

Partial Least Squares ? + ∗ pls_ldaCMA ’plsgenomics’ (5)

? + logistic regression pls_lrCMA ’plsgenomics’ (5)

? + random forest pls_rfCMA ’plsgenomics’ (5)

Probabilistic neural networks pnnCMA CMA (57)

Quadratic discriminant analysis ∗ qdaCMA ’MASS’ (54)

Random forest rfCMA ’randomForest’ (4)

PAM scdaCMA CMA (41)

Shrinkage discriminant analysis shrinkldaCMA CMA −
Support vector machine svmCMA ’e1071’ (58)

Table 1: Overview of the classification methods in CMA. The first column

gives the method name, whereas the name of the classifier in the CMA package

is given in the second column. For each classifier, CMA uses either own code or

code borrowed from another package, as specified in the third column.
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