
- 25 -

[Kim 89] Kim W., Ballou N., Chou H.-T., Garza J.F., Woelk D.: ‘Features of
the ORION Object-Oriented Database System’, chapter 11 in:
Object-Oriented Concepts, Databases and Applications by Kim
W. and Lochovsky F.H. (eds.), ACM Press Frontier Series,
Addison Wesley, Reading, MA, 1989, pp. 251-282

[KL 92] Keim D. A., Lum V.: ‘Visual Query Specification in a Multimedia
Database System’, Proc. Conf. Visualization, CS Press, Los
Alamitos, CA., 1992.

[Loh 91] Lohman G.M., Lindsay B., Pirahesh H., Schiefer K.B.:
‘Extensions to Starburst: Objects, Types, Functions and Rules’,
Comm. of the ACM, Vol. 34, No. 10, 1991, pp. 94-109.

[Mel 92] Melton J. (ed.): ‘Database Language SQL (SQL3)’, ISO/ANSI
working draft, X3H2-92-055 DBL CNB-003, July 1992.

[MM 90] Markowitz V., Makowsky J.: ‘Identifying Extended Entity-
Relationship Object Structures in Relational Schemas’, IEEE
Tran. on Software Engineering, Vol. 16, No. 8, 1990.

[Ora 92] Oracle: ‘ORACLE SQL*Connect’, Oracle, München, 1992.

[RC 88] Rogers T. R. , Cattell R. G. G.: ‘ Entity-Relationship Database
User Interfaces’, in: Readings in Database Systems, M.
Stonebraker (ed.), 1988.

[RPR 89] Reddy M. P., Prasad B. E., Reddy P. G.: ‘Query Processing in
Heterogeneous Distributed Database Management Systems’, in:
Integration of Information Systems: Bridging Heterogeneous
Databases, Amar Gupta (ed.), 1989, pp. 264-277.

[Shi 81] Shipman D.W.: ‘The Functional Data Model and the Data
Language DAPLEX’, ACM Trans. on Database Systems, Vol. 6,
1981, pp. 140-173.

[SL 90] Sheth A. P., Larson J. A.: ‘Federated Database Systems for
Managing Distributed, Heterogeneous, and Autonomous
Databases’, ACM Computing Surveys, Vol. 22, No. 3, 1990.

[Sto 93] Stonebraker M.: ‘The Miro DBMS’, Proc. ACM SIGMOD Int.
Conf. on Management of Data, Washington D.C., 1993, pp. 439.

[Syb 90] SYBASE: ‘Connectivity: Technical Overview’, Sybase Inc.,
Emeryville, CA., 1990.

[VAO 93] Vadaparty K., Aslandogan Y. A., Ozsoyoglu G.: ‘Towards a
Unified Visual Database Access’, Proc. ACM SIGMOD Int. Conf.
on Management of Data, Washington D.C., 1993, pp. 357-366.

- 24 -

[Cas 93] Castellanos M.: ‘Semantic Enrichment of Interoperable
Databases’, Proc. 3rd Int. Workshop on Research Issues in Data
Engineering: Interoperability in Multidatabase Systems, Vienna,
Austria, 1993, pp. 126-129.

[Fis 89] Fishman D.H. et al: ‘Overview of the Iris DBMS’, chapter 10 in:
Object-Oriented Concepts, Databases and Applications by Kim
W. and Lochovsky F.H. (eds.), ACM Press Frontier Series,
Addison Wesley, Reading, MA, 1989, pp. 219-250.

[Haa 89] Haas L.M., Freytag J.C., Lohman G.M., Pirahesh H.: ‘Extensible
Query Processing in Starburst’, Proc. ACM-SIGMOD Int. Conf.
on Management of Data, 1989, pp. 377-388.

[HD 91] Harris C., Duhl J.: ‘Object SQL’, chapter 11 in: Object-Oriented
Databases with Applications to CASE, Networks, and VLSI Design
by Gupta H. and Horowitz E., Prentice Hall, 1991, pp. 199-215.

[Heu 88] Heuer A.: ‘An Object Algebra and its Connection to the NF2- and
Flat Relational Algebra’, Proc. Workshop on Relational Databases
and their Extensions, 1988, in: Informatik-Bericht, Vol. 4, Institut
für Informatik, TU Clausthal, 1988.

[Heu 89] Heuer A.: ‘Equivalent Schemes in Semantic, Nested Relational,
and Relational Database Models’, Proc. 2nd Symp. on
Mathematical Fundamentals of Database Systems, Visegrád,
Hungary, 1989, in: Lecture Notes in Computer Science, Vol. 364,
Springer, 1989, pp. 237-353.

[HK 93] Hohenstein U., Körner C.: ‘Object-Oriented Access to Relational
Database Systems’, Proc. GI-Fachtagung, Braunschweig, 1993,
in: Datenbanksysteme in Büro, Technik und Wissenschaft,
Springer, 1993, pp. 246-255.

[Ing 92] Ingres: ‘INGRES / Star’, Ingres, Frankfurt, 1992.

[ISO 92] ISO/IEC: ‘Database Language SQL’, ISO/IEC 9075:1992
(German Standardization: DIN 66315).

[KKM 93a]Keim D. A., Kriegel H.-P., Miethsam A.: ‘Integration of
Relational Databases in a Multidatabase System based on Schema
Enrichment’, Proc. Int. Workshop on Research Issues in Data
Engineering: Interoperability in Multidatabase Systems (RIDE-
IMS), Vienna, Austria, 1993, pp. 96-104.

[KKM 93b]Keim D. A., Kriegel H.-P., Miethsam A.: ‘Object-Oriented
Querying of Existing Relational Databases’, to appear in: Proc.
4th. Int. Conf. on Database and Expert Systems Applications
(DEXA’93), Prague, Czechoslovakia, 1993.

- 23 -

algorithms with complete support of user-defined methods and addition-
al object-oriented classes is currently on the way, but not yet finished.
One open problem is the optimization of queries which involve user ex-
tensions to the schema, complex set operations or arbitrarily structured
results. In such SOQL queries which have no one-to-one correspondence
to an SQL query, the query optimization cannot be done on the relational
side. Therefore, we have to optimize the query execution plan to reduce
the amount of data which needs to be transferred between the object-ori-
ented query interface and the relational system. Performance issues will
be of high importance for such a system to be used in real world applica-
tions.

In our future work, we plan to extend the schema enrichment and que-
ry translation algorithms to cover the automatic detection and creation of
subtype hierarchies and to deal with complex methods. We will try to
find possibilities to translate complex conditions involving set opera-
tions on structured results. We will further work on the optimization is-
sue trying to provide an acceptable performance even in complicated
cases. Finally, we intend to use our query translation algorithm as a basis
for an advanced integration of relational systems into a heterogeneous
multidatabase system.

References

[Agr 90] Agrawal R. et al.: ‘OdeView: The Graphical Interface to Ode’,
Proc. ACM-SIGMOD Int. Conf. on Management of Data, Atlantic
City, 1990.

[ASL 89] Alashqur A. M., Su S. Y., Lam H.: ‘OQL: A Query Language for
Manipulating Object-oriented Databases’, Proc. 5th Int. Conf. on
Very Large Data Bases, Amsterdam, 1989, pp. 433-442.

[BCD 92] Bancilhon F., Cluet S., Delobel C.: ‘A Query Language for O2’,
chapter 11 in: [BDK 92], 1992, pp. 234-255.

[BDK 92] Bancilhon F., Delobel C, Kanellakis P. (eds.): ‘Building an Object-
Oriented Database System - The Story of O2’, Morgan Kaufmann,
San Mateo, CA, 1992.

- 22 -

• project(a_new1=a_old1, ..., a_newl=a_oldl): Res → Res
projects Res onto the specified attributes allowing attributes to be
duplicated and renamed. The assignment a_newi=a_oldi is only
needed if attributes are duplicated or renamed.

The formatting function is constructed as concatenation of the for-
matting primitives:

fQ = f0 ° f1 ° . . . ° f(n-1) ° fn with f0 being the ε−function.

The formatting primitives and their concatenation to the formatting func-
tion fQ are illustrated in figure 5 using query example 2.

5 Summary and Conclusions

Relational database systems are widely used in research and industry.
A major problem of relational systems are the poor query facilities of
SQL. In this paper, we described basic algorithms which enhance the
functionality and usability of existing relational databases and allow to
query them like object-oriented databases. The main contribution of this
paper is the query translation algorithm which allows an automatic trans-
lation of SOQL queries issued against the created object-oriented sche-
ma into ‘result equivalent’ SQL queries for the original relational sche-
ma. In the query translation algorithm, first chains of method
applications are replaced by adequate joins and subqueries on the rela-
tional side, the conditions are replaced by equivalent SQL conditions
and, since SQL can not provide structured results, the nested structure of
the result is flattened but enhanced with additional key information. Si-
multaneously, the inverse formatting operations are created allowing to
reconstruct the desired result from the result of the SQL query.

We believe that our query translation algorithm is easily applicable
and thus, of high practical importance. It does not require any change to
the relational system, the data or existing applications and therefore, sys-
tems built on the basis of our schema transformation and query transla-
tion algorithms may be commercially available in a short time. The im-
plementation of the schema transformation and operation translation

- 21 -

V1.key can be projected out. Next, the intermediate result is grouped by

P.key to be able to count each person’s departures and to combine the in-
formation on each person’s departures into a set. After projecting out the
second V1.key and P.key, the correct answer in the desired result struc-

ture is reached.

In the following, the formatting primitives are defined as generic
functions which may be arbitrarily composed:

• structure(attr_list1, ..., attr_listl): Res → Res
combines the attributes of each attr_listi into a tuple
(ai1 ..., aini

) and the whole expression itself into a tuple
((a11, ..., a1n1

), ..., (al1, ..., alnl
)).

• group(by(attr_list1), op(attr_list2), ..., op(attr_listl)): Res → Res
groups Res according to equal values of by(attr_list) and for each
group, the attributes listed in op(attr_list) are combined to sets if
op = nest, or aggregated using the corresponding aggregate opera-
tor if op = count, avg, sum, min, max. In order to get only one val-
ue per group, all attributes that occur in none of the attr_list have
to be functionally dependent on the attributes in by(attr_list).

Figure 5: Formatting Function for Query Example 2

f0 =ε

f1 = project(P.name, P.address, V1.did, V2.name, (V1.key).count) (step 4a)

f2 = group(by(P.key), nest(V1.did, {V2.name}), count(V1.key)) (step 4a,4b)

f3 = project(P.name, P.address, P.key, V1.did, {V2.name}, V1.key)(step 4b)

f4 = group(by(P.key, V1.key), nest(V2.name)) (step 4b)

f5 = structure((P.name, P.address), P.key,
((V1.did, V1.key, V2.name), V1.key)) (step 4c)

f6 = structure(P.name, P.address, P.key,
(V1.did, V1.key, V2.name), V1.key) (step 4c)

f7 = project(P.name, P.address, P.key=P.pid, V1.did,
V1.key=V1.did, V2.name, V1.key=V1.did) (final step)

- 20 -

Note, that the subqueries A and B in extensions 2 and 3 may only re-
turn unstructured results since otherwise the nesting operators of SQL
are not applicable. Serious problems in the query translation process may
be caused by user extensions to the object-oriented schema, such as ad-
ditional attributes or user-defined methods. In the case of using user-de-
fined methods in an SOQL query, the data necessary to evaluate the que-
ry has to be retrieved iteratively from the relational system before it can
be used to execute the methods. If classes are extended by additional at-
tributes, the data necessary to evaluate the condition part of a query is re-
trieved partially from the relational system and the additional data is re-
trieved from the system managing the additional data. According to the
extended object-oriented schema, the corresponding data of both sources
is related to each other before the condition is evaluated and the desired
data is retrieved as specified in the ‘select’ clause. In both cases, it may be
necessary to transfer large amounts of data, even in cases where the re-
sulting data set is rather small and, therefore, performance problems may
occur. Note, that the problems are only caused in cases where there is no
corresponding SQL query.

4. Transformation of the Result

As already mentioned, to automatically restructure the result flat-
tened by the last steps of the translation algorithm a formatting function
has to be generated. In each partial transformation of these steps, format-
ting primitives are recorded which are composed in the reverse order of
their creation, such that the last primitive is applied first to the result re-
turned by the generated SQL query.

This means for query example 2 in figure 4, that the result returned by
the final SQL query has to be structured into subtuples after copying the
V1.key attribute twice to revert the last two steps. Then, the tuples are

partitioned into groups by equal values of the attribute combination
P.key, V1.key and for each group, the values of V2.name are combined to

form the inner sets, i.e. for each person and one of its departures, all pas-
sengers belonging to this departure are grouped into a set. Now, the first

- 19 -

structs ‘el in (select ...)’ to the result of the subquery. Some important ex-
tensions to be included into the translation algorithm are:

Extension 1: Generalized dot-notation in conditions
In the condition part of SOQL queries, set-valued method path ex-
pressions like D.passengers. name =‘Jones’ may occur at all posi-
tions where the SQL syntax only allows simple column expression
like P.name=‘Smith’. According to the definition of the semantics of
method path expressions, the resolution of set-valued method path
expressions in conditions would result in a set of booleans which has
to be ‘flattened’ to a single boolean value.
{x | x ∈ X} op y is defined by ∃x: x ∈ X ∧ x op y, if ‘op y’ is not applicable
to the whole set. Example:D.passengers.name = ‘Jones’ ≡> {V1.name |
V1 ∈ D.passengers} = ‘Jones’

≡> ∃V1: V1 ∈ D.passengers ∧ V1.name = ‘Jones’

Only applying the resolution according to the generalization of dot-
notation to {V1.name | V1 ∈ D.passengers} = ‘Jones’ results in
{V1.name = ‘Jones’ | V1 ∈ D.passengers} which is a set of booleans.
Like in IRIS [Fis 89], in SOQL sets of booleans in conditions are im-
plicitly ‘or’-connected [KKM 93b] evaluating to true if at least one
element is true.

Extension 2: Set inclusion
Inclusion conditions A ⊆ B with A = {x1 | p(x1)} and B= {x2 | q(x2)}
in the SOQL ‘where’ clause may be transformed in the following way,
provided A and B can be processed by SQL subqueries.
A ⊆ B ≡> not exists{x1 | p(x1) and not exists {x2 | q(x2) ∧ x2 =x1} }
Example: D1.passengers.name ⊆ D2.passengers.name

≡> not exists{P1.name | P1 ∈ Passenger ∧ join(P1, D1) ∧
not exists {P2.name | P2 ∈ Passenger ∧ join(P2, D2) ∧

P2.name=P1.name} }

Extension 3: Union, intersection, difference
Predicates like x ∈ A ∪ B, x ∈ A ∩ B, x ∈ A − B in the SOQL ‘where’
clause can be transformed to x in {x1 | p(x1)} or x in {x2 | q(x2)}, x in

{x1 | p(x1)} and x in {x2 | q(x2)}, x in {x1 | p(x1)} and x not in {x2 | q(x2)},
which can be transformed to SQL, if A and B can be transformed to
valid SQL subqueries.

- 18 -

information is added to the result list instead of the omitted aggregate
operations.

The remaining translation into a valid SQL query is straightforward
provided we restrict SOQL conditions to permissible SQL conditions.
More complex condition parts may also be translated into SQL. In sub-
section 3.3, some extensions of the condition part are described that can
be translated into permissible SQL statements. Note, that replacing the
join predicates join(R, S) may introduce additional relations which are
necessary, e.g. Pass_Dept in example 2, to establish m:n relationships.

It is interesting to note, that after step 1 of the translation process the
query is in a form that can be easily translated into other object-oriented
languages like O2SQL [BCD 92]. In query example 2, the partially re-

solved set-notation of the query can also be written as

{((P.name, P.address),
({(V1.did,

{V2.name | V2 ∈ V1.passengers})
| V1 ∈ P.departures},

P.departures.count))
| P ∈ Passenger ∧ P.address like ‘%8000 München%’}

which is equivalent to the following O2SQL query

select tuple (p: tuple (pn: P.name, pa: P.address),
d: tuple (d1: (select tuple (di: V1.did,

dn: (select V2.name from V2 in V1.passengers))
from V1 in P.departures),

d2: count(P.departures)))
from P in Passenger where P.address like ‘*8000 München*’.

3.3 Extensions of the Condition Part

Since SOQL has more expressive power than SQL, there are some
cases where SOQL queries do not have result equivalent SQL queries.
However, as we will show in the following, the condition part that is per-
missible in SOQL queries while still guaranteeing an equivalence trans-
lation can be extended considerably. Simpler extensions, for example,
are methods on set types such as ‘el in set’ which may be replaced by com-
puting the set in a subquery and applying the corresponding SQL con-

- 17 -

from inner nesting levels need to be removed (c.f. translation step 4b
in figure 4). Formally, the flattening of one nesting level can be de-
scribed as:

{(x, {y | y ∈ Y ∧ p(x, y)}) | x ∈ X ∧ q(x,)}

≡> {(x, key(x), y) | y ∈ Y ∧ p(x, y) ∧ x ∈ X ∧ q(x)}.

This translation rule is applied until the nesting structure of the result
tuple is flat. Then, only the remaining tuple structure needs to be flat-
tened (c.f. translation step 4c in figure 4). Again, in this step the for-
matting function is extended by the inverse operations and key

Figure 4: Translation of Query Example 2

select P.[name, address], P.departures.[[did, passengers.name], count]
for each Passenger P
where P.address like ‘%München%’ (cond := ‘P.address like ‘%München%’)

≡ {([P.[name, address], P.departures.[[did, passengers.name], count]) |
P ∈ Passenger ∧ cond}

≡(step 1a){((P.name, P.address), ({(V1.did, V1.passengers.name) | V1 ∈
P.departures}, P.departures.count)) | P ∈ Passenger ∧ cond}

≡(step 1b){((P.name, P.address), ({(V1.did, {V2.name | V2 ∈V1.passengers}) |
V1 ∈ P.departures}, P.departures.count)) | P ∈ Passenger ∧ cond}

≡(step 3) {((P.name, P.address), ({(V1.did, {V2.name | V2 ∈ Passenger ∧
join(V1, V2)}) | V1 ∈ Departure ∧ join(P, V1)}, {V1}.count)) |
P ∈ Passenger ∧ cond}

≅(step 4a){((P.name, P.address), P.key, ((V1.did, {V2.name | V2 ∈ Passenger
∧ join(V1, V2)}), {V1}.count)) |
P ∈ Passenger ∧ V1 ∈ Departure ∧ join(P, V1) ∧ cond}

≅(step 4b){((P.name, P.address), P.key, ((V1.did, V1.key, V2.name), V1.key)) |
P ∈ Passenger ∧ V1 ∈ Departure ∧ join(P, V1) ∧ V2 ∈ Passenger
∧ join(V1, V2) ∧ cond}

≅(step 4c){(P.name, P.address, P.key, V1.did, V1.key, V2.name, V1.key) | P ∈
Passenger ∧ V1 ∈ Departure ∧ V2 ∈ Passenger ∧ join(P, V1) ∧
join(V1, V2) ∧ cond}

≅ select P.name, P.address, P.pid, V1.did, V2.name
from Passenger P, Departure V1, Passenger V2, Pass_Dept V3,

Pass_Dept V4
where P.pid = V3.pid and V3.did = V1.did and V1.did = V4.did

and V4.pid = V2.pid and P.address like ‘%München%

- 16 -

Step 3: Resolution of object references
All remaining object references are resolved as follows.
V1 op X.m ≡> V1 ∈ flat_type(X.m) ∧ join(X, V1), where op = ‘∈’ or ‘=’ de-
pending on whether X.m is set or single valued. In this step, join pred-
icates join(X, Vi) are introduced with the intended meaning: join(X, Vi)

is true if there is an object reference from X to Vi.

Note, that in the previous steps path expressions involving aggregate
operations have not been resolved. In this step, however, we want to
resolve possible object references that are part of such path expres-
sions. Since the aggregate operations are applied to sets, we translate
path expressions with mn being an aggregate operation
into {v | v ∈ }.mn. Then all object references in

 can be resolved by join predicates as described
above. In some cases, however, no additional joins may have to be
introduced. In example 2, the P.departures comes from a structured
expression that already has been resolved and, therefore, we do not
need to repeat the part ‘V1 ∈ Departure ∧ join(P, V1)’ but still use V1.

The result of the three steps of the translation algorithm that have
been described so far is semantically and structurally equivalent to the
original query but with all dot generalizations and structured expressions
being resolved. In the following steps, the result is changed either by
adding attributes or by flattening the result structure. Still, our notion of
result equivalence up to simple formatting operations is preserved since
the necessary formatting operations are recorded.

Step 4: Resolution of nested result types
In this step, the nested structure of result tuples is resolved by shifting
set conditions of the inner sets onto the outer level and adding key
information. The translation is done level by level starting outer-
most-leftmost. Key information which is necessary to reconstruct the
desired result structure is introduced for all variables on the outer lev-
el (c.f. step 4a and 4b in figure 4). At the same time, the formatting
function which reconstructs the intended result structure successive-
ly (c.f. section 4) is extended by the inverse structuring, grouping,
projection and nesting operations. Aggregate operations coming

V .m1. … .mn

V .m1. … .mn 1–

V .m1. … .mn 1–

- 15 -

fined for V. The translation of generalized dot-notation occurring in
the ‘where’ clause is slightly different. In this case, an existential
quantification is introduced (c.f. translation step 1 in figure 3). The
translation of more complex conditions involving nested sets which
can not be expressed in SQL are described in subsection 3.3. Note,
that the translation is possible since chains of method applications
have only to be resolved until the first basic class type is encountered
(c.f. observation in section 3.1).

Structured expressions are also
resolved successively as if at
least one of the is directly applicable to V and as

 if V is set-valued and
none of the is defined on V. Note, that structured expressions and
chains of method applications may be nested into each other. There-
fore, both translation rules may have to be applied alternately.

Step 2: Resolution of complex range variables

In this step, variables ranging over arbitrary path expressions are re-
placed by variables ranging only over classes corresponding to rela-
tions. To select all passengers together with the sets of co-passengers
for each of their flights, we may write

select P.name, CP.name
for each Passenger P, P.departures.passengers CP

In this case, the range variable CP ranges over sets of passengers
which cannot be directly expressed in SQL. Therefore, the corre-
sponding nested set expression

{(P.name, CP.name) | P ∈ Passenger ∧ CP ∈
{V1.passengers | V1∈ P.departures}} is translated into

{(P.name, V1.passengers.name) | P ∈ Passenger ∧ V1 ∈ P.departures}

≡(step 1) {(P.name, {V2.name | V2 ∈ V1.passengers}) | P ∈ Passengers ∧
V1 ∈ P.departures}.

More formally, the translation can be expressed as

{(x, y) | x ∈ X ∧ y ∈ {h(z) | z ∈ Z ∧ p(x, z)} ∧ q(x, y)} ≡> {(x, h(z)) | x ∈ X ∧
z ∈ Z ∧ p(x, z) ∧ q(x, h(z))} with a subsequent resolution of generalized
dot-notation (c.f. step 1).

mi1

mi1

- 14 -

Before applying the steps of the translation algorithm, we transform
the considered SOQL query into a nested set expression. The ‘select’
clause becomes the result part of the set. The range and class variable
definitions of the ‘for each’ clause are transformed into ‘element in set’ re-
lationships. The ‘where’ clause is syntactically adapted to the set notation
and occuring subqueries are recursively transformed into corresponding
set expressions. In figures 3 and 4, the translation process is illustrated
using the query examples from section 2.

Step 1: Resolution of structured expressions and generalized dot-
notation

In this step, structured expressions and chains of method applications
using the generalized dot-notation are resolved. Chains of method
applications in the ‘select’ or ‘for each’ clause are suc-
cessively resolved as if m1 is a method defined forV
and as if V is set-valued and m1 is not de-

Figure 3: Translation of Query Example 1

select P.name, P.address
for each Passenger P, P.departures D
where D.start = ‘06/18/93’ and D.airline.name = ‘Lufthansa’

≡ {(P.name, P.address) | P ∈ Passenger ∧ D ∈ P.departures ∧ D.start
= ‘06/18/93’ ∧ D.airline.name = ‘Lufthansa’ }

≡(step 1) {(P.name, P.address) | P ∈ Passenger ∧ D ∈ P.departures ∧ D.start
= ‘06/18/93’ ∧ ∃ V1: V1 = D.airline ∧ V1.name = ‘Lufthansa’ }

≡(step 3) {(P.name, P.address) | ∃ V1: P ∈ Passenger ∧ D ∈ Departure ∧
join(P, D) ∧ D.start = ‘06/18/93’ ∧ V1 ∈ Airline ∧ join(D, V1)
∧ V1.name = ‘Lufthansa’ }

≅ select P.name, P.address
from Passenger P, Departure D, Airline V1
where join(P, D) and join(D, V1) and D.start = ‘06/18/93’ and

V1.name = ‘Lufthansa’

≅ select P.name, P.address
from Passenger P, Departure D, Airline V1, Pass_Dept V2
where P.pid = V2.pid and V2.did = D.did and D.airline-id =

V1.airline-id and D.start = ‘06/18/93’ and

V .m1. … .mn

V .m1(). … .mn

v.m1 v V∈{ }.m2. … .mn

- 13 -

Let Ri := flat_type(V.m1.m2.mi) be the flat class type resulting
from the successive method application to V which may be unique-
ly determined since our schema transformation algorithm produces
no subtype hierarchies. Chains V.m1.m2.mn of method applica-
tions occurring within SOQL-statements may be divided into the
first k and the last n-k+1 subchains, 0 ≤ k ≤ n+1, such that: If 0 ≤ i < k,
then Ri is a non-basic class type (e.g. Passenger, Departure with a
corresponding table in RS), and if k ≤ i ≤ n, then Ri is a basic class
type (Boolean, String, Integer, ...). A short example will illustrate
this fact:

Example:
p.departures.passengers.name where p ranges over class Passenger
implies
k=3, n=3 with R0 = flat_type(p) = Passenger

R1 = flat_type(p.departures) = Departure
R2 = flat_type(p.departures.passengers) = Passenger
R3 = flat_type(p.departures.passengers.name) = String

This observation ensures that chains of method applications only
have to be resolved until the first basic class type is encountered as im-
plicitly used in transformation step 2 below. Loosely speaking, a chain
V.m1.m2.mk-1 indicates a join sequence.

3.2 Translation Algorithm

By providing a step-by-step algorithm for the translation, in the fol-
lowing we constructively define an equivalence translation t which
translates SOQL queries into result equivalent SQL queries. Since
SOQL queries can be more structured than SQL queries, the result struc-
ture of an SOQL query needs to be flattened before it can be processed by
the relational system. To build the desired result structure, a sequence of
formatting operations is recorded during the flattening process (c.f. sec-
tion 4). In the following, it is assumed that all class variables occurring in
the ‘for each’ clauses of the query and all its subqueries have pairwise dis-
tinct names. Otherwise, they will be consistently renamed. New vari-
ables introduced during the transformation are denoted by Vi.

- 12 -

into the desired result, particularly without further selection and join op-
erations. The former ensures, that only the necessary amount of data will
be transferred which is important for performance reasons, especially if
the relational system is accessed via network, and the latter ensures, that
the query can be answered by exactly one SQL statement.

Definition(Equivalence of queries)

Let RDB be the actual relational database with schema RS, ODB
the virtual object-oriented database with schema OS, res(S, RDB)
the resulting table when executing S on database RDB, and res(Q,
ODB) the result expected from an execution of Q on ODB. Then
we say, Q and S are result equivalent up to simple formatting oper-
ations if the following property holds:

fQ(res(S, RDB)) = res(Q, ODB), (*)
where the formatting function fQ is composed by structuring,
grouping, projection, nesting and aggregate operations (c.f. section
4).

Based on the above definition, we are able to define the notion of an
‘equivalence translation’ from SOQL into SQL.

Definition(Equivalence translation)

Any mapping t, t: Q |→ (S, fQ) translating an SOQL query Q into a
result equivalent SQL query S and providing a formatting function
fQ, such that (*) holds, is said to be an equivalence translation.

Note, that t is a partial mapping, because there are SOQL queries, that
can not be translated into SQL. It would be desirable, however, for t to be
complete in the following sense: If there exists an SQL query S’ and a
formatting function f ’Q with f ’Q(res(S’, RDB)) = res(Q, ODB) for a

given query Q, then t should return a pair (S, fQ) with the same property

as S’ and f ’Q.

Before presenting the translation algorithm t in detail, we will for-
malize the following helpful observation that allows a uniform treatment
of chains of method applications:

- 11 -

the structured result {(Smith, {401, 403}), (Smith, {401})}. A corre-
sponding SQL query together with its result is also given in figure 2. Al-
though both query results seem to be very similar, it is impossible to cre-
ate the structured SOQL result from the flat result of the SQL query if no
additional information is available. However, by adding the key attribute
P.pid of Passenger to the SQL ‘select’ clause, we get the result {(Smith,
1, 401), (Smith, 1, 403), (Smith, 2, 401)} which can easily be trans-
formed into the desired format by grouping the tuples according to P.pid,
combining the D.did attributes to sets and afterwards projecting out the
P.pid attribute. Selecting additional information that allows to structure
the results from the relational database into the desired format, is one of
the ideas which is used in our translation algorithm. The main tasks of the
translation algorithm are

- resolving chains of method applications by suitable joins and
subqueries on the relational side,

- flattening the nested structure while simultaneously creating the
inverse formatting operations,

- correctly replacing the SOQL condition part by equivalent SQL
constructs which may involve handling of methods on structured
types, set operations and so on. However, for the presentation of the
translation algorithm in subsection 3.2 we restrict ourselves to SQL-
like conditions and discuss feasible extensions separately in
subsection 3.3.

Before describing the query translation algorithm, we first introduce
the basic notions of ‘equivalence of queries’ and ‘equivalence transla-
tions’.

3.1 Basic Definitions

As already indicated in the above example, in many cases there is no
translation of an SOQL to an SQL query which provides exactly the
same result. Therefore in this context we have to introduce a weaker no-
tion of equivalence. Informally, our notion of result equivalence means
that the SQL query produces an answer which may be easily converted

- 10 -

RDB is mapped to a virtual instance of the respective class in ODB and

each tuple or attribute representing a relationship is mapped to a virtual

object reference. The basic idea of our instance mapping is similar to the

one presented in [Heu 89] which has been proposed to formally describe

schema equivalence of a semantic, a nested relational and a relational

data model. Executing the SOQL query in figure 2 against ODB yields

RDB:
Passenger

pid name address ...

1 Smith New York. ...

2 Smith London ...

3 Jones Paris ...

4 Huber München ...

(virtual) ODB:

Passenger = {o1, o2, o3, o4}

o1.pid = 1, o1.name = ‘Smith’, o1.address = ‘New York ...’, o1.departures = {o5, o7}

o2.pid = 2, o2.name = ‘Smith’, o2.address = ‘London ...’, o2.departures = {o6}

o3.pid = 3, o3.name = ‘Jones’, o3.address = ‘Paris ...’, o3.departures = { }

o4.pid = 4, o4.name = ‘Huber’, o4.address = ‘München ...’, o4.departures = {o5, o6}

Departure = {o5, o6, o7}

o5.did = 401, o5.start = ‘7-1-93’, o5.flight = ‘0815’ o5.passengers = {o1, o2, o4}

o6.did = 402, o6.start = ‘7-1-93’, o6.flight = ‘1414’ o6.passengers = {o4}

o7.did = 403, o7.start = ‘7-1-93’, o7.flight = ‘1017’ o7.passengers = {o1}

Figure 2: Instances of the Relational and the Virtual Object-Oriented
Database

SOQL:
select P.name, P.departures.did
for each Passenger P
where P.name=‘Smith’

result:
{(Smith, {401, 403}),
(Smith, {401})}

Pass_Dept

pid did booking

1 401 ...

1 403 ...

2 401 ...

4 401 ...

4 402 ...

Departure

did start flight ...

401 7-1-93 0815 ...

402 7-1-93 1414 ...

403 7-1-93 1017 ...

SQL:
select P.name, D.did
from Passenger P, Departure D,

Pass_Dept Pd
where P.name=‘Smith’ and

P.pid=Pd.pid and Pd.did=D.did
result:

{(Smith, 401), (Smith, 403), (Smith, 401)}

- 9 -

the complex type Set([String, String], [Set([Integer, Set(String)]),
Integer]). Nested results may occur as answer for queries with structured
expressions or queries where the generalization of the dot-notation is
used more than once in a row. Furthermore, in corresponding SQL que-
ries additional information is needed to do the grouping and aggregation
(e.g. the counting of departures) which is only implicit in the SOQL que-
ry. In general, if the result for a query is a nested set with more than one
nesting level, there is no one-to-one translation to an SQL query. Equiv-
alent SQL queries for our query examples are given as results of the que-
ry translation algorithm in section 3.

To sum up, SOQL provides query facilities that allow queries to be
much shorter, easier to write and understand and more intuitive than cor-
responding SQL queries. Since the created class definitions are more
structured, in most cases, joins do not have to be specified explicitly and
complex queries are avoided. Additionally, the results of SOQL queries
can be arbitrarily structured and the application of methods in dot-nota-
tion is generalized to work on sets.

3. Translation of SOQL Queries into SQL-Queries

Since information is added during the schema transformation process
and SOQL has more expressive power than SQL, it is obvious that all
queries expressed in SQL over the relational schema (RS) can also be ex-
pressed by SOQL queries over the created object-oriented schema (OS).
This section deals with the translation of SOQL queries into standard
SQL [ISO 92] and the identification of formatting primitives during the
translation process which are needed to restructure the result according
to the complex answer type given by the SOQL ‘select’ clause. To illus-
trate the tasks of the translation algorithm, figure 2 shows an example for
a small relational database and the virtual instances of the corresponding
object-oriented schema. The virtual instances of the object-oriented da-
tabase ODB are created from the tuples of the relational database RDB
by a virtual instance mapping vinst: (OS, RDB) |→ ODB. By the virtual

instance mapping, basically, each tuple of a non-relationship table of

- 8 -

object class from another without explicitly joining them. It is some kind
of schema navigation in the created object-oriented schema. In the con-
dition, all methods including the created access methods to attributes
may be used as long as the result of the whole expression is of result type
‘Boolean’. Special features of SOQL are structured expressions and the
generalization of the dot-notation. Structured expressions allow an easi-
er specification of queries with structured results by providing the possi-
bility to define the result structure by square brackets. The generalization
of the dot-notation to sets is an intuitive but powerful continuation of the
normal dot-notation (c.f. section 3). To provide the basic queries facili-
ties that are available in SQL, a set of basic object classes (Boolean,

String, Numbers, Integer, Real and the generic classes Set and List) to-
gether with a set of basic methods including the aggregate operations
count, avg, sum, min, max (Set(Numbers) ➞ Numbers) is predefined. A
detailed description of SOQL can be found in [KKM 93b].

To further illustrate our query language, in the following we will give
two examples for SOQL queries. For the query examples, we use the
transformed example database as presented in figure 1. A simple query
selecting all passengers and their addresses that fly with airline
‘Lufthansa’ on the ‘06/18/93’ would be expressed as

Example 1: select P.name, P.address
for each Passenger P, P.departures D
where D.start = ‘06/18/93’ and

D.airline.name = ‘Lufthansa’

In the second query example, all passengers, their addresses and
flights with flight numbers, list of passengers for each of the flights and
total number of flights for each passenger are selected for all passengers
which have addresses containing ‘8000 München’.

Example 2: select P.[name, address], P.departures.[[did,
passengers.name], count]

for each Passenger P
where P.address like ‘%8000 München%’

The query examples will be used in sections 3 and 4 to explain the
query translation algorithm. Note, that the result of the second query is of

- 7 -

At this point, it should be mentioned that the schema created by our
schema transformation algorithm may not provide a perfect object-ori-
ented schema. It does not use all object-oriented modeling features (e.g.
subtyping) but it still provides a semantically enriched, well-structured
object-oriented schema that allows SOQL queries to be significantly
shorter and more intuitive than corresponding SQL queries using the
original tables. Let us further emphasize that only object-oriented class
definitions are generated with the instances remaining in the relational
database. Thus, access operations to instances of object-oriented classes
have to be translated into accesses to the corresponding relational tuples
which is done by our query translation algorithm (c.f. section 3).

2.2 Structured Object Query Language

In this subsection, we give a short introduction to our Structured Ob-
ject Query Language (SOQL). SOQL is a declarative query language for
querying the created object-oriented schema. It is an easy-to-use but
powerful and orthogonal extension of SQL. It is similar to other declara-
tive query languages for object-oriented database systems (O2SQL

[BCD 92], Object SQL [HD 91], OSQL [Fis 89], OQL [ASL 89]) but
provides additional features such as the generalization of the dot-nota-
tion and structured expressions. The basic query format of SOQL can be
indicated by the following description

select {<range_var>{.<method>}* {.struct_expr}0/1 }+

for each {<classname>{.<method>}* <range_var>}+

{ where <condition> }0/1 .

According to the expression in the ‘select’ clause, automatically a
new (temporary) object class is created with all tuples fulfilling the con-
dition being available as virtual instances of this class. The result is also
available as a (nested) set and can therefore be directly used in nested
queries. As indicated in the query format definition, methods are applied
to class or range variables using dot-notation. Chains of methods may be
connected in dot-notation as long as the methods are defined for the cor-
responding class. The chaining of methods allows to directly access one

- 6 -

The basic steps of the schema transformation algorithm are: First,

each relation is translated into a class definition with each relational at-

tribute becoming a member variable. Next, all functional relationships

are replaced by direct object references, in one direction by a simple ob-

ject reference, in the other direction by a set-valued object reference. All

remaining n-ary relationships are translated into methods with one meth-

od providing the set of tuples that fulfill the relationship and one method

for each relationship attribute. The additional methods are added to each

class that is part of the relationship. In figure 1, an example for a relation-

al database FlightDB together with the corresponding object-oriented

schema is given. The details of the schema transformation algorithm are

beyond the scope of this paper. A formal description can be found in

[KKM93a].

Class Passenger with
attributes

pid: Integer;
name: String;
address: String; key is (pid);

methods
departures: → Set (Departure);
booking: Departure → Date;

end;

Class Airline with
attributes

airline-id: String;
name: String; key is (airline-id);

methods
departures: → Set (Departure);

end;

Class Departure with
attributes

did: Integer;
start: Date;
flight: Integer; key is (did);

methods
airline: → Airline;
plane: → Plane;
passengers: → Set (Passenger);
booking: Passenger → Date;

end;

Class Plane with
attributes

serial-nr: Integer;
...

end; . . .

Figure 1: Example for the Schema Transformation

FlightDB:
Passenger (pid: Integer; name: String; address: String)
Departure (did: Integer; start: Date; flight: Integer; airline-id: String;

plane-id: Integer)
Pass_Dept (did: Integer; pid: Integer; booking: Date)
Airline(airline-id: String; name: String)
Plane(serial-nr: Integer; ...) . . .

- 5 -

The rest of the paper is organized as follows: Section 2 introduces the
overall framework and gives a brief overview of the schema enrichment
and transformation as well as a short introduction of our Structured Ob-
ject Query Language (SOQL) which provides declarative query facili-
ties for objects. In section 3, we then present the steps that are necessary
in automatically translating SOQL queries for the created object-orient-
ed schema into equivalent SQL queries for the original relational sche-
ma. In section 4, we describe the formatting process that is needed to
transform the flat results provided by the relational system into struc-
tured results that are specified by the object-oriented query. Section 5
summarizes our approach, points out some problems and gives direc-
tions of future research.

2 The Framework

In the following, we are going to briefly introduce two prerequisites
of our query translation algorithm, namely the schema enrichment and
transformation algorithm on the one hand and the Structured Object
Query Language (SOQL) on the other hand.

2.1 Schema Enrichment and Transformation

Since, in general, object-oriented schemas contain more semantics
than corresponding relational schemas, more input than the pure rela-
tional schema is needed to produce adequate, well-structured object-ori-
ented class definitions. The needed additional semantic information in-
cludes information on tables representing relationships, the type of the
relationship (1:1, 1:n, n:m), attributes or groups of attributes represent-
ing foreign keys and so on. This information may either be provided by
the database administrator or, in some cases, it may be deducted from an
underlying entity-relationship design schema. It is stored as part of the
meta information which includes all information on the enriched rela-
tional schema, on the created object-oriented schema and on the map-
pings between both of them. As we will see in the next sections, the meta
information is crucial not only for the schema transformation process but
also for an automatic translation of SOQL queries.

- 4 -

tems will play an important role in future commercial database systems,
we believe that for many practical environments it is important not to
change the relational systems with their large existing databases and ap-
plication programs. Most database vendors offer gateways that provide
some kind of cross-database access [Syb 90, Ing 92, Ora 92] allowing to
use specific new database systems in conjunction with existing relational
ones. The main purpose of gateways, however, is to allow databases to
work together and not to enhance relational systems. As a result, most
gateways only offer a limited functionality, providing at most the query
facilities that are provided by the relational system itself. In the area of
multidatabase systems, again the main goal is to allow database systems
to work together. Most research done in this area has been focussing on
schema integration and transparent inter-database access but only few
researchers address the issue of enhancing the functionality of relational
systems that are part of the federation. Some papers address the issue of
schema enrichment [MM 90, Cas 93] but little work has been done on
query translations that allow an enhanced querying of existing relational
databases [Heu 88, RPR 89].

The goal of our query algorithm is to enhance the querying of existing
relational databases allowing the querying process to be easier and more
intuitive. This can be achieved by using our object-oriented query lan-
guage SOQL [KKM 93b] which is an extension of SQL allowing queries
to be more orthogonal, results to be structured, and uses direct object ref-
erences instead of explicit joins. We found that there is a quite large class
of SOQL queries that can be automatically translated into equivalent
SQL queries. A prerequisite is that information about the schema trans-
formation which has been performed beforehand is available. Although
not all queries that can be expressed in SOQL can be efficiently translat-
ed into SQL queries (examples are queries with conditions that involve
set comparison or user-defined functions, c.f. section 3), the effort of
translating queries from SOQL to SQL is justified since SOQL queries
are much shorter, easier to write and understand and more intuitive than
corresponding SQL queries.

- 3 -

Multidatabase or interoperable database systems are aimed at facili-
tating the use of new database technology in real world environments.
They try to provide a framework for the smooth co-existence of legal and
new database systems by allowing an integrated and transparent access
[SL 90] but, in general, they do not improve the querying of existing da-
tabases. Important tasks in building a multidatabase system are resolving
schematic discrepancies, transforming and integrating the schemas, de-
composing and translating queries and combing the results. For improv-
ing the query interface to existing relational database systems, a simple
transformation and integration of the schemas is not sufficient. The sche-
mas need to be enriched semantically which, in most cases, is only pos-
sible with additional information acquired from the user. For industrial
environments with quasi static schemas, schema enrichment, transfor-
mation and integration may be done once in the beginning as a user guid-
ed process and need only to be repeated if new databases join the federa-
tion or if schema changes occur. For the tasks that are related to query
processing, user interaction is not feasible since they have to be done
each time, a query is processed by the system.

The query translation algorithm which will be presented in this paper
is important not only in the context of multidatabase systems with an ob-
ject-oriented global common data model but in any system that provides
object-oriented access to existing relational databases. One possibility,
for example, is an object-oriented front-end to a relational system similar
to the one presented in [KKM 93b] which allows an object-oriented que-
rying of existing relational databases without migrating or transforming
data and changing existing application programs. Our query translation
algorithm may also prove useful to allow future object-oriented exten-
sions of SQL (e.g. SQL3 [Mel 92]) to work on existing SQL2 databases.

The idea of providing object-oriented access to relational databases is
not new but most researchers have been working on extending existing
database systems or providing cross-database access [Loh 91, Mel 92,
HK 93, Sto 93]. Although object-oriented extensions of relational sys-

- 2 -

1 Introduction

Relational database systems are widely used in research and industry.
For traditional application areas like accounting, reservation systems,
etc., the relational data model seems to be adequate providing suitable
modeling and performance characteristics. The main reasons for using
the relational data model are: It is simple, well known and has a firm the-
oretical basis. Since relational database systems are used by far most
commonly in real world applications, their dominance will remain in the
near future. However, relational databases are not adequate for applica-
tions such as CAD, CAM, CIM, CASE or Multimedia which require
more functionality, especially better modeling capabilities and more ex-
pressive query languages. A lot of research has been going on over the
last decade to improve the limited capabilities of the relational model to
express semantic aspects, i.e. relationships, structured entities and pro-
cedural aspects. The result has provided major advances in database
technology, e.g. the object-oriented and extended relational database
systems with their extended semantic modeling capabilities (e.g.
[Shi 81, Kim 89, Loh 91, BDK 92, Sto 93]), advanced query languages
(e.g. [Haa 89, BCD 92]) and graphical user interfaces (e.g. [RC 88,
Agr 90, KL 92, VAO 93]).

Using advanced database technology for improving access to exist-
ing databases usually requires a complete system change or migration
making it necessary to convert the existing databases with all their appli-
cation programs that have been written and successfully used over the
years. A further difficulty in the migration process is that, in general, the
relational systems are used on-line with many application programs run-
ning permanently on a daily basis. In performing a system change or mi-
gration, most companies fear the possible loss of data and the necessary
changes of application programs. Additionally, in most cases system
changes or migrations are quite expensive, but even worse is the small
chance of a complete system failure. Companies therefore limit system
changes to the absolute minimum and, if changes are unavoidable, they
are planned carefully well in advance.

- 1 -

Query Translation of an Object-Oriented

into a Relational Query Language

Daniel A. Keim, Hans-Peter Kriegel, Andreas Miethsam

Institute for Computer Science, University of Munich
Leopoldstr. 11B, D-80802 Munich, Germany

{keim, kriegel, miethsam}@informatik.uni-muenchen.de

Abstract

In this paper, we present a query translation algorithm which allows ob-
ject-oriented queries to be automatically translated into a relational que-
ry language. Our goal is to provide an improved query interface for
existing relational database systems. The translation algorithm, we pro-
pose in this paper may be used to directly access relational databases,
but it may also be useful in the context of object-oriented multidatabase
systems to translate the common global query language into the query
languages of participating relational databases. Necessary steps in pro-
viding object-oriented access to relational databases are schema enrich-
ment and transformation as well as query translation. The main focus of
this paper is the query translation which has to be performed fully auto-
matically since it has to be done each time, a query is processed by the
system, whereas schema enrichment and transformation may be done
only once in the beginning. Our query translation algorithm ensures a
full automatic translation of object-oriented queries into equivalent
SQL queries for the original relational schema in all cases where a di-
rect translation is possible. In all other cases, it generates SQL queries
providing a superset of the desired data and a sequence of ‘formatting’
functions that transform the data into the desired result. Problems may
occur if additional user defined functions are used.

Keywords: query translation, query languages, relational database
systems, object-oriented database systems, multidatabase
systems, schema enrichment and transformation

Query Translation of an Object-Oriented

into a Relational Query Language

Daniel A. Keim

Hans-Peter Kriegel

Andreas Miethsam

Ludwig-Maximilians-Universität München
Institut für Informatik

Bericht 9325
Dezember 1993

