[Kim 89]

[KL 92]

[Loh 91]

[Mel 92]

[MM 90]

[Ora92]
[RC 88]

[RPR 89

[Shi 81]

[SL 90]

[Sto 93]

[Syb 90]

[VAO 93]

KimW., Balou N., Chou H.-T., Garza J.F., Woelk D.: ‘ Features of
the ORION Object-Oriented Database System’, chapter 11 in:
Object-Oriented Concepts, Databases and Applications by Kim
W. and Lochovsky FH. (eds), ACM Press Frontier Series,
Addison Wesley, Reading, MA, 1989, pp. 251-282

KeimD. A., Lum V.: ‘Visual Query Specification in a Multimedia
Database System’, Proc. Conf. Visuaization, CS Press, Los
Alamitos, CA., 1992.

Lohman G.M., Lindsay B., Pirahesh H., Schiefer K.B.:
‘Extensions to Sarburst: Objects, Types, Functions and Rules,
Comm. of the ACM, Val. 34, No. 10, 1991, pp. 94-109.

Melton J. (ed.): ‘Database Language SQL (SQL3)’, ISO/ANSI
working draft, X3H2-92-055 DBL CNB-003, July 1992.

Markowitz V., Makowsky J.. ‘ldentifying Extended Entity-
Relationship Object Structures in Relational Schemas', |IEEE
Tran. on Software Engineering, Vol. 16, No. 8, 1990.

Oracle: ‘ORACLE SQL* Connect’, Oracle, Mnchen, 1992.

Rogers T. R. , Cattell R. G. G.: * Entity-Relationship Database
User Interfaces, in: Readings in Database Systems, M.
Stonebraker (ed.), 1988.

Reddy M. P, Prasad B. E., Reddy P. G.: ‘Query Processing in
Heterogeneous Distributed Database Management Systems’, in:
Integration of Information Systems. Bridging Heterogeneous
Databases, Amar Gupta(ed.), 1989, pp. 264-277.

Shipman D.W.: ‘The Functional Data Model and the Data
Language DAPLEX', ACM Trans. on Database Systems, Vol. 6,
1981, pp. 140-173.

Sheth A. P, Larson J. A.. ‘Federated Database Systems for
Managing Distributed, Heterogeneous, and Autonomous
Databases’, ACM Computing Surveys, Vol. 22, No. 3, 1990.

Stonebraker M.: ‘The Miro DBMS, Proc. ACM SIGMOD Int.
Conf. on Management of Data, Washington D.C., 1993, pp. 439.

SYBASE: ‘Connectivity: Technical Overview', Sybase Inc.,
Emeryville, CA., 1990.

Vadaparty K., Aslandogan Y. A., Ozsoyoglu G.: ‘Towards a
Unified Visual Database Access', Proc. ACM SIGMOD Int. Conf.
on Management of Data, Washington D.C., 1993, pp. 357-366.

-25-

[Cas 93]

[Fis 89]

[Haa 89]

[HD 91]

[Heu 88]

[Heu 89]

[HK 93]

[Ing 92]
[1SO 92]

Castellanos M.: ‘Semantic Enrichment of Interoperable
Databases', Proc. 3rd Int. Workshop on Research Issues in Data
Engineering: Interoperability in Multidatabase Systems, Vienna,
Austria, 1993, pp. 126-129.

Fishman D.H. et a: ‘Overview of the Iris DBMS, chapter 10 in:
Object-Oriented Concepts, Databases and Applications by Kim
W. and Lochovsky FH. (eds.), ACM Press Frontier Series,
Addison Wes ey, Reading, MA, 1989, pp. 219-250.

Haas L.M., Freytag J.C., Lohman G.M., Pirahesh H.: ‘Extensible
Query Processing in Sarburst’, Proc. ACM-SIGMOD Int. Conf.
on Management of Data, 1989, pp. 377-388.

Harris C., Duhl J.: *Object SQL’, chapter 11 in: Object-Oriented
Databaseswith Applicationsto CASE, Networks, and VLS Design
by GuptaH. and Horowitz E., Prentice Hall, 1991, pp. 199-215.

Heuer A.: * An Object Algebra and its Connection to the NF2- and
Flat Relational Algebra’, Proc. Workshop on Relational Databases
and their Extensions, 1988, in: Informatik-Bericht, Vol. 4, Institut
far Informatik, TU Clausthal, 1988.

Heuer A.: ‘Equivalent Schemes in Semantic, Nested Relational,
and Relational Database Models, Proc. 2nd Symp. on
Mathematical Fundamentals of Database Systems, Visegréd,
Hungary, 1989, in: Lecture Notes in Computer Science, Vol. 364,
Springer, 1989, pp. 237-353.

Hohenstein U., Kérner C.: * Object-Oriented Access to Relational
Database Systems’, Proc. Gl-Fachtagung, Braunschweig, 1993,
in: Datenbanksysteme in Buro, Technik und Wissenschaft,
Springer, 1993, pp. 246-255.

Ingres: ‘INGRES/ Sar’, Ingres, Frankfurt, 1992.

ISO/IEC: ‘Database Language QL’, ISO/IEC 9075:1992
(German Standardization: DIN 66315).

[KKM 93g]Keim D. A., Kriegel H.-P, Miethsam A.: ‘Integration of

Relational Databasesin a Multidatabase System based on Schema
Enrichment’, Proc. Int. Workshop on Research Issues in Data
Engineering: Interoperability in Multidatabase Systems (RIDE-
IMS), Vienna, Austria, 1993, pp. 96-104.

[KKM 93bjJKeim D. A., Kriegel H.-P, Miethsam A.: ‘Object-Oriented

Querying of Existing Relational Databases', to appear in: Proc.
4th. Int. Conf. on Database and Expert Systems Applications
(DEXA'93), Prague, Czechoslovakia, 1993.

=24 -

algorithmswith complete support of user-defined methods and addition-
al object-oriented classes is currently on the way, but not yet finished.
One open problem is the optimization of querieswhich involve user ex-
tensions to the schema, complex set operations or arbitrarily structured
results. Insuch SOQL querieswhich have no one-to-one correspondence
toan SQL query, the query optimization cannot be done ontherelational
side. Therefore, we have to optimize the query execution plan to reduce
the amount of datawhich needsto betransferred between the object-ori-
ented query interface and the relational system. Performanceissueswill
be of high importance for such asystem to be used in real world applica-
tions.

Inour futurework, we planto extend the schemaenrichment and que-
ry translation algorithmsto cover the automati c detection and creation of
subtype hierarchies and to deal with complex methods. We will try to
find possibilities to translate complex conditions involving set opera-
tions on structured results. We will further work on the optimizationis-
sue trying to provide an acceptable performance even in complicated
cases. Finally, weintend to use our query translation algorithm asabasis
for an advanced integration of relational systems into a heterogeneous
multidatabase system.

References

[Agr90] Agrawa R. et a.: ‘OdeView: The Graphical Interface to Ode’,
Proc. ACM-SIGMOD Int. Conf. on Management of Data, Atlantic
City, 1990.

[ASL 89] Alashqur A. M., SuS.Y.,Lam H.: ‘OQL: A Query Language for
Manipulating Object-oriented Databases', Proc. 5th Int. Conf. on
Very Large Data Bases, Amsterdam, 1989, pp. 433-442.

[BCD 92] Bancilhon F., Cluet S., Delobel C.: ‘A Query Language for O,
chapter 11in: [BDK 92], 1992, pp. 234-255.

[BDK 92] BancilhonF., Delobel C, KanellakisP. (eds.): ‘ Building an Object-
Oriented Database System - The Sory of O,’, Morgan Kaufmann,
San Mateo, CA, 1992.

-23-

* project(a_new;=a_old,, ..., a new=a_old|): Res— Res
projects Res onto the specified attributes allowing attributes to be
duplicated and renamed. The assignment a_new;=a_old; is only
needed if attributes are duplicated or renamed.

The formatting function is constructed as concatenation of the for-
matting primitives:

fo=foofio -+ ofnyof, with f, beingthee—function.
Theformatting primitivesand their concatenation to theformatting func-
tionfg areillustrated infigure 5 using query example 2.

5 Summary and Conclusions

Relational database systemsarewidely usedinresearch andindustry.
A major problem of relational systems are the poor query facilities of
SQL. In this paper, we described basic algorithms which enhance the
functionality and usability of existing relational databases and allow to
query them like object-oriented databases. The main contribution of this
paper isthe query trandlation a gorithm which allowsan automatic trans-
lation of SOQL queriesissued against the created object-oriented sche-
mainto ‘result equivalent’ SQL queriesfor the original relational sche-
ma. In the query trandation algorithm, first chains of method
applications are replaced by adequate joins and subqueries on the rela-
tional side, the conditions are replaced by equivalent SQL conditions
and, since SQL can not provide structured results, the nested structure of
the result isflattened but enhanced with additional key information. Si-
multaneously, the inverse formatting operations are created allowing to
reconstruct the desired result from the result of the SQL query.

We believe that our query trandation algorithm is easily applicable
and thus, of high practical importance. It does not require any changeto
therelational system, thedataor existing applicationsand therefore, sys-
tems built on the basis of our schema transformation and query transla-
tion algorithms may be commercially availablein ashort time. Theim-
plementation of the schema transformation and operation translation

-22-

fo =€

f, = project(P.name, P.address, V;.did, V,.name, (V1.key).count) (step 4a)
f, = group(by(P.key), nest(V4.did, {V,.name}), count(V 1.key)) (step 4a,4b)
f3 = project(P.name, P.address, P.key, V.did, {V,.name}, V ;.key)(step 4b)

f4 = group(by(P.key, V 1.key), nest(V ,.name)) (step 4b)
fs = structure((P.name, P.address), P.key,

((V,.did, Vq.key, Vo.name), V1.key)) (step 4c)
fg = structure(P.name, P.address, P.key,

(V,.did, V4.key, Vo.name), V.key) (step 4c)

f7 = project(P.name, P.address, P.key=P.pid, V.did,
V,.key=V.did, V,.name, V.key=V.did) (final step)

Figure 5. Formatting Function for Query Example 2

V ;.key can be projected out. Next, the intermediate result is grouped by

P.key to be ableto count each person’ sdepartures and to combinethein-
formation on each person’ sdeparturesinto aset. After projecting out the
second V1.key and P.key, the correct answer in the desired result struc-

tureisreached.

In the following, the formatting primitives are defined as generic
functionswhich may be arbitrarily composed:

e structure(attr_list,, ..., attr_list;): Res — Res
combines the attributes of each attr list; into a tuple
(&1 .-, &,) and the whole expression itself into a tuple

((@uts s Ban)s s (Bits s).

o group(by(attr_list,), op(attr_list,), ..., op(attr_list)): Res — Res
groups Res according to equal values of by(attr_list) and for each
group, the attributes listed in op(attr_list) are combined to sets if
op = nest, or aggregated using the corresponding aggregate opera-
tor if op = count, avg, sum, min, max. In order to get only one val-
ue per group, al attributes that occur in none of the attr_list have
to be functionally dependent on the attributes in by(attr_list).

-21-

Note, that the subqueries A and B in extensions 2 and 3 may only re-
turn unstructured results since otherwise the nesting operators of SQL
arenot applicable. Serious problemsinthequery translation process may
be caused by user extensions to the object-oriented schema, such as ad-
ditional attributes or user-defined methods. In the case of using user-de-
fined methodsin an SOQL query, the datanecessary to evaluate the que-
ry hasto beretrieved iteratively from the relational system beforeit can
be used to execute the methods. If classes are extended by additional at-
tributes, the data necessary to evaluate the condition part of aquery isre-
trieved partially from the relational system and the additional dataisre-
trieved from the system managing the additional data. According to the
extended obj ect-oriented schema, the corresponding dataof both sources
isrelated to each other before the condition is evaluated and the desired
dataisretrieved asspecified inthe‘select’ clause. In both cases, it may be
necessary to transfer large amounts of data, even in cases where the re-
sulting dataset israther small and, therefore, performance problemsmay
occur. Note, that the problems are only caused in caseswherethereisno

corresponding SQL query.

4. Transformation of the Result

As aready mentioned, to automatically restructure the result flat-
tened by the last steps of the translation algorithm aformatting function
hasto be generated. In each partial transformation of these steps, format-
ting primitives are recorded which are composed in the reverse order of
their creation, such that the last primitiveis applied first to the result re-
turned by the generated SQL query.

Thismeansfor query example2infigure 4, that theresult returned by
thefinal SQL query hasto be structured into subtuples after copying the
V,.key attribute twice to revert the last two steps. Then, the tuples are
partitioned into groups by equal values of the attribute combination
P.key, V ;.key and for each group, thevaluesof V ,.nameare combined to
formtheinner sets, i.e. for each person and one of its departures, all pas-
sengers belonging to this departure are grouped into a set. Now, thefirst

-20-

structs el in (select ...) to the result of the subguery. Some important ex-
tensionsto beincluded into the trand ation algorithm are:

Extension 1. Generalized dot-notation in conditions
In the condition part of SOQL queries, set-valued method path ex-
pressions like D.passengers. name =‘Jones’ may occur at all posi-
tions where the SQL syntax only allows simple column expression
like P.name="Smith’. According to the definition of the semantics of
method path expressions, the resolution of set-valued method path
expressionsin conditionswould result in aset of booleanswhich has
to be ‘flattened’ to asingle boolean value.
{x|xe X} opyisdefinedby Ix: xe X Axo0py,if ‘opy’ isnot applicable
to the whole set. Example: D.passengers.name = ‘Jones => {Vj.name |
V4 € D.passengers} = ‘Jones

=> 3V ,: V4 € D.passengers A V{.name = ‘Jones

Only applying the resolution according to the generalization of dot-
notation to {V,.name | V; € D.passengers} =‘Jones results in
{V.name=‘Jones |V, e D.passengers} whichisaset of booleans.
LikeinIRIS[Fis89], in SOQL setsof booleansin conditionsareim-
plicitly ‘or’-connected [KKM 93b] evaluating to true if at least one
element istrue.

Extension 2. Set inclusion
Inclusion conditions A < Bwith A ={x; | p(x)} and B={x, | q(x,)}
inthe SOQL ‘where’ clause may betransformed inthefollowingway,
provided A and B can be processed by SQL subqueries.
AC B => not exist{ x; | p(X;) and not exists{X, | q(X,) A X, =%;} }
Example: D1.passengers.name < D2.passengers.name
=> not exists{ P1.name | P1 € Passenger A join(P1, D1) A
not exists { P2.name | P2 € Passenger A join(P2, D2) A
P2.name=P1.name} }
Extension 3: Union, intersection, difference
Predicateslikexe A UB,xe AnB,xe A—-BintheSOQL ‘where’
clause can be transformed to Xin {X; | p(X))} or X in {X, | (%)}, Xin
{X:[p(x)} and Xin{X2 |90}, Xin{X; [P(X)} and X notin{X, | (%)},
which can be transformed to SQL, if A and B can be transformed to
valid SQL subqueries.

-19-

informationisadded to theresult list instead of the omitted aggregate
operations.

The remaining trandation into avalid SQL query is straightforward
provided we restrict SOQL conditions to permissible SQL conditions.
More complex condition parts may also be trandated into SQL. In sub-
section 3.3, some extensions of the condition part are described that can
be translated into permissible SQL statements. Note, that replacing the
join predicates join(R, S) may introduce additional relations which are
necessary, e.g. Pass_Dept in example 2, to establish m:n relationships.

Itisinteresting to note, that after step 1 of the translation process the
query isinaform that can be easily tranglated into other object-oriented
languages like O,SQL [BCD 92]. In query example 2, the partialy re-
solved set-notation of the query can also be written as

{((P.name, P.address),

{(V4.did,
{Vo.name |V, e V,.passengers})
| V41 € P.departures},

P.departures.count))
| P e Passenger A P.address like ‘%8000 Minchen%'}

whichisequivalent to the following O,SQL query

select tuple (p: tuple (pn: P.name, pa: P.address),
d: tuple (d1: (select tuple (di: V,.did,
dn: (select V,.namefromV,in 'V .passengers))
from V4 in P.departures),
d2: count(P.departures)))
from P in Passenger where P.address like ‘*8000 M Uinchen*".

3.3 Extensions of the Condition Part

Since SOQL has more expressive power than SQL, there are some
cases where SOQL queries do not have result equivalent SQL queries.
However, aswewill show inthefollowing, the condition part that is per-
missiblein SOQL querieswhile still guaranteeing an equivalence trans-
lation can be extended considerably. Simpler extensions, for example,
are methods on set types such as ‘el in set’ which may bereplaced by com-
puting the set in a subquery and applying the corresponding SQL con-

-18 -

select P.[name, address|, P.departures.[[did, passengers.name], count]
for each Passenger P
where P.address like ‘%M inchen%' (cond :=‘P.address like ‘%M iinchen%’)

{([P.[name, address], P.departures.[[did, passengers.name], count]) |
P e Passenger A cond}

=(step 1){ ((P.name, P.address), ({ (V,.did, V,.passengers.name) |V, €
P.departures}, P.departures.count)) | P € Passenger A cond}

=(step 10){ ((P-name, P.address), ({(V1.did,{V,.name [V,eV ;. passengers}) |
V, € P.departures}, P.departures.count)) | P e Passenger A cond}

=(step 3) { (P.name, P.address), ({(V1.did, {Va.name| V, e Passenger A
join(V4, V,)}) |V, € Departure A join(P, V4)}, {V4}.count)) |
P e Passenger A cond}

=(step 49){ ((P.name, P.address), P.key, ((V1.did, {V,.name|V, e Passenger
A join(Vy, Vo)}), {V4}.count)) |
P e Passenger A V4, € Departure A join(P, V1) A cond}
=(step 40yt (P.name, P.address), P.key, ((V1.did, V1 .key, V,.name), V1 key)) |
P e Passenger AV, € Departure A join(P, V1) AV, e Passenger
A join(V4, V5) A cond}
=(step 20){ (P.name, P.address, P.key, V.did, V1.key, V,.name, V.key) |Pe
Passenger A V4, € Departure A V, € Passenger A join(P, V1) A
join(V4, V) A cond}
= select P.name, P.address, P.pid, V1.did, V,.name
from Passenger P, Departure V1, Passenger V,, Pass Dept V3,
Pass Dept V,4
where P.pid =V3.pid and V3.did=V;.did and V;.did = V,.did
and V,.pid =V,.pid and P.address like ‘%M tinchen%

Figure 4. Trandlation of Query Example 2

frominner nesting levels need to be removed (c.f. trandlation step 4b
in figure 4). Formally, the flattening of one nesting level can be de-
scribed as:

{x.{ylyeY Apx y)})Ixe XAqkx,)}

=> {(x, key(x),y) [ye Y Ap(x,y) Axe XAq(X)}.
Thistrandation ruleisapplied until the nesting structure of the result
tupleisflat. Then, only the remaining tuple structure needsto beflat-
tened (c.f. trandation step 4c in figure 4). Again, in this step the for-
matting function is extended by the inverse operations and key

-17 -

Step 3: Resolution of object references
All remaining object references are resolved as follows.
VopX.m => V; e flat_type(X.m) A join(X, V), whereop="‘e’ or ‘=" de-
pending on whether x.misset or singlevalued. In thisstep, join pred-
icatesjoin(X, Vv;) are introduced with the intended meaning: join(X, V;)
istrueif thereisan object reference from X to v;.
Note, that in the previous steps path expressionsinvolving aggregate
operations have not been resolved. In this step, however, we want to
resolve possible object references that are part of such path expres-
sions. Sincethe aggregate operations are applied to sets, wetrandlate
path expressions V.m,.m, with m, being an aggregate operation
into {v|ve V.m....m,_;3m,. Then all object references in
V.m;.m,_; can be resolved by join predicates as described
above. In some cases, however, no additional joins may have to be
introduced. In example 2, the P.departures comes from a structured
expression that already has been resolved and, therefore, we do not
need to repeat the part ‘v, e Departure A join(P, V,)' but still use V;.
The result of the three steps of the trandlation algorithm that have
been described so far is semantically and structurally equivalent to the
original query but with all dot generalizationsand structured expressions
being resolved. In the following steps, the result is changed either by
adding attributes or by flattening the result structure. Still, our notion of
result equivalence up to simple formatting operationsis preserved since
the necessary formatting operations are recorded.

Step 4: Resolution of nested result types
Inthisstep, the nested structure of result tuplesisresolved by shifting
set conditions of the inner sets onto the outer level and adding key
information. The trandation is done level by level starting outer-
most-leftmost. K ey information which isnecessary to reconstruct the
desired result structureisintroduced for all variableson theouter lev-
el (c.f. step 4aand 4bin figure 4). At the same time, the formatting
function which reconstructs theintended result structure successive-
ly (c.f. section 4) is extended by the inverse structuring, grouping,
projection and nesting operations. Aggregate operations coming

-16 -

fined for V. The trandlation of generalized dot-notation occurring in
the ‘where’ clause is dightly different. In this case, an existential
quantification is introduced (c.f. trandation step 1 in figure 3). The
trandation of more complex conditionsinvolving nested sets which
can not be expressed in SQL are described in subsection 3.3. Note,
that the trandation is possible since chains of method applications
have only to beresolved until thefirst basic classtypeisencountered
(c.f. observation in section 3.1).

Structured expressions are also
resolved successively as if at

least one of the m; is directly applicable to V and as

I | i sc-vued ad
noneof them; Isdefined on V. Note, that structured expressionsand

chains of method applications may be nested into each other. There-
fore, both trandlation rules may have to be applied alternately.

Step 2: Resolution of complex range variables
In this step, variablesranging over arbitrary path expressions are re-
placed by variables ranging only over classes corresponding to rela-
tions. To select all passengerstogether with the sets of co-passengers
for each of their flights, we may write

select P.name, CP.name
for each Passenger P, P.departures.passengers CP

In this case, the range variable CP ranges over sets of passengers
which cannot be directly expressed in SQL. Therefore, the corre-
sponding nested set expression

{(P.name, CP.name) | P e Passenger A CPe

{Vq.passengers| Ve P.departures}} istrandated into

{ (P.name, V y.passengers.name) | P e Passenger A V, € P.departures}

=ep1) {(P.name, {Vy.name| V, e V .passengers}) | P e Passengers A
V4 € P.departures}.

More formally, the translation can be expressed as

{x,y)Ixe Xaye{h(@)|ze Z Ap(x,2)} Aakxy)} =>{(x h(2)]|xe XA
ze Z A p(X, 2) A q(X, h(2))} with a subsequent resolution of generalized
dot-notation (c.f. step 1).

-15-

select P.name, P.address
for each Passenger P, P.departures D
where D.start =06/18/93 and D.airline.name = ‘ Lufthansa

= {(P.name, P.address) | Pe Passenger A D € P.departuresa D.start
='06/18/93 A D.airline.name =‘Lufthansa }

(step 1) { (P.name, P.address) | Pe Passenger A D e P.departuresA D.start
='06/18/93 A IV, :Vy=D.arlinea Vq.name="'Lufthansa }

(step 3) {(P.name, P.address) |3 V,: P € Passenger A D € Departure A
join(P, D) A D.start =‘06/18/93' A V1 € Airlinea join(D, V)
A Vi.name='Lufthansa }

select P.name, P.address

from Passenger P, Departure D, Airline V4

where join(P,D) and join(D,V,;) and D.start ='06/18/93' and
V;.name = ‘Lufthansal

select P.name, P.address

from Passenger P, Departure D, AirlineV 4, Pass Dept V,

where P.pid=V,.pid and V,.did=D.did and D.airline-id =
V,.arline-id and D.start = *06/18/93' and

N

N

Figure 3: Trandation of Query Example 1

Before applying the steps of the trandation algorithm, we transform
the considered SOQL query into a nested set expression. The ‘select’
clause becomes the result part of the set. The range and class variable
definitionsof the*foreach’ clausearetransformedinto‘elementinset’ re-
lationships. The‘where’ clauseissyntactically adapted to the set notation
and occuring subqueriesarerecursively transformed into corresponding
set expressions. In figures 3 and 4, the trandation processisillustrated
using the query examplesfrom section 2.

Step 1. Resolution of structured expressionsand gener alized dot-
notation

Inthisstep, structured expressionsand chains of method applications
using the generalized dot-notation are resolved. Chains of method
applications V.m;,.m, inthe ‘select’ or ‘for each’ clause are suc-
cessvely resolvedas (V.my).m, if m isamethod defined forV

and as{v.mj|ve V}.m,.m, if Visset-valued and m, is not de-

-14-

Let R := flat_type(V.my.m,.my) be the flat class type resulting
from the successive method application to V which may be unique-
ly determined since our schematransformation algorithm produces
no subtype hierarchies. ChainsV.m;.my.m,, of method applica-
tions occurring within SOQL -statements may be divided into the
first k and thelast n-k+1 subchains, 0<k <n+1, such that: If 0<i <k,
then R, isanon-basic class type (e.g. Passenger, Departure with a
corresponding tablein RS), and if k<i <n, then R, isabasic class
type (Boolean, String, Integer, ...). A short example will illustrate
thisfact:

Example:
p.departures.passengers.name where p ranges over class Passenger
implies
k=3, n=3 with R, =flat_type(p) = Passenger
R, = flat_type(p.departures) = Departure
R, = flat_type(p.departures.passengers) = Passenger
R; = flat_type(p.departures.passengers.name) = String

This observation ensures that chains of method applications only
have to be resolved until the first basic class type is encountered asim-
plicitly used in transformation step 2 below. Loosely speaking, a chain
V.my.m,.m,_; indicates ajoin sequence.

3.2 Trandation Algorithm

By providing a step-by-step agorithm for the trandation, in the fol-
lowing we constructively define an equivalence translation t which
translates SOQL queries into result equivalent SQL queries. Since
SOQL queries can be more structured than SQL queries, theresult struc-
tureof an SOQL query needsto beflattened beforeit can be processed by
therelational system. To build the desired result structure, a sequence of
formatting operationsis recorded during the flattening process (c.f. sec-
tion4). Inthefollowing, itisassumed that all classvariablesoccurringin
the‘for each’ clauses of the query and all itssubquerieshave pairwisedis-
tinct names. Otherwise, they will be consistently renamed. New vari-
ablesintroduced during the transformation are denoted by V;.

-13-

into the desired result, particularly without further selection and join op-
erations. Theformer ensures, that only the necessary amount of datawill
be transferred which isimportant for performance reasons, especially if
therelational systemisaccessed vianetwork, and the latter ensures, that
the query can be answered by exactly one SQL statement.

Definition (Equivalence of queries)

Let RDB be the actual relational database with schema RS, ODB
the virtual object-oriented database with schema OS, res(S, RDB)
the resulting table when executing S on database RDB, and res(Q,
ODB) the result expected from an execution of Q on ODB. Then
wesay, Q and Sareresult equivalent up to simpleformatting oper-
ationsif thefollowing property holds:

fo(res(S, RDB)) =res(Q, ODB), (*)

where the formatting function fg is composed by structuring,
grouping, projection, nesting and aggregate operations(c.f. section
4).

Based on the above definition, we are able to define the notion of an
‘equivalencetrandation’ from SOQL into SQL.

Definition (Equivalence translation)

Any mappingt, t: Q i (S, fo) trandating an SOQL query Qintoa
result equivalent SQL query Sand providing aformatting function
fo, suchthat (*) holds, is said to be an equivalence translation.

Note, that tisapartial mapping, becausethereare SOQL queries, that
can not betrandated into SQL. It would bedesirable, however, for t to be
complete in the following sense: If there exists an SQL query S’ and a
formatting function f'q withf'g(res(S, RDB)) = res(Q, ODB) for a
given query Q, thent should return apair (S, fg) with the same property
asS andfg.

Before presenting the trandation algorithm t in detail, we will for-

malizethefollowing hel pful observation that allowsauniform treatment
of chains of method applications:

-12 -

the structured result {(Smith, {401, 403}), (Smith, {401})}. A corre-
sponding SQL query together withitsresultisalso giveninfigure 2. Al-
though both query results seemto bevery similar, itisimpossibleto cre-
atethe structured SOQL result from theflat result of the SQL query if no
additional informationisavailable. However, by adding the key attribute
P.pid of Passenger to the SQL ‘select’ clause, we get the result { (Smith,
1, 401), (Smith, 1, 403), (Smith, 2, 401)} which can easily be trans-
formed into the desired format by grouping thetuplesaccordingto P.pid,
combining the D.did attributes to sets and afterwards projecting out the
P.pid attribute. Selecting additional information that allows to structure
the resultsfrom the relational database into the desired format, is one of
theideaswhichisusedinour trandation algorithm. Themain tasksof the
trandation algorithm are

- resolving chains of method applications by suitable joins and
subqueriesontherelational side,

- flattening the nested structure while simultaneously creating the
Inverse formatting operations,

- correctly replacing the SOQL condition part by equivalent SQL
constructs which may involve handling of methods on structured
types, set operations and so on. However, for the presentation of the
trandation algorithm in subsection 3.2 we restrict ourselvesto SQL -
like conditions and discuss feasible extensions separately in
subsection 3.3.

Before describing the query translation algorithm, we first introduce
the basic notions of ‘equivalence of queries’ and ‘equivalence transla-
tions'.

3.1 Basic Definitions

Asalready indicated in the above example, in many casesthereisno
trandation of an SOQL to an SQL query which provides exactly the
sameresult. Thereforein this context we have to introduce aweaker no-
tion of equivalence. Informally, our notion of result equivalence means
that the SQL query produces an answer which may be easily converted

-11-

RDB:

Passenger Departure Pass Dept

pid | name address ... did | start flight pid did | booking
1 | Smith New York. ... 401 | 7-1-93 | 0815 1 401

2 | Smith London .. 402 | 7-1-93 | 1414 1 403

3 | Jones Paris 403 | 7-1-93 | 1017 2 401

4 | Huber Mdinchen ... 4 401

4 402

(virtual) ODB:
Passenger = {04, 0, 03, 04}
0..pid=1, oq.name="‘Smith’, o;.address=‘New York ..., 0q.departures={o0s, 07}
0,.pid=2, 0,name="‘'Smith’, o0,.address=‘London ..., 0,.departures = { og}
03.pid=3, o0g.name="‘Jones, oz.address="Paris..’, 0z.departures = { }
04.pid =4, o04.name="‘Huber’, o4.address=‘Minchen..!, 04departures={o0sg, Og}
Departure = { 05, 0g, 07}
05.did =401, og.start=7-1-93, os.flight = 0815’ Os.passengers = { 01, 0y, 04}
0g.did =402, og.Start =*7-1-93, og.flight = 1414’ Og-passengers = { 04}
0,.did =403, o7.start="7-1-93, o;.flight ="1017’ 07.passengers = { 04}

SOQL:
select Pname, Pdepartures.did
for each Passenger P
where P.name='Smith’

result:
{(Smith, {401, 403}),
(Smith, {401})}

SOL:

select Pname, D.did

from Passenger P, Departure D,

Pass Dept Pd
where Pname='Smith’ and
P.pid=Pd.pid and Pd.did=D.did

result:

{(Smith, 401), (Smith, 403), (Smith, 401)

Figure 2: Instances of the Relational and the Virtual Object-Oriented

Database

RDB is mapped to avirtual instance of the respective classin ODB and
each tuple or attribute representing arelationship is mapped to a virtual
object reference. The basicideaof our instance mapping issimilar to the
one presented in [Heu 89] which has been proposed to formally describe
schema equivalence of a semantic, a nested relational and a relational
data model. Executing the SOQL query in figure 2 against ODB yields

-10-

the complex type Set([String, String], [Set([Integer, Set(String)]),
Integer]). Nested resultsmay occur asanswer for querieswith structured
expressions or queries where the generalization of the dot-notation is
used more than once in arow. Furthermore, in corresponding SQL que-
ries additional information is needed to do the grouping and aggregation
(e.g. the counting of departures) whichisonly implicitinthe SOQL que-
ry. Ingeneral, if theresult for aquery isanested set with more than one
nesting level, thereis no one-to-onetranglation to an SQL query. Equiv-
alent SQL queriesfor our query examplesare given asresults of the que-
ry trangdlation algorithmin section 3.

To sum up, SOQL provides query facilities that allow queriesto be
much shorter, easier to write and understand and moreintuitive than cor-
responding SQL queries. Since the created class definitions are more
structured, in most cases, joins do not haveto be specified explicitly and
complex queries are avoided. Additionally, the results of SOQL queries
can be arbitrarily structured and the application of methods in dot-nota-
tionisgeneralized to work on sets.

3. Trandation of SOQL Queriesinto SQL-Queries

Sinceinformationisadded during the schematransformation process
and SOQL has more expressive power than SQL, it is obvious that all
queriesexpressed in SQL over therelational schema(RS) can also beex-
pressed by SOQL queriesover the created object-oriented schema (OS).
This section deals with the trandlation of SOQL queries into standard
SQL [1SO 92] and the identification of formatting primitives during the
tranglation process which are needed to restructure the result according
to the complex answer type given by the SOQL ‘select’ clause. Toillus-
tratethetasksof thetranslation algorithm, figure 2 showsan examplefor
asmall relational database and the virtual instances of the corresponding
object-oriented schema. The virtual instances of the object-oriented da-
tabase ODB are created from the tuples of the relational database RDB
by avirtual instance mapping v,.«: (OS, RDB) — ODB. By the virtual
instance mapping, basically, each tuple of a non-relationship table of

-9-

object classfrom another without explicitly joining them. Itissomekind
of schemanavigation in the created object-oriented schema. In the con-
dition, all methods including the created access methods to attributes
may be used aslong astheresult of thewhole expressionisof result type
‘Boolean’. Special features of SOQL are structured expressions and the
generalization of the dot-notation. Structured expressions allow an easi-
er specification of querieswith structured results by providing the possi-
bility to definetheresult structure by square brackets. Thegeneralization
of the dot-notation to setsisanintuitive but powerful continuation of the
normal dot-notation (c.f. section 3). To provide the basic queries facili-
ties that are available in SQL, a set of basic object classes (Boolean,
Sring, Numbers, Integer, Real and the generic classes Set and List) to-
gether with a set of basic methods including the aggregate operations
count, avg, sum, min, max (Set(Numbers) [_Numbers) ispredefined. A
detailed description of SOQL can befoundin[KKM 93b].

Tofurther illustrate our query language, inthefollowingwewill give
two examples for SOQL queries. For the query examples, we use the
transformed exampl e database as presented in figure 1. A simple query
selecting all passengers and their addresses that fly with airline
‘Lufthansa’ onthe*06/18/93 would be expressed as

Example 1: select P.name, P.address

for each Passenger P, P.departures D

where D.start =‘06/18/93' and
D.airline.name = ‘ Lufthansal

In the second query example, all passengers, their addresses and
flights with flight numbers, list of passengersfor each of the flights and
total number of flights for each passenger are selected for al passengers
which have addresses containing ‘ 8000 M tinchen'’.

Example 2: select P.[name, address], P.departures.[[did,

passengers.name], count]

for each Passenger P
where P.address like ‘%8000 M tinchen%’

The query examples will be used in sections 3 and 4 to explain the
query trandlation algorithm. Note, that theresult of the second query isof

-8-

At this point, it should be mentioned that the schema created by our
schema transformation algorithm may not provide a perfect object-ori-
ented schema. It does not use all object-oriented modeling features (e.g.
subtyping) but it still provides a semantically enriched, well-structured
object-oriented schema that allows SOQL queries to be significantly
shorter and more intuitive than corresponding SQL queries using the
original tables. Let us further emphasize that only object-oriented class
definitions are generated with the instances remaining in the relational
database. Thus, access operationsto instances of object-oriented classes
haveto be tranglated into accesses to the corresponding relational tuples
which isdone by our query trandlation algorithm (c.f. section 3).

2.2 Structured Object Query Language

In this subsection, we give ashort introduction to our Structured Ob-
ject Query Language (SOQL). SOQL isadeclarative query languagefor
querying the created object-oriented schema. It is an easy-to-use but
powerful and orthogonal extension of SQL. Itissimilar to other declara-
tive query languages for object-oriented database systems (O,SQL
[BCD 92], Object SQL [HD 91], OSQL [Fis89], OQL [ASL 89]) but
provides additional features such as the generalization of the dot-nota-
tion and structured expressions. The basic query format of SOQL can be
indicated by the following description

select {<range var>{.<method>}" {.struct_expr}9*}+
for each {<classname>{.<method>}" <range var>}*
{ where <condition>}9.

According to the expression in the ‘select’ clause, automatically a
new (temporary) object classis created with all tuplesfulfilling the con-
dition being available as virtual instances of thisclass. Theresultisalso
available as a (nested) set and can therefore be directly used in nested
queries. Asindicated in the query format definition, methods are applied
to classor range variabl es using dot-notation. Chains of methods may be
connected in dot-notation as long as the methods are defined for the cor-
responding class. The chaining of methods allowsto directly access one

-7-

FlightDB:
Passenger (pid: Integer; name: String; address: String)
Departure (did: Integer; start: Date; flight: Integer; airline-id: Sring;
plane-id: Integer)
Pass Dept (did: Integer; pid: Integer; booking: Date)
Airline(airline-id: String; name: String)
Plane(serial-nr: Integer; ...)

Class Passenger with Class Departure with
attributes attributes
pid: Integer; did: Integer;
name: Sring; start: Date;
address. Sring; key is (pid); flight: Integer; keyis(did);
methods methods
departures. — Set (Departure); airline: — Airline;
booking: Departure — Date; plane: — Plane;
end; passengers. — Set (Passenger);
Class Airline with booking: Passenger — Date;
attributes end,;
airline-id: Sring; Class Plane with
name: Sring; keyis (airline-id); attributes
methods serial-nr: Integer;

departures: — Set (Departure);

end; end,

Figure 1. Examplefor the Schema Transformation

The basic steps of the schema transformation algorithm are: First,
each relation istranglated into a class definition with each relational at-
tribute becoming a member variable. Next, all functional relationships
arereplaced by direct object references, in one direction by asimple ob-
ject reference, inthe other direction by aset-valued object reference. Al
remaining n-ary relationshipsaretrand ated into methodswith one meth-
od providing the set of tuplesthat fulfill the relationship and one method
for each relationship attribute. The additional methods are added to each
classthat ispart of therelationship. Infigure 1, an examplefor arelation-
a database FlightDB together with the corresponding object-oriented
schemaisgiven. The details of the schematransformation algorithm are
beyond the scope of this paper. A formal description can be found in
[KKM93q].

Therest of the paper isorganized asfollows:. Section 2 introducesthe
overall framework and givesabrief overview of the schemaenrichment
and transformation aswell as a short introduction of our Structured Ob-
ject Query Language (SOQL) which provides declarative query facili-
tiesfor objects. In section 3, we then present the steps that are necessary
in automatically translating SOQL queriesfor the created object-orient-
ed schema into equivalent SQL queries for the origina relational sche-
ma. In section 4, we describe the formatting process that is needed to
transform the flat results provided by the relational system into struc-
tured results that are specified by the object-oriented query. Section 5
summarizes our approach, points out some problems and gives direc-
tions of future research.

2 TheFramework

In the following, we are going to briefly introduce two prerequisites
of our query trandlation algorithm, namely the schema enrichment and
transformation algorithm on the one hand and the Structured Object
Query Language (SOQL) on the other hand.

2.1 Schema Enrichment and Transfor mation

Since, in general, object-oriented schemas contain more semantics
than corresponding relational schemas, more input than the pure rela-
tional schemais needed to produce adequate, well-structured object-ori-
ented class definitions. The needed additional semantic information in-
cludes information on tables representing relationships, the type of the
relationship (1:1, 1:n, n:m), attributes or groups of attributes represent-
ing foreign keys and so on. Thisinformation may either be provided by
the database administrator or, in some cases, it may be deducted from an
underlying entity-relationship design schema. It is stored as part of the
meta information which includes all information on the enriched rela-
tional schema, on the created object-oriented schema and on the map-
pings between both of them. Aswewill seein the next sections, the meta
informationiscrucia not only for the schematransformation processbut
also for an automatic translation of SOQL queries.

-5.-

temswill play animportant rolein future commercia database systems,
we believe that for many practical environments it isimportant not to
changetherelationa systemswith their large existing databases and ap-
plication programs. Most database vendors offer gateways that provide
somekind of cross-database access[Syb 90, Ing 92, Ora 92] allowingto
use specific new database systemsin conjunction with existing relational
ones. The main purpose of gateways, however, isto allow databases to
work together and not to enhance relational systems. As a result, most
gateways only offer alimited functionality, providing at most the query
facilities that are provided by the relational system itself. In the area of
multidatabase systems, again the main goal isto allow database systems
to work together. Most research done in this area has been focussing on
schema integration and transparent inter-database access but only few
researchers addresstheissue of enhancing the functionality of relational
systemsthat are part of the federation. Some papers address the issue of
schema enrichment [MM 90, Cas 93] but little work has been done on
query tranglationsthat allow an enhanced querying of existing rel ational
databases [Heu 88, RPR 89].

Thegoal of our query algorithmisto enhancethe querying of existing
relational databases allowing the querying processto be easier and more
intuitive. This can be achieved by using our object-oriented query lan-
guage SOQL [KKM 93b] whichisan extension of SQL allowing queries
to bemore orthogonal, resultsto be structured, and uses direct object ref-
erencesinstead of explicit joins. Wefound that thereisaquitelargeclass
of SOQL queries that can be automatically trandlated into equivalent
SQL queries. A prerequisite isthat information about the schematrans-
formation which has been performed beforehand is available. Although
not all queriesthat can be expressed in SOQL can be efficiently trangl at-
ed into SQL queries (examples are queries with conditions that involve
set comparison or user-defined functions, c.f. section 3), the effort of
trandating queries from SOQL to SQL isjustified since SOQL queries
are much shorter, easier to write and understand and more intuitive than
corresponding SQL queries.

Multidatabase or interoperable database systems are aimed at facili-
tating the use of new database technology in rea world environments.
They try to provideaframework for the smooth co-existenceof legal and
new database systems by allowing an integrated and transparent access
[SL 90] but, in general, they do not improve the querying of existing da-
tabases. |mportant tasksin building amultidatabase system areresol ving
schematic discrepancies, transforming and integrating the schemas, de-
composing and transl ating queries and combing the results. For improv-
ing the query interface to existing relational database systems, asimple
transformation and i ntegration of the schemasisnot sufficient. The sche-
mas need to be enriched semantically which, in most cases, isonly pos-
sible with additional information acquired from the user. For industrial
environments with quas static schemas, schema enrichment, transfor-
mation and integration may be done oncein the beginning asauser guid-
ed process and need only to be repeated if new databasesjoin thefedera-
tion or if schema changes occur. For the tasks that are related to query
processing, user interaction is not feasible since they have to be done
each time, aquery isprocessed by the system.

Thequery trandation algorithm which will be presented in this paper
Isimportant not only in the context of multidatabase systemswith an ob-
ject-oriented global common data model but in any system that provides
object-oriented access to existing relational databases. One possibility,
for example, isan object-oriented front-end to arelational system similar
totheonepresentedin[KKM 93b] which allows an object-oriented que-
rying of existing relational databases without migrating or transforming
data and changing existing application programs. Our query translation
algorithm may also prove useful to allow future object-oriented exten-
sionsof SQL (e.g. SQL3[Me 92]) towork on existing SQL 2 databases.

Theideaof providing object-oriented accesstorelational databasesis
not new but most researchers have been working on extending existing
database systems or providing cross-database access [Loh 91, Mel 92,
HK 93, Sto 93]. Although object-oriented extensions of relational sys-

-3-

1 Introduction

Relational database systemsarewidely usedinresearch andindustry.
For traditional application areas like accounting, reservation systems,
etc., the relational data model seems to be adequate providing suitable
modeling and performance characteristics. The main reasons for using
therelational datamodel are: Itissimple, well known and hasafirm the-
oretical basis. Since relational database systems are used by far most
commonly inreal world applications, their dominancewill remaininthe
near future. However, relational databases are not adequate for applica-
tions such as CAD, CAM, CIM, CASE or Multimedia which require
more functionality, especially better modeling capabilities and more ex-
pressive query languages. A lot of research has been going on over the
last decade to improve the limited capabilities of the relational model to
express semantic aspects, i.e. relationships, structured entities and pro-
cedural aspects. The result has provided major advances in database
technology, e.g. the object-oriented and extended relational database
systems with their extended semantic modeling capabilities (e.g.
[Shi 81, Kim 89, Loh 91, BDK 92, Sto 93]), advanced query languages
(e.g. [Haa89, BCD 92]) and graphical user interfaces (e.g. [RC 88,
Agr 90, KL 92, VAO 93]).

Using advanced database technology for improving access to exist-
ing databases usually requires a complete system change or migration
making it necessary to convert the existing databaseswith all their appli-
cation programs that have been written and successfully used over the
years. A further difficulty inthe migration processisthat, in general, the
relational systemsare used on-linewith many application programsrun-
ning permanently on adaily basis. In performing a system change or mi-
gration, most companies fear the possibleloss of data and the necessary
changes of application programs. Additionally, in most cases system
changes or migrations are quite expensive, but even worse is the small
chance of a complete system failure. Companies therefore limit system
changesto the absolute minimum and, if changes are unavoidable, they
are planned carefully well in advance.

-2-

Query Trandlation of an Object-Oriented
into a Relational Query Language

Daniel A. Keim, Hans-Peter Kriegel, Andreas Miethsam

Institute for Computer Science, University of Munich
Leopoldstr. 11B, D-80802 Munich, Germany
{ keim, kriegel, miethsam} @informatik.uni-muenchen.de

Abstract

In this paper, we present a query translation algorithm which allows ob-
ject-oriented queriesto be automatically trandlated into arelational que-
ry language. Our goa is to provide an improved query interface for
existing relational database systems. The trandlation algorithm, we pro-
pose in this paper may be used to directly access relational databases,
but it may also be useful in the context of object-oriented multidatabase
systems to translate the common global query language into the query
languages of participating relational databases. Necessary steps in pro-
viding object-oriented accessto relational databases are schema enrich-
ment and transformation as well as query trandlation. The main focus of
this paper isthe query trandlation which hasto be performed fully auto-
matically since it has to be done each time, a query is processed by the
system, whereas schema enrichment and transformation may be done
only once in the beginning. Our query translation algorithm ensures a
full automatic trandation of object-oriented queries into equivalent
SQL queries for the origina relational schemain all cases where a di-
rect trandation is possible. In all other cases, it generates SQL queries
providing a superset of the desired data and a sequence of ‘formatting’
functions that transform the data into the desired result. Problems may
occur if additional user defined functions are used.

Keywords. query trandlation, query languages, relational database

systems, object-oriented database systems, multidatabase
systems, schema enrichment and transformation

-1-

Query Trandlation of an Object-Oriented
into a Relational Query Language

Daniel A. Keim
Hans-Peter Kriegel
Andreas Miethsam

L udwig-Maximilians-Universitat M tinchen
| nstitut fur Informatik

Bericht 9325
Dezember 1993

