
Proc. 

5th Int. Symp. on Spatial Data Handling, Charleston, S.C., 1992, pp. 200-209

Ralf Schneider and Hans-Peter Kriegel

Institut für Infonnatik, Universität München,

Leopoldstr. I1B, D-8000 München 40, Gennany

e-mail: ralf@dbs.infonnatik.uni-muenchen.de, kriegel@dbs.infonnatik.uni-muenchen.de

Abstract
In Geographic InfolTnation Systems spatial objects may change their spatiallocation

and/or shapes over time. Query processing of such spatiotemporal objects consists of

spatial query conditions and temporal query conditions. Dur study focuses on representing

the spatiotemporal monitoring of a polygonal object and aims at developing an efficient

data structure supporting queries and operations that refer to both spatial and temporal

monitoring. In this paper, we present a first perfolTnance comparison which indicates that

spatial indexing offers apossibility of efficient query processing of a spatiotemporal object

1. Introduction

In many applications of Geographic Information Systems (GIS) spatial objects are

generally perceived to be time varying. Thus, complex spatiotemporal objects have to be

managed. An important class of such spatiotemporal objects are two dimensional

polygonal objects that may change their spatial location and/or shapes over time. To

mention an example, in an interdisciplinary project we designed a bioindication database

(Kriegel and Schneider, 1990) in which lichens were used as a biological indicator tor

environmental pollution. Growth and change of the lichen's shape are a quantitative and

qualitative measure of the environmental stress to the lichen. To investigate this stress the

spatiotemporal monitoring of the lichen has to be represented. Before solving the general

problem of efficiently handling of spatiotemporal objects, in this paper we will restrict the

problem to the temporal sequence of a single object as it occurs tor lichens or historical

maps, e.g.

In Geographic Information Systems there are two types of representations für spatial

data: vector and raster representations. In this paper, we restrict Gur considerations to vector

representation because there are two main disadvantages of raster representation

(Oosterom, 1990): (1) Raster data depends on a specific projection. This leads to massive

problems when combining raster maps tram different sources. A scaleless database cannot

be implemented using a raster representation. (2) Objects in raster maps generallyare not

handled individually. Thus, a support by access methods is more difficult. Additionally,

raster data need considerably more disk space.



Versioning mechanisms, e.g. mentioned in (Katz, 1985), are hardly practicable für

polygonal objects, because representing changes from one version to another is often as

costly as representing the complete version. Dur experiences in designing the bioindication

database confmned this.

Xu et al. proposed in (Xu, Han and Lu, 1990) an improved index structure für

spatiotemporal databases. In their approach the spatial objects are approximated by

minimum bounding boxes. As a consequence, their index structure does not exactly

evaluate a query, hut only yields a set of candidates, that may fulfill the query condition.

Therefore, these candidates have to be examined in a second step. In this step, complex

algorithms known from the field of computational geometry are applied to the original

spatial objects detecting those objects finally fulfilling the query condition. In (Kriegei,

Horn and Schiwietz, 1991) it is shown that query processing of complex spatial objects is

dominated by the complex and time consuming computational geometry algorithms.

Therefore, the primary goal für efficient query processing is to reduce the computational

geometry time. An index on minimum bounding boxes (MBBs) of spatial objects yields

marginal improvement because the approximation using MBBs is orten so bad that the

number of candidates is not considerably reduced (Kriegel et al., 1991). Oue to this

observation also the interesting versioning approaches proposed in (Lanka and Mays,

1991) and (Oriscol1 et al., 1989) do not efficiently Support the spatiotemporal indexing of

the exact representation of polygons.

An important characteristic of a spatiotemporal object is the very high overlap of the

polygons that represent the instances of the spatiotemporal object over time. Therefore,

using the cell tree (Günther, 1989) or the edge quad tree (Samet, 1990) für spatial indexing

of the exact representation of the spatiotemporal object is not recommendable, because the

efficiency of these index structures degenerates when the overlap of the polygons increases.

In this paper, we will demonstrate that processing time of spatiotemporal queries can be

essentially reduced by investing time in preprocessing the object representation using

decomposition. Decomposition of complex objects into simple components removes

complex computational geometry algorithms from query processing replacing them by
simple and fast algorithms für the components.

Query processing of spatiotemporal objects consists of spatial query conditions and

temporal query conditions, e.g.: 'Which versions of an object overlap a query region from
time ~ to tj ?'. Gur study focuses on representing the spatiotemporal monitoring of a

polygonal object and aims at developing an efficient data structure supporting queries and

operations that feier to both spatial and temporal monitoring.



2. Queries on a Spatiotemporal Object

First, we have to define which types of spatial objects we want to consider. Dur spatial

objects are simple polygons with holes where simple polygonal holes may be cut out from

the simple enclosure polygon (see figurei). A polygon is called simple ifthere is no pair of

nonconsecutive edges sharing a point. From our experience, the class of simple polygons

with holes is adequate tor GIS applications, which is also underlined in (Burrough, 1986).

simple polygon with holessimple polygonFigure 1

In the following, a spatiotemporal object is defined as a sequence of such polygons

with incremental time stamps. The instance of a spatiotemporal object at a special point in

time is also called aversion. A spatiotemporal query is an arbitrary combination of spatial

query conditions and temporal query conditions. From the literature, no standard set of

spatial as weil as temporal queries fulfilling a1l requirements of GIS applications can be

derived (Scholl and Voisard, 1989). Thus it is necessary to provide a set of basic queries

that are efficiently supported by a data structure. Application specific queries and

operations, e.g., in (Oosterom, 1990), using more complex query conditions, can be

decomposed into a sequence of such basic queries. In the following we list a set of basic

spatial and temporal queries.

Spatial queries (the query region may be a polygon with holes)

.a point query reports those instances of the spatiotemporal object that contain

the query point.
.an intersect query reports those instances that intersect the query region.

.an enclosure query reports those instances that contain the query region.

.a containment query reports those instances that are contained by the query

region.
.an intersection query computes the intersection of the query region with all

instances of the spatiotemporal object

Temporal queries
.report the instance of the spatiotemporal object at time stamp 1j.

.report all instances of the spatiotemporal object from time stamp 1j to time

stamp tj'
.report the k th instance of the spatiotemporal object after time stamp 1j.

report the k th instance of the spatiotemporal object before time stamp !j



For representing a sequence of polygons with incremental time stamps the tradition al

method is to create an index over the time stamp and to store each polygon separately.

Using this method, a spatiotemporal query is answered in a two step manner:

Step I: The temporal query condition is evaluated using the time index. A set of

candidates fulfIlling the temporal query condition is selected.

Step 2: Using complex and time consuming computational geometry algorithms the

set of candidates is tested whether the spatial query condition is fulf111ed.

In the traditional method only the temporal query condition is indexed whereas the

time consuming computational geometry algorithms are not supported by an index. In

(Kriegei, Horn and Schiwietz, 1991) and (Kriegel et al., 1991) it is illustrated that a spatial

index may be constructed für an exact representation of polygons if the complex polygons

are decomposed into a set of simple components. In the following, we want to demonstrate

how spatiotemporal queries are efficiently performed using a spatial index für decomposed

polygons.

3. 

The Representation of a Spatiotemporal Object Using the TR*-tree

The basic idea of Dur approach can be summarized as foliows: We decompose each

polygon of the sequence into a set of disjoint simple components für which stare of the art

computational geometry concepts are used in order to guarantee efficiency. The time stamp

of the corresponding polygon is attached to each decomposition component. Due to this

preprocessing step, queries and operations can be simplified. For example, a complex 'Point

in Object'-test is replaced by a 'Point in Simple Component'-test and 'lntersection of

Objects' is replaced by 'lntersections of Simple Components'. A general consequence of

this decomposition is that complex and time-consuming algorithms are replaced by a set of

simple and fast algorithms. As a further advantage, the decomposition facilitates the

exploitation of the spatiallocality of queries and operations (see figure 2). The effect of

spatiallocality of queries and operations is enforced für spatiotemporal objects, depending

on the number of polygons within the sequence.

Figure 2: Spatiallocality of queries Figure 3: Trapezoid-Decomposition

According to Dur comparison of decomposition techniques (Kriegel et al., 1991) we

decided to decompose a polygon into a set of trapezoids introduced by Asano and Asano



(Asano and Asano, 1983). The components produced by this algorithm are formed as

trapezoids containing two horizontal sides. The algorithm uses the plane sweep technique

known from the field of computational geometry. The basic idea is to send out für each

vertex one or two horizontal rays into the interior of the polygon to the fIrst edge

encountered (see figure 3). The inverse operation of the decomposition process generating

the sorted list of vertices of the polygon can be performed efficiently using aplane sweep

merge algorithm similar to the map overlay algorithm proposed in (Kriegei, Brinkhoff and

Schneider, 1991).

The main properties of the decomposition into trapezoids are:

.the trapezoids possess two horizontal edges due to their construction; thus the

possibilities of the decomposition process are restricted to the choice of the

sweep line.

.the trapezoids are simple components with fixed length

.a polygon with n vertices is decomposed into < n trapezoids.

.the decomposition is easy to implement (Kriegel et al., 1991) and has a run

time performance ofO(n log n) (Asano and Asano, 1983).

Mter decomposing the polygons into trapezoids, it is possible to perform the queries

and operations on these trapezoids. The success of this kind of query processing depends

on the ability to narrow down quickly the set of trapezoids that are affected by queries and

other operations. Binary search on these trapezoids is not possible because we cannot

define a complete spatial order on the set of trapezoids that are generated by the above

decomposition process (Preparata and Shamos, 1988). Therefore, a new approach is

necessary that. permits efficient spatial search on the trapezoids. This approach must be

suitable tor all basic spatial queries and operations described in section 2 and it must be

completely dynamic, i.e., updates, insertions and deletions of new instances of the

spatiotemporal object do not influence the performance of the structure and require no

global reorganization. In (Schneider and KriegeI, 1991) we proposed the TR*-tree, a main

memory data structure that efficiently fulfill these requirements. The TR *-tree

representation of a spatiotemporal object is persistently stored on secondary storage and it

is completely loaded into main memory tor query processing. The TR *-tree is derived from

the R *-tree described in (Beckmann et al., 1990). The R *-tree is an optimized variant of the

weIl known R-tree (Guttman, 1984), a data structure tor storing multidimensional intervals.

A TR*-tree stores trapezoids as campiere objects without clipping them or

transforming them to higher dimensional points. A non-leaf node contains entries of the

form (cp, Rectangle) where 'cp' is the address of a child node in the TR *-tree and

'Rectangle' is the minimum bounding rectangle of all rectangles that are entries in that child

node. A leaf node contains entries of the form (Gid, Trapezoid) where 'Trapezoid' is a



component of the decomposed polygon with object identifier 'Oid'. Obviously, the structure

has to allow overlapping directory rectangles. Thus it cannot guarantee that only ODe search

path is required für retrieval queries.

4. An Empirical Perfonnance Comparison of Spatiotemporal Query Processing

In this section our study focuses on the comparison of two different approaches

answering queries on a spatiotemporal object that is represented by a sequence of polygons

with an incremental time stamp.

The representation oi a spatiotemporal object using the tradition al approach:
The time stamps of the instances are stored in a 2-3-tree introduced by Hopcroft (Aho,

Hopcraft and Ullman, 1987). A leaf node of the 2-3-tree contains entries of the form E =

(pi~, ~) where E.pi~ references to the exact representation of the instance of the

spatiotemporal object at time stamp ~.

The representation of a spatiotemporal object using Dur new approach:

In a preprocessing step each polygon of the sequence is decomposed into a set of

trapezoids. Each trapezoid receives the time stamp of the original polygon. The trapezoids

of all decomposed polygons are stored together in a single TR *-tree. A leaf node of this

TR*-tree contains entries ofthe form E = (trap,!j) where 'trap' represents a trapezoid ofthe

polygon at time stamp !j. A spatiotemporal query is answered as foliows: First, a spatial

search is performed by traversing the directory of the TR *-tree to find the trapezoids that

are affected by the spatial query condition. Thus, a set of candidate trapezoids is selected.

In a second step, the spatial query is performed only on those trapezoids fulfilling the

temporal query condition. This is düne by testing the time stamp of the selected trapezoids

against the temporal query condition.

Opposing strategies are used in the two approaches above. In the tradition al approach,

the temporal query condition is supported by an index, whereas in our approach the spatial

query condition is supported by an index using a new data structure, the TR *-tree. Dur

approach is guided by the goal to minimize the amount of complex and time consuming

computational geometry algorithms in query processing. Complex algorithms are avoided

by decomposing the polygons into a set of trapezoids. Thus, only operations on trapezoids

have to be performed evaluating the computational geometry part of the spatiotemporal

query. Additionally, by using the TR *-tree, an efficient spatial access method, the number

of tested trapezoids is minimized.

In the following we want to investigate the performance trade-off of the two methods

depending on which query condition the spatial or the temporal dominates the overall

query. In (Schneider and KriegeI, 1991) we demonstrated that varlous types of spatial



queries and operations can be perfonned efficiently using the TR *-tree representation of

polygons instead of implementing several tailor-cut computational geometry algorithms.

Therefore, in the traditional approach we use a TR *-tree tor each polygon within the

sequence evaluating the spatial query condition of the spatiotemporal query. Additionally,

this approach allows a standardized comparison of significant perfonnance parameters

because the two approaches use the same data structure in evaluating spatial queries and

operations. We prefer this way of an empirical perfonnance comparison because CPU-time

measurements are generally not comparable and different implementations of algorithms

and data structures lead to different CPU-times.

A basic problem of every experimental performance analysis is the selection of an

appropriate set of test data. Because of the lack of real data, we generated a sequence of 200

different polygons with each polygon consisting of75 edges and a sm all variance in size of

the polygons. Each polygon represents an instance of the spatiotemporal object at a

different time stamp. To simulate a spatiotemporal object we centralized the location of the

polygons in such a way that the centers of all 200 polygons cover the same point. This data

is representative für objects occurring in the bioindication application.

In our first experimental performance comparison we analyzed only oDe example

query: "Report all instances within a time intervaLthat contain a given query point". In

order to standardize the comparison we investigated successful point queries in randomly

distributed time intervals, i.e., at least ODe instance of the spatiotemporal object contains the

query point and is specified by the time interval. Therefore, the query answers vary flom

0.5% to 100% of the 200 instances of the spatiotemporal object. The performance of the

example query processing is characterized by counting the following three parameters:

.The number of time stamp comparisons are a measure of the expense of

evaluating the temporal query condition

.The number of 'Point in Rectangle'-tests (abr. PiR-tests) is a measure ofthe time

that is spent für the spatial search traversing the directory of the TR *-trees.

.The number of 'Point in Trapezoid'-tests (abr. PiT-tests) is a measure of

evaluating the computational geometry component of the example query.

In the presentation of the results we do not list the number of the time stamp

comparisons evaluating the temporal query condition because this time is negligeable with

respect to spatial search (PiR-tests) and computational geometry expense (PiT-tests).

The performance gap between the tradition al and Gur new approach depends on the

percentage of the instances of the spatiotemporal object that fulfill the example query.

Thus, we depict on the horizontal axis of figure 4 and 5 the percentage of instances of the

spatiotemporal object fulfilling Gur example query. In figure 4 the vertical axis depicts the



number of PiR-tes~ comparing the efficiency of spatial search of the two approaches. In

figure 5 we present the number of PiT -tests, a measure of the computational geometry

expense of the two approaches.

number of PiR-tests

2100 traditionaI approach

1800

1500

1200

900
new approach

600

300
query answers

5% 15% 25% 35% 45%55% 65% 75% 85% 95%1~

Figure 4: Comparison of the spatial search

number of PiT -tests

600 traditional approach

500

400
new approach

300

200

100
query answers

5% 15% 25% 35% 45% 55% 65% 75% 85% 95%10~

Figure 5: Comparison of the computational geometry expense

Interpretation of the Results:

In the traditional approach the spatiotemporal object is represented by n TR *-trees

where n is the number of instances of the spatiotemporal object. Therefore, the spatial

search and the computational geometry expense grows linearly because the candidates

specified by the time index can only sequentially tested evaluating the spatial query

condition. In Dur query example, m candidates require a point query of m TR *-trees (see

figure 4 and 5).



Contrarily, if we use one single TR*-tree representing the spatiotemporal object the

spatial search shows a nearly logarithmic growth with respect to the number of found

instances fulfilling the example query (see figure 4). This is based on the tree structure of

the TR*-tree (Schneider and Kriegei, 1991). Dur new approach reduces the computational

geometry cost because the TR *-tree is a data structure that clusters overlapping as weIl as

neighboring trapezoids very weIl. Therefore, only a few unsuccessful FiT -tests are

performed. For example, a TR*-tree representing a polygon with 75 edges performs 2.9

FiT -tests on the average to answer a successful point query. However, Dur approach needs

289 FiT -tests für a point query that specifies all 200 instances of the spatiotemporal object,

i.e. on the average 1.4 FiT -tests für one hit.

If less than 5% of the instances of the spatiotemporal object are specified by the

temporal query condition, the tradition al approach answers the example query always

faster. In this case, we have such an high selectivity of the temporal query condition that a

spatial indexing is not helpful. At 5% we have the break-even point between temporal and

spatial indexing für our example query.

This fIrSt perfonnance comparison shows that spatial indexing otters a possibility of

efficient query processing of a spatiotemporal object. In OUT future work, we will

investigate in a more extensive comparison the general performance trade-off of temporal

and spatial indexing with respect to different types of spatiotemporal queries and a

variation of object parameters such as location, shape and number of vertices, also

incorporating real data. Furthennore, we will design a query processor that supports

multiple representations of objects, optimizes between temporal indexing and spatial

indexing and operates on sets of spatiotemporal objects.

References

Asano Ta. and Asano Te. 1983: 'Minimum Partition of Polygonal Regions into
Trapezoids', Proc. 24th IEEE Annual Symposium on Foundations of Computer Science,
1983, pp. 233-241.

Aho A., Hopcraft J. and U1lman J. 1987: 'Data Structures and Algorithms', Addison-
Wes1ey, 1987.

Beckmann N., Kriege1 H.-P., Schneider R. and Seeger B. 1990: 'The R*-tree: An Efficient
and Robust Access Method tor Points and Rectangles', Proc. ACM SIGMOD Int. Cant.
on Management ofData, Atlantic City, N.J., 1990, pp. 322-331.

Burrough P. A. 1986: 'Principles of Geographical Information Systems tor Land
Resources Assessment', Oxford University Press, 1986.Drisco11 

J., Sarnak N, Sleator D. and Tarjan R. 1989: 'Making Data Structures Persistent',
Journal ofComputer and System Sciences, Vol. 38, 1989, pp. 86-124.



Günther 0.: 'The Design of the Cell Tree: An Object-Oriented Index Structure for
Geometric Databases', Proc. IEEE 5th Int. Conf. on Data Engineering, 1989, pp. 508-605.

Guttman A. 1984: 'R-trees: A Dynamic Index Structurefor Spatial Searching', Proc.
ACM SIGMOD Int. Conf. on Management ofData, Boston, MA., 1984, pp. 47-57.
Katz R. 1985: 'Information Management for Engineering Design " Springer, 1985.

Kriegel H.-P., BrinkhoffT. and Schneider R. 1991: 'An EfficientMap OverlayAlgorithm
basedon SpatialAccess Methods and Computational Geometry', Proc. Int Workshop on
Database Management Systems für Geographical Applications, Capri, 1991.

Kriegel H.-P., Horn H. and Schiwietz M. 1991: 'The Performance ofObject
Decomposition Techniques for Spatial Query Processing', Proc. 2nd Symp. on the Design
ofLarge Spatial Databases, 1991, in: Lecture Notes in Computer Science, Vol. 525,
Springer, 1991, pp. 257-276.

Kriegel H.-P., Heep P., Heep S., Schi wie tz M. and Schneider R. 1991: 'An Access Method
Based Query Processor for Spatial Database Systems " Proc. Int Workshop on Database

Management Systems für Geographical Applications, Capri, 1991.

Kriegel H.-P. and Schneider R. 1990: 'Design of a Bioindication Database System' (in
German), Proc. 5th Symp. Informatik für den Umweltschutz, Wien, 1990.

Lanka S. and Mays E. 1991: 'Fully Persistent B+ -tree', Proc. ACM SIGMOD Int Conf.
on Management of Data, 1991.

Oosterom P. J. M. 1990: 'Reactive Data Structuresfor Geographic Information Systems',
Ph.D.-thesis, Dept ofComputer Science at Leiden tJniversity, 1990.

Preparata F. P. and Shamos M. I. 1988: 'Computational Geometry', Springer, 1988.

Samet H. 1990: 'The Design and Analysis of Spatial Data Structures', Addison Wes1ey

Schneider R. and Kriege1 H.-P.: 'The TR*-tree: A New Representation of Polygonal
Objects Supporting Spatial Queries and Operations', Proc. 7th Workshop on
Computational Geometry, Bern, 1991, in: Lecture Notes in Computer Science, Vo1. 553,
Springer, 1991, pp. 249-264.

Scholl M. and Voisard A. 1989: 'Thematic Map Modelling', Proc. 1st Symp. on the
Design and Imp1ementation ofLarge Spatial Databases, Santa Barbara, 1989, pp. 167-
190.

Xu X., Han J., Lu W. 1990: 'RT-Tree: An ImprovedR-Tree Index Structurefor
Spatiotemporal Databases', Proc. 4th Int. Symp. on Spatial Data Handling, Zürich, 1990.~




