
Proc.

2nd Symp. on the Design of Large Spatial Databases, Zurich, Switzerland,
1991, in: Lecture Notes in Computer Science, Val. 525, Springer, 1991, pp. 5-22

The Combination of Spatial Access Methods
and Computational Geometry in Geographic Database Systems+

Hans-Peter Kriegel, Thomas Brinkhoff, Ralf Schneider

Institut für Informatik, Universität München, Leopoldstr. 11, D-8000 München 40, Germany

Abstract
Geographic database systems, known as geographic information systems (GISs)
particularly among non-computer scientists, are one of the most important applications of
the very active research area named spatial database systems. Consequently following the
database approach, a GIS hag to be seamless, i.e. store the complete area of interest (e.g.
the whole world) in one database map. For exhibiting acceptable performance a seamless
GIS hag to use spatial access methods. Due to the complexity of query and analysis
operations on geographic objects, state-of-the-art computational geomeny concepts have
to be used in implementing these operations. In this paper, we present GIS operations
based on the compuational geomeny technique plane sweep. Specifically, we show how
the two ingredients spatial access methods and computational geomeny concepts can be
combined für improving the performance of GIS operations. The fruitfulness of this
combination is based on the fact that spatial access methods efficiently provide the data at
the time when computational geomeny algorithms need it für processing. Additionally,
this combination avoids page faults and facilitates the parallelization of the algorithms.

1 Introduction

Geographic database systems, also known as geographic information systems (GISs), are Olle
of the most imponant applications of spatial database systems. Basically, they consist of two
parts: First, components to query and manipulate geographical data and second, components to
manage and store the data. However, the main purpose of a GIS is to analyze geographical data.

GIS algorithms presented in the past assume that the maps are kept in main memory or in
sequential files on secondary storage. The following two important requirements of future GISs
demand für new approaches: First, the database system of a GIS must be ahle to manage very
large volumes of data. The large amount of data (in the order of Giga- and Terabytes) is
additionally increased by pursuing the goal to manage scaleless and seamless databases [Dos90].

Second, the database system has to support spatial access to parts of the database, such as
maps, and to the objects of a map. Such access is a necessary condition für efficient query and

manipulation processing.

Pursuing these goals we want to take advantage of spatial access methods (SAMs). In the
past few years many access methods were developed which allow to organize large sets of
spatial objects on secondary storage. There are three basic techniques which extend
multidimensional point access methods (PAMs) to multidimensional spatial access methods [SK

+ This work was supported by grant no. Kr 670/4-3 from the Deutsche Forschungsgemeinschaft

(German Research Society) and by the Ministry ofEnvironmental and Urban Planning of Bremen

88]: clipping, overlapping regions, and transformation. Point access methods such as the grid
file [NHS 84], PLOP-hashing [KS 88], the BANG file [Fre 87] and the buddy tree [SK 90]
can be extended by these techniques. Additionally, there are access methods which are designed
für managing simple spatial objects directly. They use Olle of the above techniques inherently,
e.g. the R-tree [Gut 84] and the R*-tree [BKSS 90] use overlapping regions, or the cell tree
[Gün 89] uses clipping. An excellent survey of such access methods is given in [Sam 89].

The use of SAMs as an ingredient in GISs is absolutly necessary to guarantee good
retrieval and manipulation perfonnance, in particular für large maps. The use of SAMs enables
us to perform operations only on relevant parts of seamless databases. GIS operations on maps
modelIed by a vector based representation are orten very time intensive. Therefore the use of
state-of-the-art computational geometry algorithms as a second step of performance
improvement is straightforward [Nie 89]. In [KBS 91] we have shown in detail that the
performance of the operation map overlay -an important and orten used analysis operation in a
GIS- can be considerably improved by applying the computational geometry technique 'plane

sweep'.

The basic approach of this paper is to partition the seamless databases using SAMs
according to the requirements of the GIS operations. Then state-of-the-art computational
geometry algorithms are performed on these partitions and the results are combined in order to
increase the overall performance of the GIS operations. Thus we combine spatial access
methods and computational geometry in order to improve the efficiency of GISs. The
combination of these two areas is based on the fact that both use spatial order relations.

The next section describes seamless, vector based databases in GISs. How the efficiency of
a GIS is increased by using computational geometry algorithms is shown in section 3. The
coupling of spatial access methods and the plane-sweep technique is presented in section 4. An
approach to parallelize plane-sweep algorithms follows in section 5. The paper concludes with a
summary and an outlook to future work.

2 Seamless vector-based databases in GISs

Olle important requirement to future GISs is the efficient management of so-called seamless
spatial databases [Oos 90]. A database is seamless if it does not store sets of map sheets
describing only particular small parts of the database, hut the whole area managed by the GIS
(e.g. the whole world) is stored in Olle database map. For analysis the user can select any area
of interest by a window query. An example is shown in figure 1. This window contains the
map which is of further interest to the user. Queries to and manipulations of objects of this map
need access to the whole database which is in the order of Giga- and Terabytes. Therefore, the
database system of the GIS must be ahle to support efficient access to any parts of the data on

secondary storage.

A GIS is based on two types of data [Bur 86]: spatiaI and thematic data. Thematic data is
aIphanumeric data related to geographic objects, e.g. the degree of soi! pollution. Spatia! data
hag two different properties: (1) geometric propenies such as spatiaI location, sire, and shape of
spatiaI objects, and (2) topologicaI propenies such as connectivity, adjacency, and inclusion.

Topological data can be stored explicitely or can be derived from geometric data.

1
J

~.~

b

.~0~

)

Figure

1: Window query selecting a part of the spatial database

There exist two models for spatial data: vector and raster representations. We consider in
this paper only maps modelied by a vector representation because there are two main
disadvantages of raster representations [Oos 90]: (1) Raster data depends on a specific
projection. Therefore, there are problems when combining raster maps from different sources.
A scaleless database cannot be realized using araster representation. (2) Objects in raster maps
generally are not handled individually. Thus, a support by access methods is more difficult.
Additionally, raster data are more voluminous.

In this paper the term map is used für thematic maps. Those emphasize one or more
selected topics, e.g. land utilization, population density etc. Thematic maps are generally
represented by choropleth maps which separate areas of different properties by boundaries [Bur
86], e.g. forests, lakes, roads, or agriculturally used areas (see figure 2).

~
~
~
;;);""",

~
~

We assume that the connected areas with the same property are described by simple
polygons with holes, and that the used data structures are ahle to handle such polygons
explicitly [KHHSS 91a]. A polygon is simple if there is no pair of nonconsecutive edges
sharing a point A simple polygon with holes is a simple polygon where simple polygonal holes
may be cut out (see figure 3). There may be other areas in such a hole. The areas of a map are
disjoint hut they do not need to cover the map completely. Each area refers to exactly one
thematic attribute. In figure 2 these characteristics of a thematic map are depicted by an example
which visualizes the land utilization of a part of a map.

Forest

Lake

House

Road

Grain

Com

Barley

simple polygon non-simple polygon simple polygon with holes

Figure 3: Different polygons

Below, a fonnal definition of a thematic map is presented where ~ denotes the regularized
intersection [Ti! 80] and T is the set of values of the thematic attributes of M:

M := { t = (t.P, t.A) I t.P is a simple polygon with holes, t.AE T}

where tl E M, t2 E M, tl ~ ~ ~ tl'P ~ ~.P = 0

Maps of different topics describing the same part of the world are called map layers.

3 Increasing the performance of a GIS using computational geometry

Efficient algorithms typically use general techniques such as divide-and-conquer or recursion.
For algorithms solving computational geometry problems the algorithmic technique called
plane sweep has proven to be very efficient. In this section we apply this technique to
operations in GISs and examine the performance and robustness of such an approach.

3.1 The plane-sweep technique

An algorithm working in the area of GIS should defme and utilize an order relation on the
objects in the plane to enable a spatial partition of the input maps. Plane sweep is a technique of
computational geometry which fulfills this demand [PS 88]: significant points of the objects
(event points) are projected onto the x-axis and are processed according to the order relation on
this axis. Event points are stored in a queue called event point schedule. If event points are
computed during processing, the event point schedule rollst be ahle to insert event points after
initialization. A verticalline sweeps the plane according to the event points from left to fight.
This line is called sweep line. The state of the plane at the sweep line position is recorded in
vertical order in a table called sweep line status. The sweep line status is updated when the
sweep line reaches an event point. Event points which are passed by the sweep line are deleted
from the event point schedule. Figure 4 depicts an example of the event point schedule and the
sweep line status.

IBzIA21Dtl C21D21
event point schedu/e
(containing the start and
end points of the line segments
which are not passed yet;
ordered by x-coordinates)

sweep line status
(containing the liDe segments
which intersect the sweep liDe;
ordered by y-coordinates
of the line segments
at sweep line position)

plane

Figure 4: Example of aplane sweep

3.2

The map overlay

Olle of the most important operations in a GIS is the map overlay. It combines two or more
input maps of different topics into a single new output map. The combination of the thematic
attributes or of geometric or topological properties of the input areas is controlled by an overlay
function f, where f is defined or selected by the user of the GIS. The goals are to derive new
maps, to find correlations between the infonnation encoded in maps, and to process complex
queries. C.D. Tomlin's map analysis package (MAP) [Tom90] is completely based on the map

overlay operation.

We want to illustrate the overlay operation by an example. Figure 5 depicts two input maps
'land utilization' and 'soil pollution'. In the output map all areas should be reported, which are
forests or agriculturally used land and where the degree of soil pollution is greater than 2.

~ (tl.A = grain or corn or barley) and (t2,A;?: 2)
~ (tl.A = forest) and (t2.A ;?: 2)
D otherwise

f(tI. t2) =

land utilizarion

Forest

rm Lake
~ House
;;::;;;; Road

rn Grain
~ Com
8 Barley

soli Dollution

,;:, degree of soi! pollution = 1

.degree of soi! pollution = 2

.degree of soi! pollution = 3

D sealed land

~ forest and soil pollution ~ 2

~ agriculturally used land
and soil pollution ~ 2

Figure 5: Example of a map overlay and an overlay function

In [KBS 91] we presented an overlay algorithm in detail which was based on the plane-
sweep technique. This algorithm is called plane-sweep overlay.

The merge algorithm

Plane-sweep algorithms can be used für further problems in a GIS. The merge operation is Olle
of them which is closely related to the map overlay [Fra 87]: Its purpose is to merge
neighboring areas in Olle map representing the same thematic attribute (see figure 6). For
example, such maps may result from a classification of the attributes or from an overlay with a
non-injective overlay function. The neighboring areas with identical attributes can be merged by
an plane-sweep algorithm similar to the plane-sweep overlay algorithm. The merge algorithm
does not insert edges which separate areas with identical attributes into the sweep line status.
Thus the resulting polygons describe the merged areas.

~

Ä

~

Figure 6: Merging neighbored areas with identical thematic attributes

Geometric computation of polygons from a set of line segments

Another application of plane-sweep algorithms is the following operation: Given a planar graph
by a set of line segments, generate the areas limited by these line segments. This operation is
needed für example to perform a geometric conversion of spatial data between different
geographic information systems. Our implementation of this operation is based on the
implementation of the plane-sweep overlay in [KBS 91]. Necessary modifications are an
adaption of the intersection treatment and a new calculation of the thematic attributes.

3.3 Performance analysis

In this section we ex amine the perfonnance of plane-sweep algorithms in an experimental
framework. Because the map overlay is the most costly operation of the algorithms mentioned
above, we investigated the plane-sweep overlay in the following. The principle results are also
valid for the other operations if we consider that those algorithms need not to compute

intersections.

Let n be the total number of edges of an polygons and k be the total number of intersection
points of all edges. In [KBS 91] we showed that the worst case performance of the plane-
sweep overlay is t (n,k) = 0 ((n+k) * log (n)) (under the assumption that the number of edges

attached to Olle event point is limited by a constant).

We implemented the plane-sweep overlay algorithm in Modula-2. To examine the
performance experimentally, we ran tests on a SUN workstation 3/60 under UNIX. We used a
8 Byte floating point representation which was supponed by the hardware and system software.
The implementation was developed to demonstrate the properties of the plane-sweep algorithm
hut it was not tuned for speed. Consequently, there is scope to speed up the overlay.

We perfonned four test series between two input maps. The maps consist of (1) a regular
net of areas to get a constant proportion p of kIn, (2) areas covering the map completely which
are generated by a tool, (3) tool-generated areas covering only 50 per cent of the map, and (4)
real data. Test series 1 was perfonned with different proportions p. In test series 4a two maps
of administrative divisions of Italy were overlaid where one was translated by an offset. In test
series 4b the stare frontier of Uganda and lakes near by were overlaid. Typical input maps of the
series are depicted in figure 7:

test senes 1 test senes 2 test senes 3

test series 4a (Italy) test genes 4b (Uganda: state frontier) test series 4b (Uganda: takes)

Figure 7: Input maps of the test series

The results of the test series 1 are shown in table 1. t is the used CPU time in sec which is
needed to perfOffi1 the overlay. Additiona1ly, we want to determine the constant c of the map
overlay algorithm hidden by the Q-notation (c = t / (n * In n».

genes la (p = 0.25): series Ib (p = 0.1): senes lc (p = 0.033):
n t rsecl c rmsecl

2048 25 1.61
4608 59 1.52
8192 112 1.51

10368 142 1.48
15488 227 1.52
21632 313 1.45
25088 363 1.43

n t f secl c fmsecl

2880 29 1.26
5120 53 1.22
8000 86 1.20

11520 130 1.21
15680 183 1.21
20480 246 1.21
25920 307 1.17

-n t r secl c rmsecl

2160 18 1.11
4860 44 1.06
8640 83 1.06

11760 113 1.03
15360 147 0.99
19440 190 0.99
24000 246 1.02

Table 1: Results of the test series 1

The test series of table 1 demonstrate how the constant depends on the number of
intersection points. An analysis of these tests results in the following function:

t (n,k) = c' * (n+ 1.75 * k) * In (n)

The value of c' in the test series la to lc is approximately 1.05 msec. We would like to
emphazise that this constant is very small with respect to performance criteria.

series 2: renes 3:
n D t rsecl c rmsecl C'rmsecl

13176 0.240 188 1.50 1.02
28837 0.154 372 1.26 0.97
30285 0.161 413 1.32 1.01

n D t fsecl cfmsecl c'fmsecl

6251 0.262 101 1.85 1.21
14179 0.184 221 1.63 1.20
15260 0.188 245 1.66 1.22

Table 2: Results of the test senes 2 and 3

senes 4a (Italy):
series 4b (Uganda, p < 0.004):

n t rsecl Crmsecl

1852 16 1.16
8973 86 1.05

17829 180 1.03

division n n t fsecl c fmsecl c'fm~lli

stare 6666 0.012 67 1.14 1.12
groups ofregions 9622 0.015 94 1.07 1.04
regions 11542 0.014 110 1.02 0.99
provinces 20378 0.023 194 0.96 0.92

Table 3: Results of the test senes 4

3.4 A suitable coordinate representation for plane-sweep algorithms

The instability of plane-sweep algorithms against numerical errors is an objection being raised.
This reproach may be justified if a floating point representation is used to compute the
intersection points. However rational coordinates are a more suitable representation because
they form a vector space. For example, a rational representation of coordinates is used in an
implementation of a map overlay in [FW 87].

A more detailed analysis of such a representation leads to the following statements:

1 The coordinates in maps recorded by a GIS can be represented by pairs of integers. This
assumption is realistic because both, the described part of the world and the resolution are
limi ted

2. To compute intersection points, integer coordinates are insufficient [Fra 84]. But the
computation of the intersection of line segments described by integer coordinates, needs
only a limited number of digits to represent the intersection points by rational numbers.
Let n the number of digits of the integers of the input map then the number of digits of the
nominator of the intersection points is smaller than 2*n+4 and the number of digits of the
denominator is smaller than 3*n+4 (see [Bri 90]).

3. If the input rnaps of an overlay or of another operation producing intersections, result
from an analysis operation (thus containing rational coordinates), the same number of
digits as in statement 2 is sufficient für the representation of the intersection points. This
is due to the fact that no line segments connecting intersection points are introduced.

Under realistic assumptions rational coordinates of finite precision are an easy, relative
efficient, and numerical exact coordinate representation for geographic information systems.
Plane-sweep algorithms are absolutly robust by this approach. For an efficient use of rational
coordinates an adequate support by hardware and system software is desirable hut lacking

today.

4 Coupling spatial access methods and plane-sweep algorithms

The database system of a GIS must support efficient query processing as weIl as efficient
manipulation and combination of maps. To fulfill these requirements we assume that the
database system uses suitable spatial access methods (SAMs) for the management of the
database. In particular, this allows to exttact the relevant parts from the seamless database
(maps). In the following we assume that each map layer is organized and supported by its own
SAM because in GISs an efficient access to a map of one topic is desirable, e.g. land utilization
or soil pollution.

An orten used technique to store areas with SAMs is to approximate them by minimal
bounding boxes (MBBs). MBBs preserve the most essential geometric propenies of geometric
objects, i.e. the location of the object and the extension of the object in each axis. The query
processing is carried out in two (or more) steps. MBBs are used as a ftrstfilter to reduce the set
of candidates. The second step (rejinement) examines those candidate polygons by

decomposing them into simple spatial objects such as convex polygons, triangles, or trapezoids
([KHHSS 9la], [KS 91]). To test the polygons für intersection with a sweep line or query
rectangle, MBBs are a sufficient fIrst filter.

In the following we assume that the SAM organizes the access to the objects of a database
using a tree-like directory. Such access methods are adequate in handling non-uniform spatial
data [KSSS 89]. The inner nodes are called directory pages, the leaves of the tree are datapages.

The data and directory pages of a SAM define a partition of the data space. In Ouf case a
record in a data page consists at least (a) of a MBB, (b) of the value of the thematic attribute,
and (c) of a polygon description or of apointer to such adescription depending on the sire of
the polygon, see [KIllISS 9Ib].

As mentioned in the introduction, the database and the maps in a GIS may be very large.
Therefore it is not useful to keep all maps in main memory, especially not in multi user systems.
In systems with a virtual storage manager the efficiency could decline by a large number of page
faults.

Instead of processing the maps completely, it is more efficient to partition the maps and to
carry out the plane sweep algorithms on these partitions. One approach is to partition the map
using a unifonn grid like in [Fra 89]. Obviously, this is not the best way because a non-uniform
data distribution is not adequately handled by this approach. We will partition the map by using
SAMs and the plane-sweep technique.

Another important reason to partition the maps is the running time of plane-sweep
algorithms which is often more than linear. By partitioning we reduce the number of polygons
and edges which have to reside in main memory performing the plane sweep. This speeds up
the running time für the complete plane sweep.

4.1 Sweep-line partition

For a plane-sweep algorithm only those polygons are relevant which intersect the sweep line.
Thus we have a criterion für partitioning by the algorithm itself: Only polygons intersecting the
sweep line or close to the sweep line, are kept in maiß memory. In terms of SAMs this means to
read data pages from secondary storage as soon as the sweep line intersects them. We call this

approach sweep-line partition.

Sweep-line partition and transformation

For example, the sweep-line partition can be realized by the transformation technique [SK 88].
This technique transfonns the coordinates of a 2-dimensional MBB into a 4-dimensional point
There are two representations of such points:
(1) The center representation consists of the center of the rectangle (cx,Cy) and the distance of

the center to the sides ofthe rectangle (ex,ey).
(2) The corner representation stores the lower left (xl'Yl) and the upper fight corner (X2'Y2)

of the box.

The 4-dimensional points are stored by a suitable multidimensional point access method, e.g.
the grid file [NHS 84], PLOP-hashing [KS 88], the BANG file [Fre 87], or the buddy tree [SK
90] .

In the following we use the transfonnation technique with corner representation. The SAM
uses its own sweep line. These sweep line is driven by the partition of the SAM. Perfonning a
plane-sweep algorithm, we must synchronize the sweep line of the algorithm and the sweep line
of the SAM. When the sweep line of the algorithm overtakes the sweep line of the SAM, new
data pages must be read from secondary storage by the SAM. An example is depicted in fig. 8.

~~@c~~
x ...

Xl

Figure 8: Sweep-line partition and realization by transfonnation (x-dimensions are shown only)

The sweep-line partition is also applicable to the other techniques (i.e. clipping and
overlapping regions [SK 88]) and to access methods inherently using these techniques, e.g. the
R-tree [Gut 84] and the R*-tree [BKSS 90] (overlapping regions), or the cell tree [Gün 89]

(clipping).

Performance

Using the sweep line partition reduces the number of page faults considerably because only
those parts of the maps intersecting the sweep liDe reside in main memory. Minimizing the
number of page faults during the algorithm improves the overall performance.

This gain of efficiency is only slightly reduced by the following effect: Without partition
every required page is accessed exactly once. The pass through the tree of the SAM according
to the sweep line rnay cause several accesses to the same directory page. However, the number
of accessed directory pages is, compared to the total number of read pages, generally very
small. In table 4, the space requirements of real maps are listed (assumming an R*-tree with
pages of 2 KB):

mau data directoa directoa share

Africa (countries) 4679348 byte 3924 byte 0.084 %
Africa(topography) 5528816 byte 46332 byte 0.831 %
LatinAmerica(countries) 5178440 byte 10332 byte 0.199 %
LatinAmerica(topography) 3785440 byte 51480 byte 1.342 %
EC (regions) 1126360 byte 29916 byte 2.587 %

Table 4: Space requirements of data and directory

/sweep line

~

4.2 Strip Partition

Contrary to a partition driven by the sweep line, an orthogonal partition is possible. To support
the plane sweep, it is sensible to divide the map into strips Si which extend over the whole map

(strip plane sweep). In the following we assurne proceeding from the top strip SI to the bottom

strip SM (see figure 9). The strip partition shortens the length of the sweep line which decreases
running time. The height of the strips may vary to adapt the partitions to non-uniform data
distributions.

Figure 9: Strip partition

Some areas of a map may intersect more than olle snip. Olle solution is to read a11 necessary
areas foT each snip. The consequence is that many data pages are accessed several times.
Therefore, this procedure is too costly. Another way is to store such areas temporarily in a
buffeT. Those areas are an additional input to the next snip plane sweep. Thus, every area of an
map can be assigned to exactly Olle snip Si and needs to be read from secondary storage only

once.

As in section 4.1 we assurne that each accessed data page is completely read. Areas not
intersecting the actual strip are buffered. The access to the areas of one strip corresponds to
standard region queries which supply all polygons intersecting the strip. There is only one
exception: Data pages accessed by previous strips are not read again. We call this kind of query

modified region query. Such queries are perfonned very efficiently by the R*-tree [BKSS 90],
a variant of the well-known R-tree [Gut 84]. This is caused by the minimization of area,
margin, and overlap of directory rectangles in the R*-tree.

Generating an optimal strip partition

In the following, we want to describe how an optimal strip partition of the map is generated. An

optimal strip partition adapts the strips to the distribution of the areas of the map, exploits the
size of main memory, and avoids page faults. The strip partition is best supponed by using an
efficient SAM, such as the R*-tree.

As mentioned, the areas of each map which are simple polygons with holes, are
approximated by minimal bounding boxes, which preserve the location and the extension of the
areas. The number of bytes representing an area is assigned to the MBB. This is necessary

because we cannot expect in GIS applications that each area is described by the same number of
bytes. Each data page represents a set of areas. Thus, für each data page the number of bytes
can be calculated which is necessary to store the data of this page in main memory. This
information is stored in lowest level of the directory.

In a preprocessing step of a plane-sweep algorithm, we determine the data pages which
intersect the map. Each data page of the SAM corresponds to a region of the data space, e.g. the
regions of the R*-tree are rectangles. These regions are sorted in descending order according to
the highest y-coordinate of the region. Initially, the buffer is empty which stores areas which are
not performed completely by a strip sweep line. According to the order mentioned above the
fIrst k regions are determined where the sum of bytes which are represented by these k regions
is smaller than the size of main memory minus the size of the buffer. Thus, the fIrst strip SI is

limited by the highest y-coordinate of the (k+ l)st data page. The areas which are not handled
completely in the fIrst strip sweep line will be stored in the buffer. The above procedure is
iterated.

To illustrate this approach we present the following example where the sire of main
memory is restricted to 8 mega bytes (see figure 10).

buffer = 0 MB

strip 1

~
strip partitionbuffer = 0.25 MB

strip 2

data page

buffeT = 1 MB

strip 3

map

_Qata space

Figure 10: Example of generating an optimal strip partition

The numbers 1 to 9 of the data pages indicate the order mentioned above. The sire of the
data pages 1 to 4 amounts to 7 MB. With the next data page the size of main memory would be
exceeded (7MB + 2 MB ~ 8MB) and page faults could occur. Therefore, the fIrst strip ends at the
highest y-coordinate of the data page 5. Let us assume thai after the fIrst strip plane sweep 0.25
MB are stored in the buffer. Then the second strip can be extended until 7.75 MB are not
exceeded. Thus, the data pages 5 to 7 are associated to the second strip. Finally, the data pages

8 and 9 and the regions stored in the buffer are accomodated in the third strip.

Generating the optimal strip partition is not time intensive because only directory pages are
read to ger the necessary infonnation, such as the size of the data pages and bytes represented
by the data pages. Data pages are only read from secondary storage when the plane-sweep
algorithm is perfonned actually. The ratio of read directory pages to read data pages is very
small when perfonning a plane-sweep algorithm (compare section 4.1).

Parallel processing of plane sweeps5

In the last years there are many efforts to design, to manufacture, and to utilize computer
architectures of multiple, parallel central processing units (CPU s). Computers using such
architectures are called multiprocessor systems or parallel computers. Their main objective is to
increase the performance compared to one-processor systems. Future database systems and
particularly spatial database systems of GISs have to pursue using such architectures. This is
important especially für time-consuming operations such as the map overlay or related GIS

operations.

The use of parallel architectures necessitates the development of spatial access methods
which support parallel access to the database and (if possible) utilize the parallel architecture.
The second goal is the design of parallel algorithms which exploit the parallelism offered by the
architectures and the parallelism hidden in the problem in a best possible way.1n this section we
demonstrate such exploitation of parallelism für plane-sweep algorithms.

There exist different types of multiprocessor systems. We assume that each CPU has its
own maiß memory (local memory). Parts of the memory may be shared. Olle important
characteristic of multiprocessor systems is the communication between the processors. There
exist many interconnection networks in such systems ([GM 89], [SR 87]), e.g. static networks
as rings, trees, hypercubes, or grids. Modem architectures allow dynamic routing between
arbitrary processors. In the following, we assume a linear arrangement where each processor
can communicate with its direct neighbor. Such a structure can be realized by most
interconnection networks.

The strip partition seems to be the best candidate for a parallel execution of plane sweeps. A
natural approach is to process the strips simultaneously and independently. But there are same
problems: As mentioned in section 4.2, areas exist which intersect more than one strip. If we
perform the plane sweeps independently, many data pages must be read from secondary storage
several times. This effect decreases the performance of the approach considerably. Another
problem is that we may need the results of strip Si-l for processing strip Si which is e.g.

necessary for the plane-sweep overlay of thematic maps without complete cover by the areas.

Therefore, we have to synchronize the strip processing. We introduce a second sweep fine
for each strip indicating the part of the map which is already processed completely. The fIrst
sweep line of strip Si+l is not allowed to overtake the second sweep fine of Si. The process of

Si+ 1 is suspended if necessary. An example of parallel strip processing is shown in figure 11:

Figure 11: Parallel strip processing

Parallel plane-sweep overlay

This approach can be realized for the plane-sweep overlay [KBS 91] with linIe extensions to the
original algorithm: For maintaining the second sweep line, we need a new data structure L. The
actual x-position P of the first sweep line and an identification number of the region are inserted
into L when a new region is starting. L is ordered by P and can be implemented using a
balanced tree. The position P and the region ID are also stored additionally to the edges in the
sweep line status. If the algorithm detects that two regions with different region IDs are
identical, the entry with P starting further to the fight is deleted from L. When a region is
closed, the associated entry is deleted from P. If this entry was the minimum entry, the second
sweep line is allocated at the position of the new minimum entry of L. This processing is
illustrated in figure 12. Other plane-sweep algorithms can be modified in a similar way.

delete (PI, r ~ from L;
if (PI, r)) was the
minimum entry of L,
set the second sweep line
to the new minimum ofL

I

deiete (~, ~
from L

:
:
..insert (I\:rv inseri(p,.r,)

intoL intoL

Figure 12: Update ofthe data structure L

Conclusions6

In this paper, we demonstrated the fruitfulness of combining spatial access methods and
computational geometry concepts, in particular für the plane-sweep paradigm, in order to
increase the efficiency of geographic database systems. The marriage of these two areas was
enabled by the property that the spatial access method supports the plane-sweep paradigm.

Since plane-sweep processing generates results in sorted order, the spatial access method rollst
be robust with respect to sorted insertions für storing these results. As an example of providing
good performance we presented the plane-sweep map overlay which is a very important
analysis operation in a geographic information system. Good analysis and retrieval performance
are important factors für good user acceptance of a GIS. Thus, in our future work, we will
design efficient algorithms based on spatial access methods and computational geometry für all
retrieval operations. Performance improvements which exceed those realized in this paper by
coupling spatial access methods and computational geometry, are feasible by using processors
suitable für rational numbers and by implementing parallel GIS algorithms on parallel
multiprocessor systems. These issues are important goals in future work.

Acknowledgement

We thankfully acknowledge receiving real data
the European countries by the Statistical Office
are taken from the World Data Bank 11. Additi,
making bis map generator available to uso

References

[BKSS 90]

[Bri 90]

[Bur 86]

[Fra 84]

[Fra 87]

[Fra 89]

[Fre 87]

[FW 87]

[GM 89]

[Gün 89]

Beckmann, N., Kriegei, H.-P., Schneider, R., Seeger, B.: The R*-tree: An
Efficient and Robust Access Method für Points and Rectangles. Proc. ACM
SIGMOD Int. Conf. on Management ofData, 322-331,1990
Brinkhoff, T.: Map Overlay of Thematic Maps Supported by Spatial Access
Methods. Master thesis (in German), University of Bremen, 1990
Burrough, P .A.: Principles of Geographical Information Systems für Land
Resources Assessment. Oxford University Press, 1986
Franklin, W.R.: Cartographic Errors Symtomatic of Underlying Algebra
Problems. Proc. Int. Symp. on Spatial Data Handling, Val. I, 190-208, 1984
Frank, A.U.: Overlay Processing in Spatial Information Systems. Proc. 8th Int.
Symp. on Computer-Assisted Cartography (Auto-Carto 8), 16-31, 1987
Franklin, W.R. et al.: Uniform Grids: A Technique für Intersection Detection on
Serial and Parallel Machines. Proc. 9th Int. Symp. on Computer-Assisted
Cartography (Auto-Carto 9), 100-109, 1989
Freeston, M.: The BANG fIle: a new kind of grid file. Proc. ACM SIGMOD
Int. Conf. on Management ofData, 260-269, 1987
Franklin, W.R., Wu, P.Y.F.: A Polygon Overlay System in Prolog. Proc. 8th
Int. Symp. on Computer-Assisted Cartography (Auto:'Carto 8), 97-106, 1987
Gonauser, M., Mrva, M. (eds.): Multiprozessor-Systeme: Architektur und
Leistungsbewertung. Springer, 1989
Günther, 0.: The Design of the Cell Tree: An Object-Oriented Index Structure
für Geometric Databases. Proc. IEEE 5th Int. Conf. on Data Engineering, 598-
605. 1989

representing national administrative divisionsof
of the European Communities. Further real dataonally,

we would like to thank Holger Horn für

[Gut 84] Guttman, A.: R- Trees: A Dynamic Index Structure für Spatial Searching. Proc.
ACM SIGMOD Int. Conf. on Management ofData, 47-57, 1984

[KBS 91] Kriegei, H.-P., Brinkhoff, T., Schneider, R.: An Efficient Map Overlay
Algorithm based on Spatial Access Methods and Computational Geometry.
Proc. Int. Workshop on DBMS's für geographical applications, Capri, May 16-
17,1991

[KllliSS 91a] Kriegei, H.-P., Heep, P., Heep, S., Schiwietz, M., Schneider, R.: An Access
Method Based Query Processor für Spatial Database Systems. Proc. Int.
Workshop on DBMS 's für geographical applications, Capri, May 16-17, 1991

[KllliSS 91b] Kriegei, H.-P., Heep, P., Heep, S., Schiwietz, M., Schneider, R.: A Flexible
and Extensible Index Manager für Spatial Database Systems. Proc. 2nd Int.
Conf. on Database and Expert Systems Applications (DEXA '91), Berlin,
August 21-23, 1991

[KS 88] Kriegei, H.-P., Seeger, B.: PLOP-Hashing: A Grid File without Directory.
Proc. 4th Int. Conf. on Data Engineering, 369-376, 1988

[KS 91] Kriegei, H.-P., Schneider, R.: The TR.-tree: A New Representation of
Polygonal Objects Supporting Spatial Queries and Operations. Submitted für
publication, 1991

[KSSS 89] Kriegei, H.P., Schiwietz, M., Schneider, R., Seeger, B.: Performance
Comparison of Point and Spatial Access Methods. Proc. 1st Symp. on the
Design of Large Spatial Databases, 1989. In: Lecture Notes in Computer
Science 409, Springer, 89-114,1990

[NHS 84] Nievergelt, J., Hinterberger, H., Sevcik, K.C.: The Grid File: An Adaptable,
Symmetric Multikey File Structure. ACM Trans. on Database Systems, Vol. 9,
No. 1,38-71, 1984

[Nie 89] Nievergelt, J.: 7:t2 Criteria für Assessing and Comparing Spatial Data
Structures. Proc. 1st Symp. on the Design of Large Spatial Databases, 1989.
In: Lecture Notes in Computer Science 409, Springer, 3-28, 1990

[Oos 90] Oosterom, P .J.M.: Reactive Data Structures für Geographic Information
Systems. PhD-thesis, Department of Computer Science at Leiden University,
1990

[PS 88] Preparata, F.P., Shamos, M.I.: Computational Geometry. Springer, 1988
[Sam 89] Samet, H.: The Design and Analysis of Spatial Data Structures. Addison-

Wesley,1989
[SH 87] Siegel, H.J., Hsu, W.T.: Interconnection Networks. In: Milutinovic (ed.):

Computer Architecture: Concepts and Systems. North-Holland, 225-264, 1987
[SK 88] Seeger, B., Kriegei, H.-P.: Techniques für Design and Implementation of

Efficient Spatial Access Methods. Proc.. 14th Int. Conf. on Very Large Data
Bases, 360-371, 1988

[SK 90] Seeger, B., Kriegei, H.-P.: The Buddy-Tree: An Efficient and Robust Access
Method für Spatial Database Systems. Proc. 16th Int. Conf. on Very Large Data
Bases, 590-601, 1990

[TiI80] Tilove, R.B.: Set Membership Classification: A Unified Approach To
Geometric Intersection Problems. IEEE Trans. on Computers, Vol. C-29, No.
10, 874-883, 1980

[Tom 90] Tomlin, C.D.: Geographic Information Systems and Cartographic Modeling.
Prentice-Hall,1990

