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COMPLEXITY OF NORMALIZATION IN THE PURE TYPED LAMBDA - CALCULUS 

Hdbrut SclwxLcktznbeAg 

By the pure typed λ-calculus we mean as usual the system of terms b u i l t up from 

typed v a r i a b l e s x T , y T , . . . and maybe typed constants a T,b T,... by means of a p p l i ­

c a t i o n {t0*Ts°) and λ-abstraction {\x°tT)°~*T. Here the types τ , σ , . . . are induc­

t i v e l y generated from a ground type 0 by means of ( σ - > τ ) . I t is well-known ( c f . 

e.g. T r o e l s t r a [T] ) that any such term has a uniquely determined normal form w i t h 

respect t o so-called B-reductions . . . ( X x t ) s . . . -»·... t [s] ... , and that t h i s nor­

mal form w i l l e v e n t u a l l y be reached no matter which sequence of reduction steps 

one chooses 1^. 

In t h i s paper we w i l l be concerned w i t h estimates f o r the number of re d u c t i o n 

steps necessary to reach the normal form. We w i l l give an & lower bound i n §1 by 
2) 

w r i t i n g down terms t of length 3n and showing that i t takes at least 2 n_^ - η 
reduction steps ( w i t h 2_ := 1 , 2 , := 2 n ) t o br i n g t i n t o i t s normal form. In §2 0 n+i η ^ 
we describe a p a r t i c u l a r normalization procedure and give an £ upper bound ( i n 

terms of m a x ( l h ( t ) , L ( t ) ) , where 1h(t) denotes the length of t and L ( t ) denotes 

the inner type level of t , i . e . the maximum type level ^ of a subterm of t ) f o r 

the number o f reduction steps t h i s procedure w i l l c a rry out. 

The r e s u l t of §1 also f o l l o w s from Statman [S] , where i t i s shown more gene­

r a l l y that the problem whether two terms t ^ and t ^ have the same normal form i s 

not elementary r e c u r s i v e . However, f o r the more s p e c i f i c question we are i n t e r e s ­

ted in here i t is possible to give our much simpler proof. Also, the mere r e s u l t 

of §2, namely t h a t f o r some s p e c i f i c n ormalization procedure there is an & upper 

We make use here of the f o l l o w i n g conventions, ( l ) Type supersc r i p t s w i l l be 
omitted whenever they are clear from the context or i n e s s e n t i a l . (2) Terms t h a t 
d i f f e r only in the bound v a r i a b l e s used are i d e n t i f i e d . (3) S u b s t i t u t i o n i s de­
noted by t [s] . (4) Brackets w i l l be omitted whenever possible; we w i l l w r i t e t s r 
for ( t s ) r . x 

2) 
By the length of a term t we mean the number of occurrences of v a r i a b l e s or con­

stants in t except those immediately behind a λ-symbol. 
^The type l e v e l | τ | of a type τ i s defined i n d u c t i v e l y by 10 Ε : = 0, ! σ τ | = max 
( Ι σ | + 1 , | τ | ) . 
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bound on the number of reduction steps, is c e r t a i n l y not new to any expert in the 

f i e l d . However, i t seems t h a t the simple e x p l i c i t d e s c r i p t i o n of the bounding 

f u n c t i o n obtained below is of some i n t e r e s t . 

I t should also be noted t h a t , by combining the r e s u l t s proved here w i t h those 

of Gandy [G], one can o b t a i n a universal & upper bound f o r the number of reduc­

t i o n steps w i t h respect to any normalization procedure. This can be seen as f o l ­

lows. For any term t of type τ, by Gandy's method one can define a closed type-0-

term | t | w i t h the property tha t i t s numerical value i s a bound on the number of 

reduction steps, where i t does not matter in which way the reduction steps are 

choosen. Now to obtain a bound f o r the numerical value of | t | , we f i r s t note that 

by the argument of §2 we have an & bound on the number of reduction steps the 

s p e c i f i c n ormalization procedure given there w i l l carry out to produce the normal 

form of | t | ; t h i s bound is in terms of max(1h|11), L (111)). Since, by Gandy's con­

s t r u c t i o n of | t | , l h ( | t | ) depends only l i n e a r l y on l h ( t ) , and L ( | t | ) = L ( t ) , we 

also have an upper bound on the number of reduction steps in terms of m a x ( l h ( t ) , 

l _ ( t ) ) . Next note that any reduction step at most squares the length of the o r i g ­
in 

i n a l term. So we have an £ upper bound on the length (and hence on the numerical 

value) of the normal form of I t l , again in terms of max(1h(t), L ( t ) ) . This gives 

the desired r e s u l t . (The f a c t t h a t one can o b t a i n an £ upper bound from Gandy's 

work in [G] has been mentioned to me by G.E. Mine and R. Statman). 

§1. The pure types k are defined i n d u c t i v e l y by 0 : = 0, k +1 := k k . We de­

f i n e j_t£rajtj_on jf^nc_tJjojTa_l_s I of pure type k + 2 by 

w i t h η occurrences of f a f t e r AfAx; here f,x are v a r i a b l e s of type k + 1,k, res­

p e c t i v e l y . Let f°g be an a b b r e v i a t i o n f o r λχ f ( g x ) , and l e t t = s mean that t and 

s have the same normal form. With t h i s n o t a t i o n we can w r i t e 

w i t h η occurrences of f a f t e r Af. 

The main point of our argument i s the f o l l o w i n g simple lemma, which can be 

traced back t o Rosser ( c f . Church [C, p. 3 0 ] ) . 

η 

I :== AfAx f ( f ( . . . f ( f x ) . . . ) ) , η 

I = A f f o f o . . . o f 
η 

LEMMA. (I f)°(l f ) = I m η m+n 
f 

= I 
m η 

1 1 = 1 m η m η 
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As an immediate consequence we have 

t n : s ι 2 ι 2 . . . ι 2 - . 2 

2 
(w i t h 2 n := 1, 2 1 := 2 ) . Now consider any sequence of reduction steps t r a n s -

0 ' ' n+1 
3 t i n t o i t s 3 η 

steps in t h i s sequence. 

forming t i n t o i t s normal form, and l e t S denote the t o t a l number of reduction a η η 

THEOREM. S >2 0 - n. η n-2 

P^.00JS. The length of t is 3n. Note that any reduction step 

. . . (Axt) s . . . -> . . . ί χ [s] . .. can at most square the 1 ength of the or i gi na 1 term. 

Hence we have 

2 < length of l _ (the normal form of t ) 
η ζ η 

η S 
2 η 

< (length of t ) 
\ Π 

2 n 

= ( 3 n ) 2 

2 n + $ n 2 n 

< 1L (since 3n<2^ ) , 

and the theorem is proved. 

§2. Our aim here is to set up a s p e c i f i c normalization procedure f o r which 

an 8> upper bound on the number of reduction steps can be obtained e a s i l y . So l e t 

an a r b i t r a r y term be given. Our normalization procedure is an obvious one: we 

search f o r redexes of maximal type l e v e l , and among those we take the rightmost 

one and convert i t . Here by a redex we mean as usual an occurrence of a subterm 

( λ χ σ ί τ ) σ Ίs°, and to convert i t means to replace i t by ΐ χ[δ]. i t s type level i s 

the type level of σ-*τ. 

In order to get an estimate f o r the number of reduction steps needed, we 

associate a number w i t h any given term and show that t h i s number decreases w i t h 

any reduction step. To o b t a i n such a number, we f i r s t assign to any term t a 

sequence a . ( t ) of numbers, as f o l l o w s : a . ( t ) is the number of redexes or o f v a r i ­

ables in t w i t h type 1evel i + 1. Obv i ous1y only f i η i t e l y many a . ( t ) w i l l be d i f -

ferent from 0. Now l e t us consider a reduction step and see how the assigned se­

quence w i l l change: 
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. . . ( A x t ) s t [s ] . . 

c + a ( t ) + 1 c + a ( t ) m m m m 7 

c m , +a ( t ) +a (s) < c + a m , ( t ) +a As)a At) m-l m-1 m-l m-1 m-1 m-1 n -1 

c 0 + a 0 ( t ) + a 0 ( s ) < c 0 + a f l ( t ) + a 0 ( s ) a n . , ( t ) . 

Here m+1 is the level of the type σ + τ of Xxt, and η is the level of the type σ 

of s. (Note t h a t , i f n = 0, we have a.(s) =0 f o r a l l i ). c. i s the c o n t r i b u t i o n 

to our sequence of t h a t part of the terms above that is denoted by ... . More 

p r e c i s e l y , i f those terms are w r i t t e n as r ^ [ ( A x t ) s ] and r ^ f t ^ O ] ] , r e s p e c t i v e l y , 

then c. = a . ( r ) - 1 . 
ι ι 

Now denote the sequence associated w i t h the o r i g i n a l term by 9Γ and the 

sequence associated w i t h the reduced term ( f o r which we only gave an estimate) 

by 2T' . We want to have numbers |9ΐ| , |9ϊΊ assigned to ST,ST' such that |3ί| > IST'I . 

This can be done as f o l l o w s . Let 2> = (d.) be a sequence w i t h only f i n i t e l y many 

e n t r i e s d i f f e r e n t from 0. Let m be maximal w i t h d >0. Then d e f i n e 

\%\ = q(m,d ,d) w i t h d = max(d n,...,d , ) , 
=· ' m' [1 m-1 

where 
2 

g(m,a+1,b) = g(m,a,b ) + 1 

g(m+1,0,b) = g(m,b,b) 

g(0,0,b) = b. 

Note that g belongs to the class δ of Grzegorczyk [Gr] , and t h a t f o r any f i x e d 

m the f u n c t i o n g(m,.,.) belongs t o & ^ , i . e . is elementary re c u r s i v e . 

I t is easy to check t h a t g(m,a,b) i s monotone in a and b f o r any f i x e d m. 

Using t h i s , l e t us show that |W| > Ι3ΓΊ . Case 1: c +a ( t ) > 0 . 3 m m 
Then we have 

|8T| = g(m,c + a ( t ) + 1 ,m) wi th Μ := max (c. + a. ( t ) + a . (s)) 
m m 0<i<m 1 1 1 

= g(m,c +a ( t ) ,M ) + 1 m m 

> g(m,c + a ( t ) , max (c. +a. ( t ) + a. {s)an 1 ( t ) ) ) + I . 

> W I + 1 
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Case 2 : c +a ( t ) = 0 and M = 0 . Obvious. Case 3 : c + a ( t ) = 0 , i maximal such m m . m m 
that c . + a . ( t ) + a . ( s ) = 0 . Then we have 

Ι9ΓΙ = g(m,1 ,M) 

= g(m,0,M 2) + 1 

= g(m-1,M2,M2) + 1 

> g(i,M 2,M 2) 

> IST' I . 

Here we have made use of the obvious f a c t t h a t g(m,b,b) is monotone in m. This 

concludes the proof of |3ί| > |?ί'| . We can summarize our argument as f o l l o w s . 

THEOREM. For any given term t , the number of reduction steps f o r the proce­

dure described above is <q(m,a ( t ) , a ( t ) ) . Here m+ 1 is the maximal type l e v e l of 
m ' r 

a redex in t , a ( t ) := Q ^ 3 ^ a j ( t ) and a . ( t ) is the number of redexes or of 

va r i a b l e s In t whose type level i s 

COROLLARY, ( l ) There is an δ f u n c t i o n f such that f o r a l l closed t y p e - 0 -

terms t the above normalization procedure terminates in < f ( m a x ( 1 h ( t ) , L ( t ) ) ) 
steps. ( 2 ) For a l l m there is an elementary recursive f u n c t i o n g m such that f o r 
a l l closed type - 0-terms t w i t h L ( t ) < m the above normalization procedure t e r ­
minates in < g ( 1 h ( t ) ) steps, 

m 
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