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Abstract

In the field of statistical discrimination nearest neighbor methods are a well
known, quite simple but successful nonparametric classification tool. In higher
dimensions, however, predictive power normally deteriorates. In general, if some
covariates are assumed to be noise variables, variable selection is a promising
approach. The paper’s main focus is on the development and evaluation of a
nearest neighbor ensemble with implicit variable selection. In contrast to other
nearest neighbor approaches we are not primarily interested in classification, but
in estimating the (posterior) class probabilities. In simulation studies and for real
world data the proposed nearest neighbor ensemble is compared to an extended
forward / backward variable selection procedure for nearest neighbor classifiers,
and some alternative well established classification tools (that offer probability
estimates as well). Despite its simple structure, the proposed method’s perfor-
mance is quite good - especially if relevant covariates can be separated from noise
variables. Another advantage of the presented ensemble is the easy identification
of interactions that are usually hard to detect. So not simply variable selection
but rather some kind of feature selection is performed.

Keywords: Nearest Neighbor Methods, Variable Selection, Ensemble Meth-
ods, Classification
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1 Introduction
The rather old nearest neighbor method (Fix and Hodges, 1951) is one of the sim-
plest and most intuitive techniques in the field of statistical discrimination. The
method is nonparametric and memory based. A new observation with unknown
class label is placed into the class of the observation from the training set that
is closest to the new observation - with respect to some covariates. Despite (or
because of) its simplicity nearest neighbor predictions are often accurate. Cover
and Hart (1967) showed that (for any number of categories) the probability of
error of the (one) nearest neighbor rule is bounded above by twice the Bayes error
rate. For results when discrimination is based on k nearest neighbors see Ripley
(1996).

Closeness or similarity, respectively distance d of two observations is de-
rived from a certain metric in the predictor space. For a given training set
T = {(yi, xi); i = 1, . . . , n}, with yi denoting the class membership and the vec-
tor xi = (xi1, . . . , xip)

T representing the predictor values, the nearest neighbor
classification of a new observation (y, x) is ŷ = y[1], with (x[1], y[1]) denoting the
nearest neighbor in the training set, i.e. d(x, x[1]) = min1≤i≤n(d(x, xi)). A possi-
ble distance measure is the so-called Minkowski distance

d(xi, xr) =

(
p∑

j=1

|xij − xrj|q
)1/q

.

When the Euclidian metric is used one has the special case of q = 2. All nearest
neighbor methods in the following are based on the Euclidian metric.

In this paper nearest neighbor approaches are applied in a more general way.
One aspect of the proposed method is feature selection. Our aim is not only
classifying (or estimation) but to find the most influential variables and inter-
action terms. In higher dimensions simple nearest neighborhood estimates tend
to be unstable when noise variables are present. Therefore we aim at selecting
relevant variables or interactions between them, and combine the nearest neigh-
borhood predictions based on single or small groups of predictors. Beyond simple
classification, we use nearest neighbor concepts as nonparametric estimators for
posterior class probabilities - given classes g = 1, . . . , G. If not only the first but
the k nearest neighbors of observation i are used for classifying i, the relative
frequency of predictions in favor of category g among these neighbors can be seen
as an estimate of the probability of category g. These estimates π̂ig can take
values h/k, h ∈ {0, ..., k}, indicating how many times g is observed among the k
nearest neighbors of observation i. If neighbors are weighted with respect to their
distance to the observation of interest, π̂ can in principle take all values in [0, 1].
Weighting neighbors is for example proposed by Silverman and Jones (1989) and
further investigated and implemented by Hechenbichler and Schliep (2004). By
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contrast, in the nearest neighbor ensemble proposed in this article probability
estimates unequal to h/k, h ∈ {0, ..., k}, do not result from the weighting of
neighbors but from combining and weighting different single nearest neighbor
estimates.

The paper is organized as follows. In the next section the proposed nearest
neighbor ensemble approach is presented. By means of simulations studies its
behavior and performance is extensively studied in Section 3. Finally in Section
4 the introduced technique is visualized for some real world data

2 Nearest Neighbor Ensembles
Ensemble methods are a general group of methods. Several classifiers - or learn-
ers - are fitted, votes are counted, and final classification is given by the most
popular class. Nearest neighbor ensembles have been proposed by some authors.
Domeniconi and Yan (2004) investigated ensembles of nearest neighbor classi-
fiers based on random subsets of predictors, while performing adaptive sampling.
That means variable selection is not completely at random, but a probability dis-
tribution is employed in the sampling mechanism. The probability distribution
is derived from some kind of relevance measure. Thus, the approach is a two-step
procedure, because in a first step all features’ relevance needs to be determined
by an adequate technique. Yankov et al. (2006) dealt with forecasting time se-
ries and proposed ensembles of forecasts from different neighborhoods, namely
k1-NN and k2-NN with small k1 and larger k2. The name ensemble, however, is
misleading, since prediction for a given unit is finally based on either k1-NN or
k2-NN. The question what prediction is more suitable needs to be answered by
an adequate classifier. Our goal is to perform variable selection, i.e. selection in
the feature space, using nearest neighbor methods.

2.1 Basic Concept

We will start with the simplest case when the learners in the ensemble are nearest
neighbor estimates based on single variables. Thus, let π̂ig(j) be the nearest neigh-
bor estimate of probability that observation i falls in category g, if the distance
measure is only based on predictor xj. The final estimate π̂ig is constructed as
an ensemble, i.e. the weighted average

π̂ig =

p∑
j=1

cjπ̂ig(j), with cj ≥ 0 ∀j and
∑

j

cj = 1. (1)

We explicitly use weights cj on the variables in order to obtain a selection of
relevant predictors. These weights - or coefficients - are unknown and need to be
determined in some way. They only have to be positive and sum up to one.
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Before presenting our strategy for determining these weights, the question
shall be answered if further flexibility is possible. Further flexibility would result
from weights depending on category g, i.e.

π̂ig =
∑

j

cgjπ̂ig(j), with cgj ≥ 0 ∀g, j and
∑

j

cgj = 1 ∀g.

However, it can be shown that restriction c1j = . . . = cGj = cj is the only
possibility to ensure that π̂ig ≥ 0 ∀g and

∑
g π̂ig = 1 for all possible future

estimations {π̂ig(j)} with π̂ig(j) ≥ 0 ∀g, j and
∑

g π̂ig(j) = 1 ∀j.
Since it is not known where a new observation i (that is to be classified) will

be located in the predictor space, it is unknown what values single estimates π̂ig(j)

will have. Hence it must be ensured that estimates π̂ig sum up to one given any
estimates {π̂ig(j)}. The proof of the statement above is given in the appendix.

2.2 Determination of Weights

As mentioned before, in the ensemble formula (1) the single nearest neighbor
estimates π̂ig(j) are considered as fixed, and weights cj need to be determined.
For that purpose we primarily choose a loss function - or score - L(y, Π̂), which
quantifies how well the true class labels y = (y1, . . . , yn)T are fitted by probability
estimates (Π̂)ig = π̂ig, i = 1, . . . , n, g = 1, . . . , G. As it is seen from the ensemble
formula (1), given all single nearest neighbor estimates {π̂ig(j)}, the matrix Π̂,
consisting of final estimates π̂ig, is a function of c = (c1, . . . , cp)

T . So for given
training data T = {(yi, xi); i = 1, . . . , n} (and hence given estimates π̂ig(j)) our
strategy is minimizing L(y, Π̂) over all possible c.

Possible Loss Functions

Before introducing loss functions, let us represent the categorial response yi ∈
{1, . . . , G} by a G-dimensional vector zi = (zi1, . . . , ziG)T of indicator variables

zig =

{
1, if yi = g
0, otherwise.

With convention "0·∞ = 0", a somewhat natural loss function is the Logarithmic
Score

L(y, Π̂) =
∑

i

∑
g

zig log(1/π̂ig),

which can be derived from the likelihood. For a given p-dimensional predictor
vector xi a single zi is multinomially distributed with one draw:

zi ∼ Mult(1, πi),
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with the group probabilities depending on xi and being merged into a vector πi =
(πi1, . . . , πiG)T . So we have P (yi = g|xi) = πzi1

i1 · . . . ·πziG
iG . For a single observation

yi the negative log likelihood is −l(yi, πi) = −l(zi, πi) =
∑

g zig log(1/πig). If a
sample of n observations is given, we have l(y, Π) =

∑n
i=1

∑
g zig log(πig), with y

denoting the n-dimensional vector of observed classes. The maximum l(y, Π) =
0 is obtained for πig = 1, if zig = 1, and zero otherwise. A single r(π̂i) =∑

g zig log(1/π̂ig) may be seen as the Kullback-Leibler-divergence between zi and
π̂i, also called "minus log likelihood error" (Le Cessie and van Houwelingen, 1992).

However, in spite of the close connection to the maximum likelihood princi-
ple, the logarithmic scoring rule is not really recommendable, because it is too
sensitive with respect to differences between very small probabilities (cf. Selten,
1998). In the present case this hypersensitivity may be carried to an extreme. If
the number of considered neighbors is only modest and the sample is large, it is
not unlikely that there is at least one observation i with no neighbor from the
same category. Then the estimated probability π̂iyi

for the correct class yi is zero
and the logarithmic loss has value ∞.

The hypersensitivity can be removed via a second order Taylor approximation
of the logarithmic score, expanded about πig = 1, if zig = 1, and πig = 0 otherwise.
Since

∂L(y, Π)

∂πig

=
−zig

πig

, if zig = 1; 0 otherwise,

and
∂2L(y, Π)

∂πig∂πjk

=
zig

π2
ig

, if zig = 1, i = j, g = k; 0 otherwise,

we obtain the loss function

V (y, Π̂) =
∑

i

∑
g

zig

(
(1− π̂ig) +

1

2
(1− π̂ig)

2

)
.

However, by removing the logarithmic score’s hypersensitivity V suffers from
a new theoretic disadvantage. By contrast to the logarithmic loss, V is not
"incentive compatible" (Selten, 1998). Incentive compatibility means that the
expected loss E(V ) =

∑G
y=1 πyV (y, π̂y) for a new observation y with true class

probabilities π1, . . . , πG is not minimized by π̂g = πg, g = 1, . . . , G. For a two-
class response with g ∈ {1, 2}, for example, E(V ) is minimized by π̂1 = 0, if
π1 < 1/3; π̂1 = 3π1 − 1, if 1/3 ≤ π1 ≤ 2/3; π̂1 = 1, if π1 > 2/3.

An incentive compatible scoring rule that is not hypersensitive is the pure
quadratic loss (see e.g. Selten, 1998)

Q(y, Π) =
∑

i

∑
g

(zig − πig)
2,

which was first introduced by Brier (1950) and is sometimes also called Brier
Score. If the response has more than two categories, it should be kept in mind
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that the logarithmic score, or its approximation, only looks at the estimated
probability for the actual class yi, whereas the quadratic loss Q also takes into
account how the estimated probabilities are distributed on the false classes. For
fixed estimated probability of the true class the loss is higher, if the true class is
faced with a single but strong competitor than in the case when probability mass
is equally distributed over the false classes.

Practical Implementation

For practical minimization of the Brier score the procedure is as follows. For each
training observation i we create a matrix Pi of single estimates

(Pi)gj = π̂ig(j).

These matrices are merged into a big matrix P = (P T
1 | . . . |P T

n )T . The same is
done with dummy vectors zi, i.e. we have z = (zT

1 , . . . , zT
n )T . Now the Brier score

as function of c = (c1, . . . , cp)
T can be written in matrix notation:

Q(c) = (z − Pc)T (z − Pc).

Hence a quadratic optimization problem with restrictions cj ≥ 0 ∀j and ∑
j cj = 1

arises. So weights cj can be determined using quadratic programming methods,
e.g. using the R add-on package quadprog (Turlach, 2007). An alternative in-
terpretation is in terms of regression: z is regressed (without intercept) on the
estimated probabilities forming P .

In spite of the disadvantage of not being incentive compatible the approximate
logarithmic loss V shall be tested as an alternative for determining the weights
cj. If rows from P are deleted where z has entry zero, and the resulting matrix
is denoted by P̃ , V as a function of c can be written is matrix notation as well
(1 denotes the vector of length n consisting of 1s):

V (c) = 1T (1− P̃ c) +
1

2
(1− P̃ c)T (1− P̃ c)

=
3

2
n− 21T P̃ c +

1

2
cT P̃ T P̃ c

= −1

2
n +

1

2
(21− P̃ c)T (21− P̃ c).

Since argmincV (c) = argminc(21 − P̃ c)T (21 − P̃ c), another regression problem
with restrictions arises, which can be solved using quadratic programming meth-
ods, too.
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2.3 Variable Selection and Interactions

Variable xj is selected if cj 6= 0. There are various ways to obtain predictors with
zero weights. When determination of weights is completed, variable selection can,
for example, be done via hard thresholding, i.e. coefficients less than a certain
threshold t, for example t = 0.25 · maxj{cj}, are set to zero. A coefficient less
than 0.25 ·maxj{cj} means that the corresponding predictor does not even have
25% of the weight of the ’most important’ predictor, resp. estimate. Of course,
after eliminating some coefficients, the remaining weights need to be rescaled
to sum up to one. The threshold value 0.25 · maxj{cj} is taken as default in
all investigations below. Alternatively soft thresholding may be applied. When
coefficients - denoted by c̃j - have been determined, we set cj = (c̃j − t)+ (and
rescale); s+ is the positive part of s, i.e. s+ = s, if s > 0, and s+ = 0 otherwise.

If thresholding is used, variables (resp. single estimates) are selected after ini-
tial determination of weights. Since coefficients fulfilling

∑
j cj = 1 are anyway

obtained by scaling, restrictions may be primarily disregarded when determining
weights. If restrictions are replaced by

∑
j |c̃j| ≤ s, a lasso type problem (Tib-

shirani, 1996) arises. Lasso typical selection characteristics cause c̃j = 0 for some
j. With rescaling and cj = c̃+

j a sensible ensemble results. If lasso estimation is
done with additional restriction c̃j ≥ 0, the positive lasso (Efron et al., 2004) is
obtained. Nevertheless we prefer estimation without these additional constrains,
since computation of the original lasso solution is easier. In addition variable
selection is intended and negative coefficients indicate poor predictive capability
of the corresponding term.

Finally - and very importantly - the matrix of predictions P can be augmented
by including interactions of predictors. That means adding all predictions π̂ig(jl),
resp. π̂ig(jlm) based on two or even three predictors j, l and m. So the (initial)
ensemble may consist of much more than p terms. Obviously this is feasible
for small scale problems only, because including interactions P has p +

(
p
2

)
+ . . .

columns. However, if variable selection is applied, many terms will be excluded,
and the final ensemble will contain only a modest number of estimates.

3 Simulation Studies
To investigate its behavior the presented nearest neighbor ensemble is studied
in simulation studies taken from the literature. Particularly when prediction
performance is evaluated, the proposed approach should be compared to some
alternative procedures, in order to know if the observed performance can be called
"good". So we first introduce our reference methods.

7



3.1 Reference Methods

Two important features of the proposed nearest neighbor ensemble are its se-
lection property and the possible identification of interactions. So the ensemble
should be compared to another nearest neighbor approach with suchlike features.

Nearest Neighbor Forward/Backward Variable Selection

The procedure is very simple. We just employ a slightly modified forward vari-
able selection approach based on leaving one out cross validation. For categorial
outcomes, p (potential) predictors and a given (small) S the algorithm is as fol-
lows.

Forward Variable Selection by Nearest Neighbor Methods

Step 1:

Select up to S predictors from the p predictors for nearest neighbor classification
by LOO cross validation.

Step 2:

From the remaining predictors select another set of 1 to S predictors by LOO
cross validation and add these predictors to the already chosen one(s).

Step 3:

If there is no improvement in prediction accuracy after Step 2, just take the
predictor set from Step 1; else repeat Step 2 until there is no improvement in
prediction accuracy anymore.

The tuning parameter S can be seen as the number of simple forward selection
steps that are checked in one iteration. Furthermore S can be interpreted as the
highest interaction that should be detected. The motivation is that the (marginal)
discriminative capability of a certain predictor may be lower or completely absent,
if other variables are disregarded. Hence relevant predictors may not be selected
by simple forward selection procedures. An illustrating example is given in the
next section.

Furthermore the given algorithm may be seen as a slightly modified version
of a GPTA(l,r) (Kudo and Sklansky, 2000) procedure, i.e. go forward l stages
by adding l predictors and go backward r stages by deleting r predictors and
repeat this process. Since for small scale problems this approach gives quite good
results (cf. Kudo and Sklansky, 2000), we use it as a kind of reference procedure
for nearest neighbor based variable selection.
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Wherever forward selection is considered backward selection may be seen as
an alternative.

Backward Variable Selection by Nearest Neighbor Methods

Step 1:

Perform nearest neighbor classification based on the entire set of p predictors.

Step 2:

By LOO cross validation select a set of maximum S predictors to be excluded
from the reference data for nearest neighbor classification.

Step 3:

If there is no improvement in prediction accuracy after Step 2, just take the
original predictor set from Step 1; else exclude further sets of 1 to S predictors
until there is no improvement in prediction accuracy anymore.

In analogy to the previous paragraph the tuning parameter S can be seen as
the number of simple backward selection steps that are checked in one iteration.
In the current implementation forward and backward variable selection aim at
minimizing the Brier score on a given training set.

Some Alternative Classification Tools

The methods introduced above are compared to weighted 5 nearest neighbors as
proposed in Hechenbichler and Schliep (2004), R package kknn) - an approach that
can also be found in Silverman and Jones (1989), a commentary on the famous Fix
and Hodges (1951) paper. Additionally we will report the performance of some
other well established classification tools; namely linear discriminant analysis
(LDA), CART (Breiman et al., 1984) and Random Forests (Breiman, 2001). For
estimation we used the R packages MASS (Venables and Ripley, 2002), rpart
(Therneau and Atkinson, 2007), randomForest (Liaw and Wiener, 2002), see R
Development Core Team (2007) for further information.

For estimating the ensemble weights the corresponding optimization problem
(with restrictions) was solved via quadratic programming methods from the R
add-on package quadprog. The single estimates forming the ensemble are stan-
dard 3 nearest neighbor estimates. Variable selection is done via hard threshold-
ing with t = 0.25 maxj cj.
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Figure 1: Boxplots of quadratic loss (dark-gray) and number of missclassified observations (light-
colored) over 30 simulations for 3 nearest neighbors with forward / backward variable selection
(S = 4), 3 nearest neighbors ensemble based on approx. log score / quadratic score, weighted 5
nearest neighbors, LDA, CART and Random Forests (RF), given the easy classification problem.

3.2 Two Classification Problems

We look at two simulated problems from Hastie et al. (2001). There are 10
independent features xj, each uniformly distributed on [0, 1]. The two class 0/1
coded response y is defined as follows:

• as an "easy" problem: y = I(x1 > 0.5), and

• as a "difficult" problem: y = I(sign(
∏3

j=1(xj − 0.5)) > 0).

Given the easy problem, dark-gray boxplots in Figure 1 summarize the results
in terms of the quadratic loss (Brier score) for 3 nearest neighbors with forward,
resp. backward variable selection (S = 4) and the developed nearest neighbor
ensemble classification technique over 30 realizations of training (m = 200) and
test (n = 1000) data. Due to the disadvantage of not being incentive compatible
the approximate logarithmic loss is not appropriate for evaluating the perfor-
mance of the considered methods. The logarithmic score itself is not applicable
either, because with just one test observation falling a category with estimated
probability (close to) zero it tends to infinity.

To make variable selection more complicated in the nearest neighbor ensemble,
not only predictions based on single predictors are considered but also interaction
up to order 3, i.e. predictions using sets of maximum 3 predictors. Ensemble
weights are determined via minimizing the approximate log score or the Brier
score. So the quadratic loss may be seen as a prejudiced measure of prediction
accuracy. Hence as a more neutral quantity we additionally give the number
of missclassified test observations (light-colored), if observations are classified as
belonging to the category with highest posterior probability.
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Figure 2: Boxplots of weights in the nearest neighbor ensemble given the easy classification
problem and 30 realizations of training data, each term’s average weight is marked by the solid
line.

All considered methods with variable selection properties perform well. By
contrast, particularly ordinary nearest neighbor approaches without variable se-
lection get into difficulties caused by noise variables.

In Figure 2 weights of terms in the nearest neighbor ensemble are shown by
means of (degenerated) boxplots. Estimation was based on either the approx-
imate logarithmic loss or the Brier score. The background indicates estimates
based on a single predictor only, estimates using two predictors, and triple inter-
actions respectively. As requested, the nearest neighbor estimate using x1 only
has the far highest weight in the ensemble. But when the quadratic Brier score
was used for estimation, in a few iterations also less relevant predictions got some
weight.

In Figure 3 we show weights of the terms in the ensemble when the diffi-
cult classification problem is analyzed. Variable selection is perfect. The most
important term no. 56 is the prediction based on x1, x2 and x3. So the good
performance (see Figure 4) is not very surprising.

A forward selection procedure with S ≥ 3 can be expected to select the
relevant independent variables. But due to the complicated interaction of x1, x2

and x3, the forward variable selection with S = 1 would not be successful. We
chose S = 4 again. Also greedy algorithms like CART and the methods based
on the latter like Random Forests are not able to identify the right variables.
LDA as well is completely inappropriate, and as before nearest neighbor methods
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Figure 3: Boxplots of weights in the nearest neighbor ensemble given the difficult classification
problem and 30 realizations of training data, each term’s average weight is marked by the solid
line.

without variable selection suffer from the presence of noise variables. In case of
backward selection a large S seems to ensure that enough predictors are excluded
to outperform nearest neighbor techniques based on the entire set of, partly
noise, variables. As seen from Figure 3, when using ensemble classification in
general the term based on x1, x2 and x3 has the far highest weight; in every
simulation run it is even the only prediction that is taken into account. So in the
difficult classification problem on average nearest neighbor ensemble classification
performs as well as forward or backward selection.

3.3 More Examples

Some further simulation scenarios are taken from Hastie and Tibshirani (1996).
Each training set consists of m = 200 observations, but our test set size is n =
1000. Each class has the same number of observations. Exceptions from that rules
are indicated. In detail the following classification problems are investigated, cf.
Hastie and Tibshirani (1996):

1. 2 Dimensional Gaussian: Two Gaussian classes in two dimensions (x1, x2)
are separated by 2 units in x1. The predictors have variance 1 and 2, and
correlation 0.75.
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Figure 4: Boxplots of quadratic loss (dark-gray) and number of missclassified observations
(light-colored) for 3 nearest neighbors with forward / backward variable selection (S = 4), 3
nearest neighbors ensemble based on approx. log score / quadratic score, weighted 5 nearest
neighbors, LDA, CART and Random Forests (RF), given the difficult classification problem
and 30 realizations of training and test set.

2. 2 Dimensional Gaussian with 14 Noise: As before, but additionally
14 noise variables having independent standard Gaussian distributions are
given.

3. Unstructured: In this example data with extremely disconnected class
structure is simulated. There are 4 classes, each with 3 spherical bivari-
ate normal subclasses, having standard deviation 0.25. The means of the
resulting 12 subclasses are chosen at random (without replacement) from
{1, . . . , 5} × {1, . . . , 5}. Each training sample has 20, each test set 100
observations per subclass.

4. Unstructured with 8 Noise: As above, but augmented with 8 indepen-
dent standard normal predictors.

5. 4 Dimensional Spheres with 6 Noise: 10 predictors and 2 classes are
given. The last 6 predictors are noise variables, with standard Gaussian
distributions, independent of each other and the class label. The first 4
predictors in class 1 are independent standard normal, but conditioned on
the radius being greater than 3, whereas the first 4 predictors in class 2 are
independent standard normal without restrictions. The first class almost
completely surrounds the second class in the 4 dimensional subspace of the
first 4 predictors.

6. 10 Dimensional Spheres: The situation is similar to the previous ex-
ample. All 10 predictors in class 1 are independent standard normal, but
now conditioned on the squared radius being between 22.4 and 40, while
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the predictors in class 2 are again independent standard normal without
restrictions. Now there are no pure noise variables. The second class is al-
most completely surrounded by the the first class in the full 10 dimensional
feature space.

7. Constant Class Probabilities: A 4 class problem is given with class
probabilities (0.1, 0.2, 0.2, 0.5), but independent of the predictors. The lat-
ter are independent standard normal in 6 dimensions. Here the observed
class frequencies may - of course - vary from one realization to another and
are far away from being uniformly distributed.

8. Friedman’s example: An example like this can be originally found in
Friedman (1994). There are 2 classes in 10 dimensions. In class 1 the
predictors are independent standard normal, in class 2 independent normal
with mean and variance proportional to

√
j and 1/

√
j respectively, j =

1, . . . , 10. That means, all predictors are important, but those with higher
index j are more so.

We compare the same classification methods as before, i.e. the proposed nearest
neighbor ensemble, nearest neighbor based forward, resp. backward variable
selection procedures, weighted 5 nearest neighbors, LDA, CART, and Random
Forests. S = 4 is chosen (if possible) for forward as well as backward selection. In
general the highest term in the nearest neighbor ensemble refers to an interaction
of order 3 (if possible). To save some computational time in case of scenario 2
we only choose S = 3 and do not consider triple interactions. Figures 5 and 6
show the quadratic loss and the number of missclassified observations from the
test set over 30 simulations.

Except the first and the last scenario the nearest neighbor ensemble based on
the quadratic Brier score is among the best performing methods. Its performance
is particularly high if some noise variables are given. Generally the Brier score
gives better results than the approximate log score.

3.4 The Problem of Standardizing

In the previous sections we did not generally scale input data. Of course, some
methods as LDA perform implicit scaling. The (weighted) k nearest neighbor
algorithm from Hechenbichler and Schliep (2004) first by default standardizes all
predictors to have unit variance over the training data, and the test set predictors
are standardized by the corresponding training variance. The data preprocessing
in Hastie and Tibshirani (1996) is similar. The motivation for scaling predictors in
nearest neighbor procedures consists of two (related) points: (a) If a predictors’s
variance is very high, it may happen quite often that two observations show high
differences in the corresponding direction. So the distance is strongly influenced
by the corresponding term and the importance of the variable may be overrated.
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(1) 2 normals

10
0

20
0

30
0

40
0

lo
ss

3NN−FS 3NN−BS 3NNE−LS 3NNE−QS w5NN LDA CART RF

(2) 2 normals with noise
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(4) unstructured with noise

Figure 5: Boxplots of quadratic loss (dark-gray) and number of missclassified observations (light-
colored) for 3 nearest neighbors with forward / backward variable selection, 3 nearest neighbor
ensembles based on approx. log score / quadratic score, weighted 5 nearest neighbors, LDA,
CART and Random Forests (RF); classification problems 1 to 4.

Since (b) the variance can be changed by simply changing the unit, e.g. from m
to cm, standardizing protects against suchlike mistakes or manipulations.

Todeschini (1989) investigated the effect of different types of data transfor-
mations on nearest neighbor methods. We only consider autoscaling, i.e. scaling
with respect to standard deviations, but focus on how these standard deviations
are computed. To simply compute predictors’ variances using the entire training
data set without consideration of the class labels seems to be common practice.
But it can be inappropriate to use these overall variances. For illustration con-
sider the following situation: In class 1 the predictors x1 and x2 are independent
normal with means −2 and −0.5 and variances 1 and 4. In Class 2 the variances
are the same but means are 2 and 0.5. The training set consists of 50 observations
in each class. In Figure 8 this situation is visualized. The two classes are almost
perfectly separated by predictor x1. Hence the squared distance

d2(xi, xl) = (xi1 − xl1)
2 + (xi2 − xl2)

2
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(5) 4D sphere in 10 dimensions
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(6) 10D sphere in 10 dimensions
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(7) constant class probabilities
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(8) Friedman’s example

Figure 6: Boxplots of quadratic loss (dark-gray) and number of missclassified observations (light-
colored) for 3 nearest neighbors with forward / backward variable selection, 3 nearest neighbor
ensembles based on approx. log score / quadratic score, weighted 5 nearest neighbors, LDA,
CART and Random Forests (RF); classification problems 5 to 8.

between two observations xi and xj should mainly depend on the difference in
the x1 direction. But dividing the observed x1 values by the overall standard
deviation from the mixture distribution causes a lower weight of x1 - instead of
the higher one desired. Our proposal is to use pooled variances instead of overall
ones. The observed pooled, or within, variance σ̂2

(p) of a predictor x given classes
g = 1, . . . , G is defined as follows:

σ̂2
(p) =

1

n−G

G∑
g=1

∑
i:yi=g

(xi − x̄(g))
2,

with yi denoting the class label of observation i and x̄(g) the mean of x in class
g. In case of two classes having the same number of observations we simply have

σ̂2
(p) = (σ̂2

(1) + σ̂2
(2))/2,
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Figure 7: Illustration of a simple classification problem, observations from class 1 (◦) are
separated very well from class 2 (+).

with σ̂2
(g) denoting the inner class variance of class g. If the mean of x does not

differ from one class to another, the pooled variance should be almost the same as
the overall variance. But if differences do exist, which indicates one-dimensional
discriminative capability, the pooled variance is the smaller one. Given the other
predictors’ means do not change between classes, the weight of x is increased
compared to not scaling or to the use of overall variances. The danger of unit
changing is avoided by employing σ̂2

(p) as well.
To evaluate the consequences of different scaling approaches in the situation

described above we generate a test set of 1000 observations and look at prediction
accuracies. Figure 8 summarizes the results over 50 simulation runs. Since we are
mainly interested in differences between scaling by overall variances and scaling
by pooled variances we give relative values of quadratic loss (Brier score; left)
and missclassification (right). Since for quadratic loss and missclassification the
box is clearly below one, it can be stated that pooled variances are superior to
overall ones. On average the former produces about 10% error less. Additionally
values for no scaling are displayed on the left hand side of each plot in Figure
8. In the considered situation even no scaling seems to be better than scaling by
overall variances.

A step further would be standardizing by a whole estimated pooled covariance
matrix. If there are equal covariance matrices in the different groups, as assumed
in Fisher’s linear discriminant analysis, in each group the new predictors should
approximately have unit variance while being independent of each other. But
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Figure 8: Quadratic loss (left) and missclassification (right) for no scaling and scaling by pooled
variances; values relative to scaling by overall variances.

since in nearest neighbor procedures standardizing is only data preprocessing
and each predictor normally has its own meaning, creating new predictors by
linear combinations should be avoided. So the more restrictive standardizing
by a diagonal matrix seems to be appropriate. For nearest neighbor ensembles
scaling by pooled variances is used in the evaluation of real world data below.

4 Evaluation of Real World Data
When classification tools are visualized and compared this should not be done
by simulations only, but also based on real world data sets. For that purpose
we use the famous machine learning benchmark glass data set and data from the
analysis of Italian olive oils.

4.1 Glass Data

The data can be obtained, for example, from the R add-on package mlbench:
214 observations are given containing examples of the chemical analysis of 6 dif-
ferent types of glass. The problem is to forecast the type of glass on the basis
of the chemical analysis. The latter is given in form of 9 metric predictors: (1)
refractive index, plus content of (2) Sodium, (3) Magnesium, (4) Aluminum, (5)
Silicon, (6) Potassium, (7) Calcium, (8) Barium and (9) Iron, each measured in
weight percent in the corresponding oxide. The possible types of glass are: (I)
building windows (float processed), (II) building windows (non-float-processed),
(III) vehicle windows, (IV) containers, (V) tableware, (VI) headlamps. The
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Figure 9: Composition of the nearest neighbor ensemble minimizing the Brier score and trained
on the whole glass data set, terms no. 46 – 129 correspond to triple interactions.

data has also been considered by Breiman (2001), for example. It has origi-
nally been taken from the UCI Repository of Machine Learning Databases at
http://www.ics.uci.edu/˜mlearn/MLRepository.html. Such kind of study
was motivated by criminological investigation; because at the scene of the crime,
the glass left can be used as evidence, if it is correctly identified.

If all observations are used for training our nearest neighbor ensemble with
hard-thresholding and t = 0.25 maxj{cj}, five terms are selected. The computed
weights are seen in Figure 9. The minimized loss function is the Brier score. All
selected terms correspond to triple interactions, but predictors number (8) and (9)
are never included. That means Barium and Iron are not used for classification
and may be excluded from discriminant analysis.

For evaluating the performance of the investigated classification tools (ran-
domly chosen) 20% of the data is set aside. On the remaining data the methods
are trained. The methods are those already compared in the simulation studies
above: Nearest neighbor with forward and backward variable selection, near-
est neighbor ensembles, weighted 5 nearest neighbors without variable selection,
LDA, CART and Random Forests. We have S = 3, and the highest interaction in
the nearest neighbor ensemble is set equal to S. Not explicitly mentioned tuning
parameters have default values. Figure 10 shows the quadratic loss and number
of missclassified observations on the test set over 50 random splits of the data at
hand.

If the proposed nearest neighbor ensemble is based on the Brier score it is
competitive to Random Forests, which have been shown to perform very well on
this data set (see Breiman, 2001). Furthermore the ensemble is superior to the
(weighted) standard nearest neighbor approach. Maybe, because there are some
noise variables without discriminative power. For the better performance of the
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Figure 10: Boxplots of quadratic loss (dark-gray) and number of missclassified observations
(light-colored) for 3 nearest neighbors with forward / backward variable selection, 3 nearest
neighbor ensembles based on approx. log score / quadratic score, weighted 5 nearest neighbors,
LDA, CART and Random Forests (RF), given the glass data and 50 random splits into training
and test data.

ensemble, however, this is unlikely the only reason, since backward or forward
selection does not improve nearest neighbor prediction.

4.2 Olives Data

The data is from Forina et al. (1982). The task is recognizing the geographical
origin of Italian olives oils from their fatty acid composition. All in all the different
oils are from nine regions, resp. classes: Calabria, Sicily, Umbria, Coast-Sardinia,
Inland-Sardinia, North-Apulia, South-Apulia, East-Liguria, West-Liguria. Only
eight predictors (i.e. fatty acids) are given; so in the nearest neighbor ensemble
even estimates based on four covariates can be allowed. Since now more data
points (572) than in the previous example are available, (randomly selected) 40%
of the data are used as test set. The same classification tools as before are
trained on the remaining data, and serve for discriminant analysis of the test
data. As before, this procedure is repeated 50 times. The results in terms of the
Brier score (dark-gray) and number of missclassified test observations are shown
in Figure 11. The overall winner is the (weighted) standard nearest neighbor
method taking into account all predictors at hand. Apparently all predictors
have some predictive power. So no improvement can be expected, if some kind
of variable selection is applied. Indeed when the nearest neighbor ensemble is
trained on the whole data set (see Figure 12), only terms of order 4 are selected
- covering all 8 predictors. Again the Brier score gives better results than the
approximate logarithmic loss. So the former is used for the determination of
weights in Figure 12.
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Figure 11: Boxplots of quadratic loss (dark-gray) and number of missclassified observations
(light-colored) for 3 nearest neighbors with forward / backward variable selection, 3 nearest
neighbor ensembles based on approx. log score / quadratic score, weighted 5 nearest neighbors,
LDA, CART and Random Forests (RF), given the olives data and 50 random splits into training
and test data.
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Figure 12: Composition of the nearest neighbor ensemble minimizing the Brier score and trained
on the whole olives data set, terms no. 93 – 162 correspond to interactions of four predictors.

21



5 Summary and Discussion
We propose nonparametric probability estimation by an ensemble - i.e. weighted
average - of nearest neighbor estimates. Each single estimate is based on a single
or a very small subset of predictors. In contrast to many other ensemble ap-
proaches no randomness is included in the proposed method, e.g. by randomly
selecting predictor sets. Instead all possible predictor combinations up to a previ-
ously chosen maximum number of predictors are taken as candidates, and weights
are explicitly determined via minimization of a loss function - preferably the Brier
score. By enforcing many zero weights the final ensemble only consists of a mod-
est number of terms. As a result our ensemble is not a black box (by contrast to
many other ensemble methods), but it is directly comprehensible how estimation
is carried out. Covariates which are not contained in selected predictor sets do
not serve for classification, or estimation of posterior probabilities. That means
variable selection is explicitly done.

The proposed ensemble approach shows good performance for small scale
problems, particularly if pure noise variables can be separated from relevant co-
variates. Easy identification of interactions is another advantage of the presented
method. If the largest set of covariates is adequately chosen, even interactions
that are usually hard to detect should be identified. So even if classification shall
be done by another method, the ensemble may be used for variable selection.

Direct application of the proposed technique to high dimensional problems
with interactions, however, is not recommended. If the number of potential pre-
dictors is high, interactions cannot be taken into account (because the number
becomes too high). But given microarrays, in genetics for example, the presented
ensemble might be useful as nonparametric gene preselection tool. Genes may
be ranked according to their weight in the ensemble, and further analysis can be
based on the "best genes" only.

Furthermore ensemble methodology may be applied for automatic choice of
the most appropriate metrics, or semi-metrics (along the lines of Ferraty and
Vieu, 2006); or the right neighborhood(s). For that purpose terms in the ensem-
ble are nearest neighbor estimates based on different (semi-)metrics or different
neighborhoods.

Finally, application to regression problems is possible as well. The concept of
minimizing loss functions can be directly adopted, since the quadratic loss is the
somewhat natural choice in regression problems.
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Appendix
Proposition 1 Given the following ensemble formula for computing the proba-
bility that observation i falls in category g:

π̂ig =
∑

j

cgjπ̂ig(j), with cgj ≥ 0 ∀g, j and
∑

j

cgj = 1 ∀g;

restriction c1j = . . . = cGj = cj is the only possibility to ensure that π̂ig ≥ 0 ∀g
and

∑
g π̂ig = 1 for all possible future estimations {π̂ig(j)} with π̂ig(j) ≥ 0 ∀g, j

and
∑

g π̂ig(j) = 1 ∀j.

Proof: We first show that the given restriction has the desired effect. Since
π̂ig(j) ≥ 0 ∀g, j, trivially follows

∑
j cjπ̂ig(j) ≥ 0; furthermore

∑
g

∑
j

cjπ̂ig(j) =
∑

j

cj

∑
g

π̂ig(j) =
∑

j

cj = 1.

In the next step we assume that cgj vary over categories g for at least one j,
i.e. coefficients cgj can be ordered in terms of c[1]j ≤ . . . ≤ c[G]j with at least one
≤ being a <. Now we create groups Jr = {j|crj = maxg cgj}, r = 1, . . . , G. If
maxg cgj is not unique for j, arbitrarily choose maximum cgj to have disjoint Jr

but covering all j.
Since

∑
j cgj = 1 ∀g, there must be at least two j with coefficients differing

over categories and maxg cgj in different categories. Hence there are at least two
nonempty sets Jr1 and Jr2 . Let the nonempty sets be denoted by Jr1 , . . . , Jrl

.
If now π̂irt(j) = 1 ∀j ∈ Jrt (which is not completely unlikely in case of nearest
neighbor predictions), due to the < above, it follows:

∑
g

π̂ig =
∑

g

∑
j

cgjπ̂ig(j) =
∑
j∈Jr1

cr1j + . . . +
∑
j∈Jrl

crlj > 1.
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