
Infinite Terms and Recursion in Higher Types

H. Schwichtenberg and S.S. Wainer

Systems of infinite terms defining functionals of finite type

were first considered by Tait [10] and further developed by

Feferman [3] initially in a proof-theoretic context. Later in

unpublished notes Feferman introduced the system T of infinite
o

terms inductively generated from variables of all finite types and

constants for the ordinary primitive recursive functions by

application, abstraction and autonomous enumeration: if for each

n, f(n) codes a term tn~ T o and f is itself defined by a term of T O

then the term<tn>n~ N is in T o . This definition can be relativized

to an arbitrary functional~and the resulting system of terms is

denoted by To(~) . Feferman proved that if~is of type 2 then the

functions definable in To(~) are precisely the functions recursive

in~(This also follows from our results here together with [11]) .

This immediately poses the problem of whether infinite terms can be

used to characterize full Kleene recursion in higher types and more

specifically whether, for~of type n+2, To(T) gives a characterization

of the n+1 - section of ~.

We show in w that for arbitrary ~of type n+2 the functionals

of types ~ n+1 definable in T O (~) are just those functionals

appearing in a naturally- constructed Kleene- type hierarchy

based on ~, which generalizes [11]. (This hierarchy expands primitive

recursively though not necessarily recursively since~may not be a

"jump"). The proof of this equivalence uses normalization for To(~)-

342 H. Schwichtenberg, S.S. Wainer

As a consequence we obtain a negative answer to the second problem

above as follows . The type n+l functionals definable in To(n+2E)

are precisely the functionals obtained in Kleene's hierarchy

Ha n+1 , aE0U+1[5]. But Moschovakis [7] has shovm that the hierarchy

0 H a , aE does not exhaust the 2-section of 3E .

In connection with the first problem mentioned above Fe~erman

[4] has recently obtained a new definition of full recursion in

higher types which, although not formulated as a system of terms, is

nevertheless motivated by the idea of autonomous enumeration. In w

we investigate ways of generalizing the autonomous sequencing scheme,

so as to obtain complete characterizations of higher- type recursion

(The obvious idea is first to allow "long" sequences, enumerated by

definable functionals of arbitrary pure type, rather than just

functions as in T o. But this is insufficient as it stands, and needs

to be modified further.) This leads to a hierarchy of systems of

terms To,TI,T 2 and Long Partial Terms, the last one of which turns

out to be nothing other than a reformulation of Feferman's definition

[4] �9

w The System To(~) of Infinite Terms.

Type symbols are 0 and with o-,T also (0--~ 7) �9 As usual we write

~ T for (o-1-*(o-2-*...(0-n~V)..)). Finite sequences of type

symbols are denoted by~,~ etc. and we let ~Ibe a (canonically

defined) code number of T. Let M be the class of all (set-theoretic)
A T

functionals of type T , i.e. Mo =N, the natural numbers, and

M = M M , the set of all mappings from M into M . Elements of
(T -~ ~" T 0- q-

U M are denoted by ~, F, G, H, ~,# and finite sequences of them
~- qr

F,G,~ etc.

We fix a functional~of arbitrary type ~.

w i l l be b u i l t u p from v a r i a b l e s ' x% ,

The t e r m s o f T o (~)

. f o r e a c h

H. Schwichtenberg, S.S. Wainer ~ 3

type ~, the symbol~, and for each k ~ 0 a constant Pk for the

k-th primitive recurslve function, by means of application,

abstraction and autonomous formation of sequences as described in

the introduction. Each term will have only finitely-many free

variables.

We define inductively (i) a set C~ N of codes, (ii) the

term t a denoted by the code a~ C ~ , (iii) a function Typ such that

for each ag C ~ and furthermore , Typ (a) determines the type of t a

a sequence of variables containing all variables free in t a, (iv)

for each a~ C~the value [a] E (in ~ ~) of t a under a type-preserving

assignment of F=FI,F2,...,Fn to the sequence of variables determined

by Typ (a) .

For each a~ C ~ Typ (a) will have the form ~,~where ~ is the

type of t a and ~--TI,...,T n is to be thought of as determining the

sequence ~= Xl,...,x n of free variables in t a (i.e. x i is to be the

variable x~i if T i is the J-th occurrence of that type symbol in ~).

With this ~ we also write ta(~) for t a . From the definition it will

be clear that ~ contains all of the free and none of the bound

variables of t a .

I (Variables) a= <I,i r~ C ~ , T >e if I ~< i ~< n and

~ = ~ - 1 , . . . , ~ - n . Typ (a) : ~ , ~ - ~ ' ta : t a (~) = ~ i and [a] ~ = F i

II (Application) Let a 1,a 2 ~ C % where Typ (a I)=~ ~ ,0--~ ~ and

Typ(a2) r ~ ~2,a I,a2~ ~ C ~ (tal =~[,o- . Then a= , Typ (a)= ~,p~, t a=

and [a] ~F = [al]-F[a2] -F "

344 H. Schwichtenberg, S.S. Wainer

III (Abstraction) Let a I E C ~ and Typ(a I) =r~=m,p~ .

Then a=<3,a I~C ~ , ta(X)=~y0 ta1(X,y) jSyp Ca). = r~,~_.p~

and [a]EG= [al]E'G for all G~M .

IV (Autonomous Sequences) Let a I E C $, Typ(a I)=r0,0~and for

all n, [al]n=bnEC~and Typ (bn)=CT,0n. Then

a = , a l > C% t a - = < , Typ (a)=r,r,O -~ 0 "1 and

[aSFn = [bnSE for all ne~.

V (Primitive Recurslon) Let al,...,anE 0 ~ where n ~ 0 is the

number of arguments of the k-th. primitive recurslve function

Pk and for I (i (n Typ (ai)=r~,0~~ Then a=<5,k,~, al,...,an> E C ~,

ta=Pk(tas,...,tan) , Typ (a)=T,0~and [a]E=pk([a 11E,..t.Ian] ~)

VI (The Constant ~) a=<6,r1~ e C ~ , ta= the symbolS,

Typ(a) = rZ, ~ and [alE= ~.

Obviously Typ can be chosen as a primitive recurslve

func ti on.

To(Y) is the set of all terms t a, a~ C $. We want to

normalize the terms of To(~), that is eliminate all subterms

of the form (kxt)s. For a system of nonconstructive infinite

terms (in the sense that no restriction is imposed on the

formation of infinite sequences) this was done by Tait [10],

extending earlier work of Lorenzen, Novikov and ~ch{Jtte

concerning infinite proofs. We assume here some knowledge of

Tait's paper. Now it is moreor less standard how such operations

on nonconstructive infinite terms can be paralleled by operations

on their constructive counterparts such as terms in To(~) or,

more precisely, codes in C ~ (see e.g. Feferman [41, Lopez-Escobar

[6]~Schwichtenberg [9]) �9 Hence we do not give proofs but

merely state the proper lemmata, following mainly Feferman [4].

H. Schwichtenberg, S.S. Wainer

Most of them (Lemmas I-4) are proved using the primitive

recursion theorem.

345

The type level LT of a type symbol T is defined by

Lo= 0 , L(~ ~ T)= max (Lr+ I, L r), The rank of a code

aE C~is defined as the supremum of the type levels of all subcodes

of the form a1=<3,.,.> occurring in a context ~2,al,a2>. Mo~e

precisely we inductively define Ra for a~C~as follows

R <I,i,~>= 0

R <2,ala2> =max (RaI,Ra2,La I) if a I has the form <3,.,.>.

= max (Ra1,Ra 2) otherwise.

R <3,aI> = Ra I

R <4,~u, al>= max (Ra I, s~p R[a 1]n)

R <5,k~ l, al,...,a n>= max (Ral,..,,Ra n)

R <6,F~>= 0 .

Here La I = L~ where Typ(al)-C -~,~. C!early we have Ra ~ ~.

A code ae C ~ (and the corresponding term t a) is called

irreducible or normal if and only if Ra= 0 .

Lemma I (Extension)

There is a primitive recursive function Ext such that

for all aE C}and all types ~ the following holds.

Let Typ(a)=~ ,p~. Then Ext (a,r~ ~) g C ~, Typ(Ext(a,r~)) =

r~,~p~ R Ext(a#~)= Ra and for all G,~ of the appropriate

types, [a]E= [Ext(a,ro~] G'E .

Lemma 2 (Interchange)

There are primitive recursive functions PiJ such that

for all aE0 ~ the following holds. Let Typ(a~)=r~ , ~-~ . Then

Pij(a) e G ~ , Typ (plj(a))= r~lj(~) ,o -q , R Plj(a)=Ra and

346 H. Schwichtenberg, S.S. Wainer

for all ~ of the appropriate types ~ [a]~= [Pij(a)]~lJ(~),

where ~lJ interchanges the i-t~and J-th. components in the

respective n-tuple.

Lemma ~ (Substitution)

There is a primitive recursive function Sub such that for all

a, b E C ~ with Typ (a) =r~ , X ' PN and Typ (b) =r~, ~w the following holds.

Sub (a,b)EC ~ , Typ (Sub(a,b)) =Z'P ~ .I , R 8ub(a,b) ~< max(Ra,Rb,Lb) and

for all Z of the appropriate types, [a][b]F'~= [Sub(a,b)] E �9

L emma 4 (Reduction)

There is a primitive recurslve function Red such that for

all m and all ag C~wlth Ra ~< m+l the following holds~

Red (a,m)=a ~ ~, Typ(a')= Typ (a), Ra ~ ~< m and for allF of

the appropriate types, [a I]F= [a]E .

~orma~ization Theorem I

There is a primitive recursive function N such that for

all ag C~the following holds , N(a) = a~ C ~, Typ(a ~) = Typ(a) ,

a ~ is in normal form, i.e. Ra*= 0, and for all ~ of the

appropriate types, [a~]E= [a] -F .

Each term t a in To(~) defines a functional, namely

kF.[a] -F, whose arguments correspond to the free variables

occurring in the term. We wish to give a recursion-theoretic

characterization of the functionals definable in To(~), and

since arbitrary finite types can be canonically coded into

pure types it will henceforth be more convenient for us to

restrict attention to those functionals h whose arguments

~=a1'''''am are of pure types ~< n and whose values are of

type 0. ~ is now assumed to be an arbitrary but fixed type

H. Schwichtenberg, S.S. Wainer 347

n+2 object.

If h(~1,...,~ m) is definable in To(~) then it is defined

by a normal term of type O. Such a term can only be either

a variable of type 0 or a term of the form Pk(Sl,...,sr)

where sl,...s r are normal terms of type 0, or else a term of

the form st where s and t are normal. In this latter case s

cannot be of the form ((SoSl)...)s k with k ~ I since s o would

then have to be a variable of impure type, so s must be

either ~or a variable of pure type ~ I or a term of the form

<tao,tal,ta2,...> where kx.a x is defined by a normal term.

Hence t must be either of type 0 or else of the form ky.t'

where t ~ is of type 0 (If t were of the form <tbo,tbl,tb2,...>

then we could replace it by ky.<tbo,tbl,tb2,...> Y) �9 Thu~ it

is clear that each of the functionals h(a1,...,~ m) definable

in To(~) can be generated by means of the schemes 4,...,7 below.

The converse, that the functlonals generated by schemas I,~..,7

are all definable in To(~), should be clear and can easily be

proved by a simple application of the primitive recursio~ theorem.

Each scheme defines a functional h e where the index e codes up

(in the usual way) all relevant details of th~ particular scheme

being applied. We now let ~= xl,...,x k denote variables of

type 0, ~=~1,...,~m variables of pure types ~ n and # a variable

of the appropriate pure type ~ n �9

1. he(~,~)= Pk(~)

2. he(~) =r where type ~i = I .

3. he(S)_ = ~j(~.hel (~,~))_ where type of ~j> 1,

4. he(g) = }(X~.he1(a,~))

5.) provided that for each x,

he1(X) is an index for a

functional with arguments ~.

~8 H. Schwichtenberg, S.S. Wainer

6. he(s):~ he1(he2(g), 5)

7. he(~)= he1(~') where ~' is some permutation of ~ .

To be precise, the above schemes should be interpreted as a

simultaneous inductive definition of a set of indices e,

and for each index e a functional h We believe however that the
e

intention is clear.

w The~-hierarchy.

We now develop a recursion-theoretic hierarchy based on a

fixed but completely arbitrary type n+2 object ~, and prove that

the functionals of type ~ n+1 appearing in the hierarchy are

precisely those functionals definable in To(~) �9 The hierarchy is

just a generalization of [11] to higher types.

Let lelF(~) , e < ~, be a standard enumeration of all functionals

(with arguments ~ of type ~ n) primitive recumsive in a type n+1

object F (in the sense of Kleene [5]). We assume ~elF(~)= 0 if e

is not an index for a functional of the appropriate string of

variables.

We associate with~an operator~defined as follows

~(F) (<x,~>)= <[x~F(~,on),~(X#.[x~F(~,#))>

The ~-hierarchy is then obtained by iterating ~over a simultaneously

generated set of ordinal notations. Note however that the word

"hierarchy" is used in a rather broad sense here, since ~may not be

a jump operator in the usual sense (and although~raises "primitive

recursive degree" it need not raise "degree"). As a result of this

our hierarchies will not in general have the uniqueness property.

Definition.

for cO'are inductively defined as I 1 a n d a

follows, where ~,# are variables of type n. (Since ~is fixed we

will usually drop the superscript ~)

H. Schwichtenberg, S . S . Wainer ~ 9

(1) I E0, "/(b <oi), 11[= 0 and FI(~)=0 �9

(ll) If a EOthen 2aEo, b <o2a< .~(b <o a v b= a) ,
F F

12aI= lal + I and F2a (<x,~ >) =<~x]a(=, on),~(kp.~x| a(~,#))~

where O n here denotes the zero type n object.

(Ill) If a E0and ,= ~e~ Fa is a function such that ,(0)=a,,(m)e 0

and $(m) <o ~(m+l) for all m, then

3asee0, b <o3ase~ ~.(3 m)(b<~(m)) , 13asel = sup l,(m)l and

F3ase (<x,a>) = F~ (x) (=) "

Clearly if a <o b then ~a is of lower primitive

recurslve degree than Fb, and every F b is reourslve in ~.

Examples

(I) If~is of type 2 then the above hierarchy exhausts the

l-section of ~(see [11]) �9

(2) If ~ is the functional n+2E which introduces quantification

over type n then the above definition gives an alternative

version of Kleene's proposed hierarchy of hT"per-order n+1

predicates ~] . Our definition differs from Kleene's

particularly in the formation of limit levels, where we insist

that fundamental sequences ~ b~ primitive recursive (rather

than Just recursive) in previous levels ~ However standard

methods show that the two definitions give rise to the same

class of predicates and functlonals (and coincide at limit

stages). ~9schovakls KT~ has shown that~ for n= I , the

hierarchy does not exhaust the 2-sectlon of 3E (nor the

l-section of 3E).

(3) If~Is the superJump functional we obtain an alternative

version of Platek's hierarchy [82 but again, Aczel and Hinman

11~ have shown that this does not exhaust the 1-sectlon of

the super Jump.

350 H. Schwichtenberg, S.S. Wainer

Limit Property.

There are primitive recursive functions M and N such that

if for each m,k~.G(m,g)= ~$(m)~ =r where
F F

, ,= ~e~ and a=r ~o r <o r then

3asM(e)E0, r <o 3asg(e) for each m, and G= ~N(i)l F3aSM(e)

Proof
F F

Choosa M so that [M(e)~ a(0)=a, [M(e) 1 a(m+1)= 2 r .

Let <~a> n denote a standard primitive recursive coding of

a sequence Z as a single type n object, and lets o be a primitive

recursive function such that ~So(J)IF(<q~n,0 n)= lJ~F(g) for any

type n+l object F. Then G(m,~)= ~(m)]Fr

I So(~(m)) jFr (m)(<~>n, on) = (F2r (m)(<8o (~ (m)) '<~>n>))o =

(F3asM(e)(<m+1,<So(~(m)),<ou~n>>)) 0 ~ NOw let m n denote the

type n object with constant value m and let S I be a primitive recursive

function such that IS1(J)JF(mn,o n)= ~J]F(m) for any type n+1
F

object F. Then ~(m)= li~ a(m)= ~S1(i)~Fa(mn,0 n) = (F2a(<Sl(1),mn>))o

= (F3asM(e)(<1,<S1(i),m~>>)) o. We therefore have

= (<m+ I ,<8 o (F3aSM (e) (<I ,<S I (i), mn>>)) o'<Z>n>>)) o S(m,~) (F3asM(e)

and it remains to choose N so that N(i) is an index of this

expression as a function of m and ~, primitive recumsive in

FSasM(e)"

Lemma ~.

There are primitive recursive functions I and C such that

if e is an index of a functional h e defined by schemes I,...,7

then for any bE0, C(e,b)g0,b<o C(e,b) and hem ~I(e,b)| FC(e'b) '

Proof

First note that the arbitrary bg0appears because in order

to deal with scheme 5 we need to locate k~.he(X+l,m) above

H. Schwichtenberg, S.S. Wainer 351

k~.he(X, ~) inOso that the Limit Property can then be used

to piece together the whole functional kx,~.he(X,~). Also in

dealing with scheme 6 we will need to locate h above h .
e I e 2

These complications arise because there is no corresponding

Uniqueness Property for an arbitrary~-hierarchy, since

Uniqueness requires quantification and we do not in general have

2E recursive in~.

I and C will be defined simultaneously by the primitive

recursion theorem, with induction on the definition of h e by

schemes I,...,7.

Suppose h e is defined by I, so from e we can find k so that

he(X,~) = pk(~) . Clearly there is a primitive rgcursive function fl

such that fop any F of type n+1 , ~f1(k)]~(x,~)=pk(~). Thus

we only need to put I(e,b)= f1(k) and C(e,b)= 2 b in this case.

Suppose h e is defined from hel by 2,3, or 7. By induction

hypothesis we can assume b <o C(e1'b) and he1= II(el,b)IFC(el 'b)"

But 2,3,7 correspond to Kleene's schemes $7,$8,$6 respectively and

hence we can put C(e,b)= C61,b) and in each case compute

I(e,b) as a primitive recursive function of e and I(el,b).

If he(~)=~k~.he1(~,~)) by scheme 4 then again by hypothesis

= ~FC . we can assume b <oC(el,b) and hel |l(el,b) (el'b) Then there

is a primitive recursive function f2 such that he1(~,#)=

If2(e,I(el,b))l~C(e1'b)(<~>n,~) . Therefore he(~)=

(k~. I f2(e, I(e I ,b)) ~FC(el ,b) (<~>n,~)) =

(F2C(e I ,b) (<f2 (e, l(elb)) ,<~n~))I ~

352 H. Schwichtenberg, S~ Wainer

C(el,b)
Now put C(e,b)= 2 and h e is clearly primitive recursive

in FC(e,b) with index I(e,b~ primitive recursively computable

from e and I(el,b).

Next suppose h e is defined by scheme 5 �9 Then

he(X,~)--hhe~) where, by the induction hypothesis,

I

b<o C(el,b) and he1= ~I(el,b)~PC(el ~b) , and for each x and

all d~O, d< o C(he1(X),d) and k~.he(X,~) is primitive reeurslve

in FC(he1(X) ' d) with index I(he1(X),d). Define ,(0)=C(el,b)

and , (m+1) -- C(hel (m) ,, (m)) , and define

~(0)= O, ~(m+1)= I(h e (m),,(m)) . Then for each
I F

m,ka.he(m,~) = [~(m+1)~ ,(m+1) where , and ~ a~re primitive

recursive in FC(el,b) with indices z and i primitive recurslvely

computable from C(el,b), I(el,b) and primitive recursive

indices of C and I. Also ~(0)= C(el,b) ~<o~(m) <o ~(m+1) for

every m, by hypothesis. Therefore by the Limit Property, h e

is primitive recursive in FC(e,b) with Index I(e,b) where

C(e1'b?sM(Z)
C(e,b)= 3 and I(e,b) is given by a simple primitive

recurslve function of N(i).

Finally suppose he(~)= hel(he2(~),~) by scheme 6.

By induction hypothesis we can assume b< o C(e2,b),

he2= |l(e2,b)l C(e2'b) and for all d~O, d <oC(el,d) and

he1= ~I(el, d)~C(el 'd) . Define ,(0)=C(e2,b),r

and $(m+2)= 2 ~(m+1) . Then ~ is primitive recurslve (and hence

primitive recu~sive in FC(e2,b) with an index u primitive

H. Schwichtenberg, S.S. Wainer 353

recursively computable from e,b, and a primitive recur sive

index of C Also r < r by hypothesis and so
o c(

3C(e2'b)su 0" Put C(e,b) = 3 e2'b)5u. Then b< o C(e2,b)< o C(e,b)

and since FC(e2,b)=k~.FC(e,b)(<0,~ >) it follows that he2 is

primitive recursive in FC(e,b) with an index primitive

recursively computable from I(e2,b). Now for some fixed

primitive recursive function f3 we have

hot(X, ~) = II(el,C(e2,~))~F~(1)(x,~)

= ~f3(l(e1,C(e2,b)))~Fr n, O n)

= (F,(2)(<f3(I(el,C(e2,b))),<x,~> n>)) o

= (FC(e,b) (<2'<f3(I(el 'C(e2'b)))' <X'~>n>>))o

Thus hel is also primitive recursive in FC(e,b) with an

index primitive recursively computable from e,b and primitive

recursive indices of I and C. Hence h e is primitive recursive

in FC(e,b) by Kleene's scheme S&, with index I(e,b) given as a

primitive recurslve function of I(e2,b), e , b , and primitive

recurslve indices of I and C.

We give I and C the value 0 if none of the above cases

applies.

Inspection of the above cases shows that C(e,b) and I(e,b)

are defined simultaneously from C(el,b) C(e2,b), I(el,b) I(e2,b),e,b

and primitive recursive indices of C and I. Since el,e 2 < e the

simultaneous definition is a primitive recursion on e. Therefore

by the simultaneous primitive recursion theorem (e.g, Lemma 2.1

of [2]) we can indeed find primitive recurslve indices of

C and I which satisfy this definition ~ This completes the proof.

354 H. Schwichtenberg, S.S. Wainer

Next we show that every functional G(~) , with arguments ~ of

pure types ~ n and with values of type O, which appears in

the~-hierarehy, is definable by a term of To(~) �9

Lemma 6

There are primitive recursive functions p and Pl such that

if the type n+1 functional F is defined by a term t c of To(~)

thenle] F is defined by the term tp(c,e) of To(~) and

x,~. Ix~F(~) is defined by the term tp1(c) of To(~) .

proof

We first define p by the primitive recursion theorem with

cases corresponding to the schemes 8o,...,$8 by which ~e~ F

is defined. In this proof and the next, u,v will be used to denote

~ariables of To(~) of the appropriate types ~

If ~e~ F is defined by $I,$2,$3 then [e~ F is Just a

primitive recursive function of its numerical arguments and

so p(c.e) is given explicitly as a function of e .

If ~elF=k~.~eIDF(le2~F(~),~) through S~ then we can

assume inductively that tp(c,el) defines le1~F~and tp(c,e2)

defines ~e2 ~F. Therefore ~e~ F is defined by the term

~ . tp(c,el) (tp(c,e2)~)~ and we can clearly compute p(c,e)

as a primitive recursive function of p(c,e I) , p(c,e 2) and e.

If ~el F is defined by $5 then lelF(0,~)= ~e1~F(~) and

lelF(x+1,g)= le2~F(le~F(x,~),x,~) where again we can assume

inductively that tp(c,el) defines ~e1~F and tp(c,e2) defines

le2 ~F . Now let r(O)=p(c,e I) and r(x+1)= the code for the

term ~. tp(c,e2) (tr(x) ~) x~ ~ Then for each x, tr(x)

H. Schwichtenberg, S.S. Wainer 355

defines k~.~e~F(x,~) and therefore <tr(x~x~ defines le~ F .

But r is primitive recursive, with index i primitive recursively

computable from p(c,el) p(c,e2) and e. Hence we can primitive

recursively compute from i, first a code for the term defining r,

which defines ~e~ F. and then the code p(c,e) for the term <tr(x)>xEg

The cases where ~e~ F is defined by S6 and $7, corresponding

to permutation of arguments and function application, are trivial.

If lelF(g)=~i(k#.~e1~F(~,#)) through $8 then it is easy

to define p(c,e) primitive recursively from e and p(c,e 1) such

that tp(c,e)=k~, ui(kV.tp(c,el)~V) �9 The case S0 is treated

similarly, replacing ~i by F and u i by t c �9

It is clear from the above cases that p is primitive

recursive, as required.

To define Pl simply note that k x~. Ix~F(~) can now be

defined by the term <tp(c,x)> xEg, whose code is given as

a primitive recursive function of c.

Lemma 7

There is a primitive recursive function q such that

if a~ O~then q(a)EC ~ and tq(a) defines F ~ a q

Proof

Again by the primitive recurslon theorem. Define q(1)

so that tq(1)=kt~O . Now assume tq(a) defines F a.

Since x=<x,~> o (0) and ~=<x,~>1 there are terms t k and t$

356 H. Schwichtenberg, S.S. Wainer

which define the decoding functions k~.~o(O) and k~.a I �9
F a P

But F2a=ka.<l~o(O)~ (~I,0 n),~(k#.I~o(O) ~ a(a1,#))> and so F2a

is defined by the term ku. <tpl (q(a))(tku)(~u)0n'

~(kv. t l (q(a))(tku)(t~u)v)> whose code q(2 a) is clearly given as

a primitive recursive function of q(a~. If 3a5 egOthen F3ase=

ks. F e~Fa(~o(O)) (~i) , so if r ~e~ a we can assume

inductively that Fr is defined by tq(r) for each x and

therefore F3ase is defined by the term ku.<tq(r ~ (tkU)(~u) �9

Now r is defined by the term tp(q(a),e) and so kx.q(r is

defined by a term whose code is primitive recurslvely computable

from q(a), e and a primitive recurslve index of q . Thus we can

compute q(3a5 e) primitive recursively from q(a), e, and a primitive

recursive index of q, so that tq(3ase) is the term

ku. <tq(r which defines F3a5e ~ The

primitive recursion theorem then provides an index of q satisfying

the above definltlon, and this completes the proof.

Putting the above results together we have

Theorem 2

A functional with arguments of pure types ~ n and values

of type 0 is definable in To(B) if and only if it is primitive

recursive in F ~ for some a~0~ a

Corollary

If~Is of type ~ 2 then the functions definable in T0(~)

are precisely the functions recursive in~.

But for ~of type >i 3 the functions definable in TO(~) do not,

in general, exhaust the 1-sectlon of ~.

H. Schwichtenberg, S.S. Wainer $57

@3. Extensions of To(~)

The reason why To(~) for~of type level ~ 3 does not give full

Kleene recursion in'seems to be that sequences used to build up

terms in To(~) are indexed by natural numbers and so each term

can be regarded as a countable well-fotmded tree , whereas

Kleene-computations in types ~ 3 are in general uncountable.

Thus it is tempting to allow sequences indexed by higher-type

objects and to consider a system T I(B) of infinite terms which is

defined just as To(~) in w except that clause IV is now generalized

to read as follows

IV ~ (Long autonomous sequences) Assume a I ~ C ~ , Typ(a I) =

]F c ~ r~ 01 and for all ~F~ M , [a I = bF~ and Typ(D F)=Z,r 0 u

Then a - ~ 4 , a l " ~ C ~ , t - a = ~ t b ~ p ~ M - ~ T ~ p (a) = ~ , ~ ~ 01 and f o r
F- ~ G

all F,G of the appropriate types, [a]~F= [bF]~G

But if ta=~tb~F~M is a term formed by IV * then as

ranges over M there can still only be countably- many different

values of b F . Thus the "depths" of the trees corresponding to

terms in TI(~) remain countable, so we cannot expect TI(~) to be

adequate to define all functions recursive in~. In fact for the

case ~ = 3E we have :

Theorem

The functionals of type ~ 2 definable in TI(3E) are just

those definable in To(3E).

Proof

For i= 0,1 we let C~be the set of codes for terms in Ti(~),

and for each a~ C~ we denote the corresoonding functional by

XE. [a]~ . We show that there is a primitive recursive function p

3 E
such that if a~ C I is normal and Typ(a)= r~,~ where ~ is a

3 E
sequence of types 0 or I, then p(a)~ C o and for all

~8 H. Schwichtenbe~g, S.S. Wainer

~e~ , [a]~ : [p(a)]~ . The only non-trivial case is when

a=44,alb , Typ(a)= r~,z-, 0 ~. Then for all
3 E

E E �9 roceeding by induction on

we can then assume that [a]~ ~= [p[p(al)]~] I .~ow using the

function-quantifier 3E we can primitive recursively compute, from

p(a I) and a primitive recursive index of p, codes b and c such that

~n.[b] n enumerates all the values of }~ p([P(al)]o ~) and

[c]~ =#n ([hi n = p([P(al)]~o)). Then for all ~,# ,

[a]~_ = [~4,b~]~[c]~ , and so from b and c we can primitive

recursively compute p a5 such that Eal

We finally obtain the required p by the primitive recursion theorem.

Clearly this Theorem will hold for any~such that 3E is

definable in To(~) , and it will also generalize to higher types

when relativized to 4E,SE etc.

-~tb~ M formed by IV ~ is given in The depth of a term t~4,ai~- F

the obvious way by depth(t~4,al>)= supF(depth(tal)+l,depth(tbF)+1)

and since each b F= [a I]~g C ~ we are here only taking the supr~mum

of countably-many (countable) ordinals. Now a natural way to get

terms with uncountable depth is to allow the ~F's to be used as

constants in tb F, i.e. to let bF~_ C }'-F . Thus, following a

suggestion of Feferman, we further extend our systems of terms to

give new systems T2(~) as follows.

This time we inductively define, simultaneously for all F of the

appropriate types, a set C ~ of codes and for each a~ C ~ a term

t a~ T2(F) and a total functional ~. [a;F] ~ defined by that term.

We write [a;~] ~ in order to make explicit the relativization to the

fixed ~= ~,...,F n . The clauses in the definition are I,II,III,V

and VI as before (but with VI introducing each of the constants

F 1,...,Fn) together with

H. Schwichtenberg, S.S. Wainer ~9

IV ** (Long relativized autonomous sequence s) Assume a I ~ C -F, F of

type Z Type (a I)= r ~ = , o-,0 and for all G~ ~, [a I;F] ~ bG~ C ~F'~

r o I :<tb g , and Typ(b G)= p_, . Then a=~4,al>~ C -F, t a

Typ(a)= rp~,~ _. O~and for all Ge M, HeMp~

[a ; ~] ~ : [[a ~ ; F] -G ; ~ ,G] ~ .

With F the empty sequence we thus obtain C and T 2 , so if we

denote the depth of a term t a in T2(~) by laI ~ then the depth

~ in T 2 is given by l al of a term ta= ~E~

Ia l = sup (l a ~ l + ~ ,

where IbGI ~ may now, of course, have uncountably many different

values, and so lal will in general be uncountable (cs definitions

1,2 in Moschovakis [7]).

We shall show (Theorems 4 and 5) that for arbitrary a with

Typ(a)=~Uthe partial functionals k~.[a;~] are just the Kleene

partial recursive functionals k~.lel(~) It then follows

by the lemma below, that the total functionals [a;~] with a~ C ~ ,

exhaust the functionals recursive in~.

Lemma

For each ~,~ there is a primitive recursive function f such

that (with F,~ ranging over ~,~, respectively)

(i) ~2(a~ C ~'g) ~-~ f(a)e C ~

(ii) ~G(a~ C ~'~) ~ [a;~,G]~= [f(a);F] ~'~ & lal ~'~ < If(a)1 z

Proof

Given ~,~ , we can easily find a primitive recursive function

q such that for a l l ~ , ~Mo~ , [q (a) ;F]~= a . Hence

[a;F,G] ~ = [[q(a);~]~; F,~]~

[~4,q(a)> ; ~]~ by IV *~

[f(a);Z]~'~

360 H. Schwichtenberg, S.S. Wainer

with f(a) depending primitive recursively on q(a). The proof of the

lemma is now obvious.

Theorem 4

There is a primitive recursive function g such that

(i) Ie t (~)~ ~ g(e)~ C ~

(ii) Ie] (~)$ ~ [g(e);~]= te l (g)

Proof

We shall define g from its own primitive recursive index using

the primitive recursion theorem in the usual manner. The definition

is by cases depending on the form of e.

The implication for left to right in (i) together with (ii) are

proved by induction on lel(~)~ w . The proof of the implication from

right to left in (i) is by induction on Ig(e)I ~ and will be clear

after the definition is completed.

We restrict ourselves to the cases $4, $8 and $9, the other

cases being obvious or similar.

Case 84; lel(~) = le11(~21(~), ~) �9

First note that as in w we can easily obtain a primitive recursive

function Sub such that b~ C ~ implies

(i) [a;[b;2]~;F] ~ ~ [Sub(a,b) ; 2~

(i l) lal[b:=]e '=< [Sub(a,b)lZ and Ibis< ISub(a,b)~.

(However, note that if SUbo(a,b) is the function corresponding as

usual to term-substitution we have to put Sub(a,b) =

~2,~2, Co, SUbo(a,b)~ , b~ with Co~C -F such that [Co;F]GHIHf=HI) �9

We now obtain

tel(c~)= [g (e l) ; [g (e 2) ; ~],_~] by ind.hyp.

= [Sub(g(el),g(e2)) ; ~] �9

Hence it suffices to put g(e)= Sub(g(es),g(ef))

H. Schwichtenberg, S.S. Wainer 361

Case 88: ~el(~) ~- ~j(X~e11(_~,~)) �9 By ind. hyp. we have

g(el)E C ~'~ and le11(~,/~)= [g(el);Z,#] for all #, and hence by the

lemma~le 1~(~,#)= [a lIZ] p with a I primitive recursively computable

from g(e I). It is now easy to obtain a2,a } also primitive

recursively from a I such that

X~eI~(Z;~) = [a2;~ _]

~j(k#le11(a,E)) = [a};~]

It remains to set g(e) = a 3 �9

Case 89: lel(x,~) -~ Ixl(~) �9 By ind. hyp. we can assume that

Ixl(~) = [g(x);z] �9 Now from a primitive recursive index of g we

can easily compute a code a I e C x'~ such that [al;x,~]= g(x) and then

a code a2E C x'~ such that [[a2;x,z] ; x,Z]= [[al;x, ~] ; ~]= Ixl(~) �9

But then an application of IV m* yields <4,a~ C x'~ such that

[~4,a2>; x,~]= [[a2;x,G] ; x,~] = Ixl(_~) and it then remains simply

to put g(e)=~/4,a2~2 �9

Theorem ~.

There is a primitive recursive function h such that

(i) ae C ~ ~* lh(a)l(~)~

(ii) ae C ~ -* ~h(a)l(~) = [a;~]

It is fairly straightforward to define such anh using the

primitive recursion theorem; we omit the details.

Since the treatment of T2(~) involved a discussion of partial

functionals anyway, it seems natural to look for a more direct

method of introducing partial recursion in the context of infinite

terms. One way of doing this is to return first to the system

T I (~) and then relax the conditions under which the autonomous

sequencing scheme IV * may be applied, by not requiring any longer

that the enumerating functional given by a I has only previously

defined codes as values. The functionals so defined will now in

general be partial. But not only [a] ~ as a function of G will be

362 H. Schwichtenberg. S.S. Wainer

partial (as we would like) but also the values [a] ~ for certain

fixed ~ may be partial functionals and as such will not even be

objects of our underlying domain UT~ To avoid this difficulty

we instead let t a be the term<%2F M with a sequence of

variables of type ~, so that the values of [a] ~, when defined, are

natural numbers (i.e. total objects of type 0) . This leads to a

system of infinite "partial" terms ta,aE C defined by I, II, III, V

and IV *** below (We no longer relativize to,since it is not really

necessary here. One can easily show, for this new system, that there

is a primitive recursive function ka.a' such that if a E C~then

a'~ C and for all F [a'] ~'~ = [a] ~) .

IV ~** (Long partial autonomous sequences) Assume a I ~ C and

Typ(al)= fT.,On. Then a=<4,a1>~ C and t a=<tb~F~ where

bF= [a I]~ and tbF is undefined if bF r C. Furthermore Typ(a)=},

and [a] E is defi~ed with value m if and only if (i) [al]~ is defined,

(ii) [al]~ : bF~C with Typ(bF)=},0 u, and (iii) [bF] ~ is defined

with value m.

Now in what sense do I,II,III,IV ***, V constitute a definition

of the concepts a~ C,t a and [a]~? The formerly critical point in

the inductive definition of C was the use of quantification over

M in IV (with ~ = 0) and IV*,IV ** (with T arbitrary), which meant
T

I
that C was "at least" a complete H 1 set. But this clause has now

been removed to give IV *~ and so the new C can be defined independently

of t a and [a] ~, and is simply primitive recursive (as is the set

of indices for partial recursive functionals). Incidentally the

primitive recursive function Typ also needs to be redefined so that

Typ(<4,a1>)= Typ(al). We next consider [a] ~. Since [a] ~ may

now be undefined we need to give a definition of the relation

[a] ~ ~ G, to be read "[a] ~ is defined with value G". This relation

is clearly analogous to Kleene's lel~(~) ~ z and is given by the

H. Schwichtenberg, S.S. Wainer S~

following induction :

(I) Variables. [a] E -~ F i if a=~1,i, r ~ , F: FI,. ..FnE M and

_ [a2 IF and (2) Application. If [a I]F ~ GI and -~ G 2 where G I~M _~p

G2~ M then [a] ~ -" GIG 2 where a=~2,al,a2~.

(3) Abstraction. If [a I]F'G _~ HG for all G~M then [a] ~-~ H where

a =~, a1"~ .

Long partial autonomous sequences. If [all -F -~ b and [b] -F- : m (4)

then [a] ~ -- m where a--~4,a1~.

(5) Primitive Recursion. If [ai]~F -~ m i for I ~ i ~ n k then

[a] ~ -~Pk(ml,...,mnk) where a=~5,k,r~ ~, al,...,a_~,nk _F~M~ and

Pk is the k - the. primitive recursive function.

For the "partial" terms t a for a~ C we omit corresponding

details. Notice however, the problems which can arise when

~

a=~4'a1~and ta : ~ F~M x where b F - [al]~ Since a I is

quite arbitrary we do not know anything about the values bF ;

in particular we may have bF = a for some F and so in general t a

may have the structure of a non-well-founded tree (analogous to

the undefined computations which can arise through Kleene's

scheme $9). One can think of a computation of [a] -F from given a,F

as working through t a starting from the outermost node. In such

a computation, an infinite branching occurs in the case of

abstraction (where the structure of t a has only a l-fold branching),

but only a 2-fold branching occurs in the case of sequencing

(whereas the structure of t a in this case has an infinite branching).

We have arrived at an inductive definition (I)...(5) in which

terms are not explicitly mentioned. This definition is due to

Feferman, and is the starting point of [4]. One can show either

directly (as is done in [4]) or by reduction to Theorems 4 and 5,

that the partial functionals X~.[a] -a exhaust the Kleene partial

recursive functionals .

3~ H. Schwichtenberg, S.S. Wainer

[lo]

[11]

REFERENCES.

[I] P.Aczel and P.G. Hinman, "Recursion in the Superjump", in

Generalized Recursion Theory (Eds. Fenstad and Hinman),

North-Holland (1974).

[2] S. Feferman, "Classifications of Recursive Functions by means

of Hierarchies", Trans. Amer. Math. Soc. vol 104 (1962)

pp. 101-122.

[3] S. Feferman, "Ordinals and ~kmctionals in Proof Theory", Proc.

of Int. Congress of Mathematicians Nice (1970), pp. 229-233.

[4] S. Feferman, "Recursion in Total Functionals of Finite Type",

to appear.

[5] S.C. Kleene, "Recursive Functionals and Quantifiers of Finite

Types I, II", Trans. Amer. Math. Soe. vol 91 (1959) pp. 1-52,

vol 108 (1963) pp. 106-142.

[6] E.G.K. Lopez-Escobar,"Remarks on an Infinitary Language with

Constructive Formulas", Journ. Symb. Logic vol 32 (1967)

PP. 305-319.

[7] Y.N. Moschovakis, "Hyperanalytic Predicates", Trans. Amer Math.

Soc. vol 129 (1967) pp. 249-282.

[8] R.A. Platek, "A Countable Hierarchy for the Superjump", in

Logic Colloquium '69 (Eds. Gandy and Yates) North-Holland

(1 9 7 1) �9

[9] H. Schwichtenberg, "Elimination of Higher Type Levels in Definit-
ions of Primitive Recursive Fnls.by Transfinite Recursion
to appear in Proc. of Bristol Logic Colloquium 1973 (Eds. Rose

and Shepherdson), North-Holland.

W.W. Tait, "Infinitely Long Terms of Transfinite Type", in

Formal Systems and Recursive Functions (Eds. Crossley and

Dummett) North-Holland (1965).

S.S. Wainer, "A Hierarchy for the l-Section of Any Type Two

Object", Journ. Symb. Logic vol 39 (1972) pp. 88-94.

