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Einbettung affiner Riume

Von RUDOLF FRITSCH in Konstanz

Einleitung

In [F] wurde gezeigt, wie man ohne Benutzung der linearen Algebra nur mit
synthetischen Hilfsmitteln einen dreidimensionalen affinen Raum konstruieren
kann, in dem eine gegebene desarguessche Ebene eingebettet ist. Hier soll nun
in dhnlicher Weise ein beliebiger affiner Raum A als Hyperebene in einen affi-
nen Raum ¥ eingebettet werden.

Unsere Konstruktion wird motiviert durch § 1 von [F]. Sie beruht auf dem

aus der Darstellenden Geometrie bekannten Verfahren der kotierten Projektion.
Auf [F] wird in folgenden Uberlegungen insofemn zuriickgegriffen, als wir im
einzelnen nur die Punkte darstellen, in denen sich die rdumliche Situation von
der ebenen unterscheidet.

Dabei geht es zundchst einmal um die synthetische Definition eines affinen
Raumes. In der Literatur hat sich dafir noch kein Axiomensystem einheitlich
durchgesetzt. Das erlaubt uns, eines zu wiahlen, das fir unsere Zwecke beson-
ders gut geeignet ist. Wir stellen es mit einigen Erlduterungen in § 1 dar.

In jedem affinen Raum gilt — im Unterschied zur affinen Ebene — ohne wei-
tere Voraussetzung der Satz von DESARGUES und damit auch der Fundamen-
talsatz der affinen Geometrie. Wir benétigen ihn hier in einer gegeniiber der
Formulierung in [F] § 3 etwas verschirften Fassung (s. 2.3.). Die Verschirfung
beruht auf der Aussage in 2.5., deren Beweis wir z.T. skizzieren.

In § 3 beschreiben wir die Grundelemente des gesuchten affinen Raumes 4.
Dafl wir bei der Festlegung der Ebenen in % allgemeinere Punktmengen als
die in [F] 4.3. beschriebenen zulassen miissen, hat den folgenden geometri-
schen Hintergrund: In einem 3-dimensionalen affinen Raum ist der von einer
Geraden und einer Ebene aufgespannte affine Unterraum auch hochstens 3-
dimensional; deswegen lassen sich alle Ebenen in der Form [F](1.6) darstellen.
In einem hoherdimensionalen Raum ist das nicht moglich, weil es darin Ebe-
nen gibt, die ,,affin unabhingig* von einer festen Geraden sind und deshalb
mit ihr einen 4-dimensionalen Unterraum erzeugen.
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Die Giiltigkeit der Axiome in dem konstruierten Raum 2 kann man grofien-

teils vollig analog zum Vorgehen in [F] bestitigen. Neben der Definition der

Ebenen liefert das Axiom iiber den Durchschnitt von Ebenen, das wir in § 4

nachweisen, den zweiten Gesichtspunkt, in dem sich die ebene und die rdum-
liche Situation unterscheiden.

Den Abschluff unser Betrachtungen bildet schliefllich in § 5 der Nachweis, dafl
wir den gegebenen Raum A4 als Hyperebene in den konstruierten Raum 9 ein-
betten konnen.

Man kann sich natiirlich fragen, ob es sich lohnt, einen im Rahmen der analy-
tischen Geometrie vollig trivialen Satz mit diesem Aufwand synthetisch bewei-
sen zu wollen. Unseres Erachtens haben die angestellten Betrachtungen auch
nicht ihren Wert im Ergebnis, sondern in der Schulung des rdumlichen Vor-
stellungsvermogens, das einem dann vielleicht einmal an anderer Stelle weiter-
hilft, wenn man keinen analytisch-algebraischen Kalkiil zur Verfiigung hat (vgl.
auch [LV], S. 46 letzter Absatz).

§ 1. Affine Riume

1.1. Die affinen Rdume sind fiir uns durch ein Axiomensystem definiert, in
dem die HILBERTschen Verkniipfungsaxiome (oder Inzidenzaxiome) so abge-
andert sind, daf® auch die n-dimensionalen affinen Rdume mit n > 3 erfafdt
werden. Es geht im wesentlichen auf H. LENZ ([LG], Kap X, § 2) zuriick.

1.2. Ein affiner Raum ist eine Menge von Punkten zusammen mit zwei Men-
gen gewisser Untermengen, der sogenannten Geraden und Ebenen, so daf} die
folgenden Bedingungen I-V erfiillt sind. Dabei bezeichnen wir als Dreieck
eine Menge von drei Punkten, die nicht auf einer Geraden liegen, und wir nen-
nen ein Paar von Geraden parallel, wenn sie entweder gleich sind oder beide
in einer Ebene liegen und keinen Punkt gemeinsam haben.

I. Reichhaltigkeitsaxiom: Jede Gerade enthdlt mindestens zwei Punkte; jede
Ebene enthdlt mindestens ein Dreieck. Es gibt ein Dreieck und dariiberhinaus
vier Punkte, die nicht in einer Ebene liegen.

I1. Existenz und Eindeutigkeit der Verbindungsgeraden: Zu je zwei Punkten
D1,D2 Mit p, ¥ p, gibt es genau eine Gerade, die beide enthdlt. Diese wird als
die Verbindungsgerade p,p, der Punkte p,,p, bezeichnet.

III. Existenz und Eindeutigkeit der Verbindungsebene: Zu jedem Dreieck gibt
es genau eine Ebene, die es enthdlt.
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IV. Parallelenaxiom: Zu jeder Geradén gibt es durch jeden Punkt genau eine
Parallele.

V. Axiom iiber den Durchschnitt von Ebenen: Sind e, ,e, Ebenen mit
e, N e, # (, derart dap es Geraden g, ,g, mit g, C e, (i = 1,2) und g,l g, gibt,
dann haben e, und e, mindestens zwei Punkte gemeinsam.

1.3. Anstelle von Axiom V verlangte HILBERT, daf zwei beliebige Ebenen ent-
weder keinen oder mindestens zwei Punkte gemeinsam haben. Damit enthalt
man aber nur die 3-dimensionalen affinen Riume, weshalb eine Abschwichung
notwendig ist. Die hier gegebene Fassung findet sich in [LG] a.a.0. Um der in-
tuitiven Vorstellung von einem affinen Raum gerecht zu werden, muff man
dann das Reichhaltigkeitsaxiom verschirfen: daf jede Ebene ein Dreieck ent-
hilt, ist in dem HILBERTSschen System beweisbar. Von dem LENZschen
System unterscheiden wir uns zunéachst dadurch, da® wir ein stirkeres Paralle-
lenaxiom verwenden. Das bewirkt einerseits, dafl die Aussage von Axiom V
mit Hilfe der Axiome I-IV bewiesen werden kann, falls jede Gerade minde-
stens 4 Punkte enthilt [K]"). Andrerseits kdnnen wir auf ein zusitzlich bei
HILBERT und LENZ auftretendes Axiom verzichten, da sich beweisen lafdt:

1.4. Wenn die Punkte p,, p, mit p, # p, in der Ebene e liegen, dann liegt ihre
Verbindungsgerade p,p, ganz in e.

Nach I enthilt e ndmlich mindestens einen Punkt pj, der nicht auf p, p, liegt.
Nach IV gibt es dann durch p; eine Parallele g zu p, p,. Wegen g # p;p, mufd
es eine Ebene ¢ geben, die g und p;p, enthilt. Die Punkte p; (i = 1,2,3) bilden
ein Dreieck und liegen sowohl in e als auch in é. Damit folgt e = ¢ und wegen
1P C € exgibt sich die Behauptung.

1.5. Im folgenden sei nun ein affiner Raum A4 fest vorgegeben; P sei die Menge
seiner Punkte und z eine feste Gerade.

§ 2. Der Fundamentalsatz der affinen Geometrie

2.1. Die von uns bendtigte Fassung des Fundamentalsatzes der affinen Geome-
trie formulieren wir mit Hilfe gewisser Abbildungen, die wir Deformationen
nennen.

'y In Anbetracht dieses Sachverhalts konnte man fragen, ob das Wesentliche an unserer
Konstruktion nicht schon deutlich wiirde, wenn man sich auf affine Rdume beschrinkt,
deren Geraden mindestens 4 Punkte enthalten und damit auf den Nachweis des Axioms
V verzichten konnte. Die in diesem Axiom enthaltene Aussage, die wir in § 4 beweisen,
macht aber einerseits den Unterschied zwischen der ebenen und der rdumlichen Situation
ganz besonders deutlich und erlaubt andererseits einen sehr einfachen Nachweis des Paral-
lelenaxioms (s. 3.7.).
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2.2. Eine einfache Deformation ¢ = h ; ist die Parallelprojektion einer Ebene e

in A auf eine in e liegende Gerade / (& h); e ist diejenige Ebene durch /, die
Geraden aus h enthilt. Wie ein [F] bezeichnet & eine Aquivalenzklasse paralle-
ler Geraden. Der Definitionsbereich Def ¢ = e von ¢ besteht aus den Punkten

p in A, fur die gilt: Die Gerade in & durch p schneidet . Sind ¢;,¢,, ..., ¥,
einfache Deformationen, derart daR das Ziel von @; im Definitionsbereich von
¢;4 enthalten ist, so ist die Zusammensetzung ¢ = ¢, *...* @, * ¢, eine Abbil-
dung des Definitionsbereiches von v, auf das Ziel von @, Eine solche Abbildung
wollen wir zusammengesetzte Deformation oder kurz Deformation nennen.

Das Ziel der zusammengesetzen Deformation o ist natiirlich das Ziel von ¢,.

2.3. (Fundamentalsatz der affinen Geometrie)

(2) Zu p,,p, € P mit py # p, und p,',p; € z gibt es einfache Deformationen
X.¥ mit

1) p=W-0®)

fir i =1,2.

(b) Sind ¢,¢ Deformationen und p,,p, Punkte mit p, # p, und

(22) o) =¢()

fiir p = p, und p = p,, so gilt (2.2) fir alle p € p,p,.

2.4. Der in [F] skizzierte Beweis fir die dortige Fassung des Fundamentalsat-
zes 1Bt sich auch in einem affinen Raum fiihren. Die hier benétigte Verschir-
fung ergibt sich dann aus folgender Tatsache:

2.5. Ist ¢ eine Deformation mit Ziel z und g eine Gerade im Definitionsbereich
von ¢, so gibt es einfache Deformationen X,y mit

23) WP =9
fir allep €g.

2.6. Im Fall g # z ist das die Behauptung von Satz 8.1 in [LV] Kap. I. Der
dort fur eine projektive Ebene gefiihrte Beweis 148t sich ohne weiteres auf un-
sere Situation in einem affinen Raum iibertragen. Sieht man diesen Beweis ge-
nau an, so ergibt sich, daf8 die Aussage nur noch unter folgenden zusitzlichen
Voraussetzungen zu zeigen ist:

24) g=z
25) ¢=93°¢ 9
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mit einfachen Deformationen % (i =1,2,3) und?)
(2.6) iz # 1,2,
wobei /; das Ziel von ¢; (i = 1,2,3; 15 = ) bezeichnet. Dariiberhinaus kdnnen

wir noch ohne wesentliche Einschrinkung annehmen, dal ¢ die Gerade z bi-
jektiv auf sich abbildet. Setzen wir nun

@7 =,

so haben wir z & A! und L& At fir i = 1,2. Ist dann A eine Gerade in A,
die z schneidet, #® die Gerade durch p(h'z) in 43 und / die Verbindungsge-
rade von /;/, und A*h® (Figur 1)

Figur 1

so gilt
28) ()= -r) (D)

2) Sind g und h verschiedene Geraden einer Ebene in A4, so bezeichnet gh ihren eigent-
lichen oder uneigentlichen Schnittpunkt.
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fir alle p € g jedenfalls dann, wenn k! und k3 nicht parallel sind. Im Falle
(29) h =3

aber kann man o, zuniichst so zu einer einfachen Deformation ¢} abindern,
dal ¢; und g5 verschiedene Projektionsrichtungen haben, aber trotzdem

(2.10) (v3° 9291 (P) = 0(P)
fiir alle p € z gilt (Figur 2; vgl. auch Hilfssatz 8.2 in [LV] Kap. I).

1, 1

N
\ (@) Ww(p) \

§ 3. Punkte, Geraden, Ebenen

3.1. Wir beschreiben nun die Grundelemente des affinen Raumes 2, der den
gegebenen affinen Raum A als Hyperebene enthalten soll.

3.2. Als Punkte von 2 nehmen wir die Elemente von
(3.1) P=P Xz

Wie in [F] bezeichnen wir mit Spur und Héhe die Projektionen von ‘P auf den
ersten bzw. zweiten Faktor, d.h. die Abbildungen (p,p") > p bzw. (p,p") = p'
von B auf P.

3.3. Als Ebenen von 2 nehmen wir die Teilmengen e von ', fir die es eine
Gerade g in A (,,vertikale* Ebenen) mit

(32) e=gXz
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oder eine Deformation ¢ mit Ziel z und
(33) e=(p)>={(pv())|p € Def v}
gibt>.

3.4. Als Geraden von 2 nehmen wir die Teilmengen g von ‘B, fiir die es einen
Punkt p € P (,,vertikale* Geraden) mit

(4) g={p}Xz

oder eine Gerade g in 4 und eine Deformation ¢ mit g C Def ¢ und

(3S) 8=gXz Ny

gibt.

3.5. Ohne Miihe weist man mit diesen Festsetzungen das Reichhaltigkeitsaxiom
(Axiom I in 1.2.) nach, sowie analog zu [F] die Axiome von der Existenz der
Verbindungsgeraden und der Eindeutigkeit der Verbindungsgeraden und Verbin-
dungsebenen.

3.6. Den Nachweis der Existenz der Verbindungsebenen dreier Punkte (pi,p;)
(i = 1,2,3) in A konnen wir gegeniiber [F] sogar etwas vereinfachen, da wir
den Fundamentalsatz in einer schirferen Fassung zur Verfigung haben. Dabei
konnen wir ohne wesentliche Einschrankung annehmen, daf§ die p; nicht auf
einer Geraden liegen und die p;. nicht alle gleich sind, also etwa

(36) pi#p2
gilt. Wir wihlen dann eine Deformation ¢, mit
B7) e (p)=pi

fur i = 1,2; das ist nach dem Fundamentalsatz moglich. Aus (3.6) folgt, daf
¢, die Gerade p,p, bijektiv auf z abbildet. Also gibt es p3” € p,p, mit

(38)  ¢i(p3) =psi

Bezeichnet nun ¢, die einfache Deformation mit Ziel p, p, die p, auf p3 abbil-
det ist offensichtlich (g, - v,) die Verbindungsebene der (p;,p}).

3.7. Sieht man sich nun den Nachweis des Parallelenaxioms in [F] § 7 an, so
stellt man fest, da} er sich ohne Schwierigkeiten auf unsere Situation iibertra-
gen laBt. Fir einen Teil der Eindeutigkeitsaussage (s. 7.5. in [F]) benotigt man

%) Falls man Abbildungen als Paarmengen auffaBt, ist (o} nichts anderes als die Deforma-
tion ¢.
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jedoch das Axiom iiber den Durchschnitt von Ebenen in einer leicht verschirften
Fassung; das wird im folgenden Paragraphen ohne Voraussetzung des Parallelen-
axioms nachgewiesen.

§ 4. Das Axiom iiber den Durchschnitt von Ebenen

4.1. Wir wollen nun zeigen, dal zwei Ebenen e, und e, unter den in 1.2. V.
genannten Voraussetzungen nicht nur mindestens zwei Punkte, sondern eine
ganze Gerade gemeinsam haben.

4.2. Sind die Ebenen e; und e, beide vertikal, so ist das trivial. Ist
@.1) e =gXz

fir eine Gerade g in 4 und

42) e ={p,

so geniigt es zu zeigen, dal g im Definitionsbereich e von o liegt. Da e; und e,
mindestens einen Punkt (p,p") gemeinsam haben, liegt mindestens der Punkt

p in g N e. Nun soll es nach Voraussetzung aber in e, eine Gerade § geben,
die parallel zu einer Geraden in e, ist. Aus der Definition der Parallelitit folgt
leicht (vgl. [F] 5.4.), daB

(4.3) g=Spur (g
parallel zu g sein muf}. Im Falle
“44) z=2

sind wir fertig; andernfalls ist e die Verbindungsebene von p und g und damit
die einzige Ebene, die g und g enthilt.

4.3. Fiir das Weitere kénnen wir nun voraussetzen
4.5) e =(»

fir i = 1,2. Dariiber hinaus haben wir einen Punkt (p,p’) € e, N e, und Gera-
den g; Ce; (i = 1,2) mit g, | g, Setzen wir

4.6) & = Spur (g,)
fiir i = 1,2, so ist g, l g,, und es sind zwei Fille zu unterscheiden:

@7 gi=g

und der gegenteilige Fall.
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44. Gilt (4.7), so konnen wir ohne wesentliche Einschriankung p & g, voraus-
setzen. ¢; und ¢, haben dann den gleichen Definitionsbereich, nimlich die von
p und g, in A aufgespannte Ebene e. Die Behauptung ergibt sich nun aus dem
folgenden Hilfssatz

4.5. Haben zwei Deformationen ¢, und p, mit dem gleichen Definitionsbereich
e und dem gleichen Ziel | fiir einen Punkt p € e den gleichen Bildpunkt, so
gilt

(4.8)  vi1(@) =v2(q)
fiir alle Punkte einer Geraden in e.

Dazu sei g eine Gerade in e durch p, die weder durch ¢, noch durch g, in
einen Punkt abgebildet wird*). Dann wihlen wir einfache Deformationen cpl'.
(i = 1,2) mit Definitionsbereich e, Ziel g und

@9)  ¢;=vyrv;

eine von g verschiedene Gerade /' in e durch p, aber nicht durch cpl.(p), und
eine Deformation y, die / bijektiv auf /' und insbesondere

(4.10) ¢,(p) = v2(p)

auf p abbildet. Aus 2.5. folgt nun zunichst die Existenz von einfachen Defor-
mationen xpl.]. (ij = 1,2) mit

@.11) (¥,09;,) @ = (vev) (@
fir alle ¢ € g und wegen
@12) (U, v)@) =p

findet man mit Hilfe des Satzes von Desargues sogar einfache Deformationen
¥, (1 =1,2) mit

(4.13) ¥; @) =(o-¢)@)

fir alle ¢ € g, d.h.

(4.14) (¥;° 0@ = (- 9) (@)

fiir alle ¢ € e.

4y Die Existenz einer solchen Geraden konnen wir ohne wesentliche Einschrinkung an-
nehmen, denn andernfalls wire entweder ¢, oder ¢, eine konstante Abbildung und die
Behauptung ergibt sich aus der Tatsache, daf das Urbild eines Punktes beziiglich einer

Deformation mindestens eine Gerade enthilt, wenn es nicht leer ist.
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Auf Grund von (4.14) und der Wahl von ¢ geniigt es nun statt (4.8) die Exi-
stenz einer Geraden 4 in e mit

(4.15) (Y1-9))@ = (Y2 92) @)
fiir alle Punkte ¢ € h zu zeigen.

Bilden ¥, und ¥, die Gerade g bijektiv auf /' ab, so ergibt sich das aus Figur
3 durch zweimaliges Anwenden des Satzes von Desargues:

4 P o) (e 00

Figur 3

Bildet aber etwa , die Gerade g konstant auf p ab, so gilt (4.15) fiir alle
Punkte g der Geraden &, die durch ¢; auf p abgebildet wird. Damit ist der
Hilfssatz vollstindig bewiesen.

4.6. Nun haben wir die Behauptung in 4.1. noch unter den in 4.3. genannten
Voraussetzungen zu zeigen, falls (4.7) nicht gilt. Dabei kénnen wir noch p & g;
fir i = 1,2 voraussetzen. Mit g gezeichnen wir dann die Parallele zu &; =1
oder 2) durch p; sie liegt offensichtlich in den Definitionsbereichen von ¢, und
¢, und es geniigt zu zeigen

(4.16)  ¢1(9) =v2(@)
fir alle g € g

Da g, und g, parallel sind, haben wir eine Deformation ¢ mit Ziel z und
g;C (io) firi =1,2.
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4.7. Zunichst wollen wir annehmen, daf} ¢ die Gerade g, — und damit auch
g, — bijektiv auf z abbildet. Dann seien p; der Punkt auf g; mit

@.17) ¢;(p) =p'

und w} die einfache Deformation mit Ziel g;> die p auf p; abbildet (i = 1,2). Da
nun gilt

(4.18) (v-9) (@) =v;(@)
fir ¢ €g; und g = p, haben wir

(4.19) v-y; =y,
fir i = 1,2. Andererseits folgt aus dem kleinen Satz von Desargues

(4.20) (v v1)(@) =(r°v)(@)

fiir alle ¢ € g und zusammen mit (4.19) liefert das die Behauptung (4.16).

4.8. Bildet ¢ jedoch die Geraden g; und g, in einen Punkt ab, so folgt, dafl
auch ®; die Gerade 8; und damit jede zu g; parallele Gerade in einen Punkt
abbildet. Also haben wir nun

@421) ¢;@=p
fiir alle ¢ € g und i = 1,2. Das ergibt wiederum (4.16).

§ 5. A als Hyperebene in 9

5.1. Fiir jedes po € z induziert die Abbildung p > (p,po) eine Einbettung von P
in %, die Geraden in Geraden und Ebenen in Ebenen iiberfiihrt. Wir wollen
noch zeigen, da 4 dabei sogar als Hyperebene in 9 aufgefait werden kann.

5.2. Dabei legen wir folgende Definition zugrunde: Ein affiner Unterraum 4
eines affinen Raumes 9 wird Hyperebene von 9 genannt, wenn jede Gerade
in U, die 4 nicht trifft, parallel ist zu einer Geraden in A.

5.3. Sei nun pg ein fester Punkt in z und g eine Gerade in 2, die keine Punkt
(p,po) mit p € P enthilt. g muB dann die Form (3.5) haben, wobei ¢ die Gerad

(5.1) g =Spur (9)

konstant auf einen Punkt p' abbildet. Ist ¢, dann eine Deformation, die g kon-
stant auf p, abbildet, so ist

(52)  go=g Xz N{pp

eine Parallele zu g in 4.
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